The Volatile Compound Profile of “Lumblija”, the Croatian Protected Geographical Indication Sweet Bread
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Headspace Solid-Phase Microextraction
2.3. Gas Chromatography—Mass Spectrometry
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PGI | Protected Geographical Indication |
PDO | Protected Designation of Origin |
SPME | Solid-phase microextraction |
PTFE | Polytetrafluoroethylene |
HS-SPME | Headspace solid-phase microextraction |
DVB/CAR/PDMS | Divinylbenzene/carboxen/polydimethylsiloxane |
GC | Gas chromatography |
GC-MS | Gas chromatography–mass spectrometry |
HS-SPME/GC-MS | Headspace solid-phase microextraction/gas chromatography–mass spectrometry |
MSD | Mass spectrometry detector |
RI | Retention indices |
NIST | National Institute of Standards and Technology |
References
- European Union. Commission Implementing Regulation (EU) 2022/2281 of 15 November 2022 Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications (‘Lumblija’ (PGI)); European Union: Brussels, Belgium, 2022; L 301/21; Available online: http://data.europa.eu/eli/reg_impl/2022/2281/oj (accessed on 17 July 2025).
- European Union. Publication of an Application for Registration of a Name Pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on Quality Schemes for Agricultural Products and Foodstuffs 2022/C 286/14; European Union: Brussels, Belgium, 2022; C 286/57; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.C_.2022.286.01.0057.01.ENG&toc=OJ%3AC%3A2022%3A286%3ATOC (accessed on 17 July 2025).
- Giannone, V.; Giarnetti, M.; Spina, A.; Todaro, A.; Pecorino, B.; Summo, C.; Caponio, F.; Paradiso, V.M.; Pasqualone, A. Physico-chemical properties and sensory profile of durum wheat Dittaino PDO (Protected Designation of Origin) bread and quality of re-milled semolina used for its production. Food Chem. 2018, 241, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Careri, M.; Chiavaro, E.; Musci, M.; Vittadini, E. Gas chromatographic–mass spectrometric characterisation of the Italian Protected Designation of Origin ‘‘Altamura” bread volatile profile. Food Chem. 2008, 110, 787–793. [Google Scholar] [CrossRef]
- Zolfaghari, M.Z.; Ardebili, S.M.S.; Asadi, G.H.; Larijan, K. Effect of sourdough, bakery yeast and sodium bicarbonate on volatile compounds, and sensory evaluation of Lavash bread. J. Food Process. Pres. 2017, 41, e12973. [Google Scholar] [CrossRef]
- Giarnetti, M.; Paradiso, V.M.; Caponio, F.; Summo, C.; Pasqualone, A. Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT Food Sci. Technol. 2015, 63, 339–345. [Google Scholar] [CrossRef]
- Maire, M.; Rega, B.; Cuvelier, M.E.; Soto, P.; Giampaoli, P. Lipid oxidation in baked products: Impact of formula and process on the generation of volatile compounds. Food Chem. 2013, 141, 3510–3518. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Yang, H.; Wu, M.; Shen, X.; Lai, Y.; Wang, D.; Ma, C.; Ye, X.; Sun, C.; Cao, J.; Sun, C.; et al. A Comprenhensive Review of VOCs as a Key Indicator in Food Authentication. eFood 2025, 6, e70057. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, X.; Wei, L.; Li, L.; Li, G.; Liu, F.; Xie, J.; Yu, J.; Zhong, Y. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chem. 2021, 340, 128166. [Google Scholar] [CrossRef]
- Zekić, M.; Radonić, A.; Radman, S.; Uremović, I. Volatile compounds of Croatian cheese in a lamb skin sack prepared from a mixture of goat’s and cow’s milk. Food Res. 2024, 8, 277–283. [Google Scholar] [CrossRef]
- Friščić, M.; Maleš, Ž.; Maleš, I.; Duka, I.; Radonić, A.; Mitić, B.; Hruševar, D.; Jurić, S.; Jerković, I. Gas Chromatography–Mass Spectrometry Analysis of Volatile Organic Compounds from Three Endemic Iris Taxa: Headspace Solid-Phase Microextraction vs. Hydrodistillation. Molecules 2024, 29, 4107. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 10 July 2025).
- Canali, G.; Balestra, F.; Glicerina, V.; Pasini, F.; Caboni, M.F.; Romani, S. Influence of different baking powders on physico-chemical, sensory and volatile compounds in biscuits and their impact on textural modifications during soaking. J. Food Sci. Techn. Mys. 2020, 57, 3864–3873. [Google Scholar] [CrossRef]
- Garvey, E.C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Optimisation of HS-SPME parameters for the analysis of volatile compounds in baked confectionery products. Food Anal. Method. 2020, 13, 1314–1327. [Google Scholar] [CrossRef]
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/ (accessed on 17 July 2025).
- Flavornet. Available online: http://www.flavornet.org/ (accessed on 17 July 2025).
- Pasquini, D.; Detti, C.; Ferrini, F.; Brunetti, C.; Gori, A. Polyphenols and terpenes in Mediterranean plants: An overview of their roles and possible applications. Italus Hortus 2021, 28, 3–31. [Google Scholar] [CrossRef]
- Al-Khalili, M.; Pathare, P.B.; Rahman, S.; Al-Habsi, N. Aroma compounds in food: Analysis, characterization and flavor perception. Meas. Food 2025, 18, 100220. [Google Scholar] [CrossRef]
- Gonzales-Mas, M.C.; Rambla, J.L.; Lopez-Gresa, M.P.; Blazquez, M.A.; Granell, A. Volatile compounds in citrus essential oils: A comprehensive review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Ramashia, S.E.; Ntsanwisi, M.D.; Onipe, O.O.; Mashau, M.E.; Olamiti, G. Nutritional, Functional, and Microbial Quality of Wheat Biscuits Enriched With Malted Pearl Millet and Orange Peel Flours. Food Sci. Nutr. 2024, 12, 10477–10493. [Google Scholar] [CrossRef] [PubMed]
- Sharafan, M.; Jafernik, K.; Ekiert, H.; Kubica, P.; Kocjan, R.; Blicharska, E.; Szopa, A. Illicium verum (star anise) and trans-anethole as valuable raw materials for medicinal and cosmetic applications. Molecules 2022, 27, 650. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Esteban, J.; Sanz, J. Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from central Spain. J. Agric. Food Chem. 2006, 54, 6814–6818. [Google Scholar] [CrossRef]
- Yu, T.; Yao, H.; Qi, S.; Wang, J. GC-MS analysis of volatiles in cinnamon essential oil extracted by different methods. Grasas Aceites 2020, 71, e372. [Google Scholar] [CrossRef]
- Gaspar, E.M.; Duarte, R.; Santana, J.C. Volatile composition and antioxidant properties of clove products. Biomed. J. Sci. Tech. Res. 2018, 9, 7270–7276. [Google Scholar] [CrossRef]
- Rahardiyan, D.; Poluakan, M.; Moko, E.M. Physico-chemical Properties of Nutmeg (Myristica fragrans Houtt.) of North Sulawesi Nutmeg. Fuller. J. Chem. 2020, 5, 23–31. [Google Scholar] [CrossRef]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.H.; Lorenzo, J.M.; Khaneghah, A.M.; Barba, F.J. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit. Rev. Food Sci. Nutr. 2018, 60, 310–321. [Google Scholar] [CrossRef]
- De Luca, L.; Aiello, A.; Pizzolongo, F.; Blaiotta, G.; Aponte, M.; Romano, R. Volatile organic compounds in breads prepared with different sourdoughs. Appl. Sci. 2021, 11, 1330. [Google Scholar] [CrossRef]
- Hansen, A.; Schieberle, P. Generation of aroma compounds during sourdough fermentation: Applied and fundamental aspects. Trends Food Sci. Technol. 2005, 16, 85–94. [Google Scholar] [CrossRef]
- Pellati, F.; Orlandini, G.; van Leeuwen, K.A.; Anesin, G.; Bertelli, D.; Paolini, M.; Benvenuti, S.; Camin, F. Gas chromatography combined with mass spectrometry, flame ionization detection and elemental analyzer/isotope ratio mass spectrometry for characterizing and detecting the authenticity of commercial essential oils of Rosa damascena Mill. Rapid Commun. Mass. Sp. 2013, 27, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Aponte, M.; Boscaino, F.; Sorrentino, A.; Coppola, R.; Masi, P.; Romano, A. Volatile compounds and bacterial community dynamics of chestnut-flour-based sourdoughs. Food Chem. 2013, 141, 2394–2404. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef]
- Srivastava, R.; Bousquières, J.; Cepeda-Vázquez, M.; Roux, S.; Bonazzi, C.; Rega, B. Kinetic study of furan and furfural generation during baking of cake models. Food Chem. 2018, 267, 329–336. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Potent odorants of rye bread crust—Differences from the crumb and from wheat bread crust. Z. Leb. Unters For. 1994, 198, 292–296. [Google Scholar] [CrossRef]
- Ortu, E.; Caboni, P. Levels of 5-hydroxymethylfurfural, furfural, 2-furoic acid in sapa syrup, Marsala wine and bakery products. Int. J. Food Prop. 2017, 20, 2543–2551. [Google Scholar] [CrossRef]
- Nur Aimi, R.; Abu Bakar, F.; Dzulkifly, M.H. Determination of volatile compounds in fresh and fermented Nipa sap (Nypa fruticans) using static headspace gas chromatography-mass spectrometry (GC-MS). Int. Food Res. J. 2013, 20, 369–376. [Google Scholar]
- Antoniou, C.; Kyratzis, A.C.; Soteriou, G.A.; Rouphael, Y.; Kyriacou, M.C. Configuration of the volatile aromatic profile of carob powder milled from pods of genetic variants harvested at progressive stages of ripening from high and low altitudes. Front. Nutr. 2021, 8, 789169. [Google Scholar] [CrossRef] [PubMed]
- Hathorn, C.S.; Bovell-Benjamin, A.C.; Bazemore, R.; Yoon, Y. Identification of styrene and hexanol during baking of sweetpotato bread in a closed chamber. SAE Int. J. Aerosp. 2009, 1, 537–542. [Google Scholar] [CrossRef]
- Cingöz, A. Aroma compounds and physicochemical and functional properties of traditional Tokat bread. Food Sci. Nutr. 2024, 12, 9702–9713. [Google Scholar] [CrossRef]
- Steele, D.H.; Thornburg, M.J.; Stanley, J.S.; Miller, R.R.; Brooke, R.; Cushman, J.R.; Cruzan, G. Determination of styrene in selected foods. J. Agric. Food Chem. 1994, 42, 1661–1665. [Google Scholar] [CrossRef]
- Cao, X.; Sparling, M.; Pelletier, L.; Dabeka, R. Styrene in foods and dietary exposure estimates. Food Addit. Contam. Part A 2018, 35, 2045–2051. [Google Scholar] [CrossRef]
- Tang, W.; Hemm, I.; Eisenbrand, G. Estimation of human exposure to styrene and ethylbenzene. Toxicology 2000, 144, 39–50. [Google Scholar] [CrossRef]
RI | Volatile Compound | A Av ± SD | B Av ± SD | C Av ± SD | D Av ± SD | Odour Description * |
---|---|---|---|---|---|---|
<900 | ethanol | 9.53 ± 1.26 | 10.84 ± 0.75 | 22.85 ± 1.44 | 10.21 ± 0.17 | alcoholic |
<900 | acetic acid | 0.87 ± 0.13 | 0.91 ± 0.09 | 1.91 ± 0.13 | 1.16 ± 0.17 | sour |
<900 | ethyl acetate | 0.21 ± 0.02 | 0.21 ± 0.06 | 0.29 ± 0.02 | 0.18 ± 0.02 | ethereal, fruity, sweet, green |
<900 | 2-methylpropan-1-ol | 0.31 ± 0.11 | 0.43 ± 0.07 | 0.70 ± 0.05 | 0.39 ± 0.10 | ethereal, winey |
<900 | (Z)-but-2-enal | 0.19 ± 0.08 | 0.30 ± 0.01 | 0.09 ± 0.00 | nd | nf |
<900 | acetoin | 0.23 ± 0.03 | 0.33 ± 0.03 | 0.75 ± 0.09 | 0.11 ± 0.04 | pungent, sweet, creamy, buttery |
<900 | 3-methylbutan-1-ol | 0.32 ± 0.02 | 0.38 ± 0.03 | 1.49 ± 0.05 | 0.39 ± 0.09 | sweet, green, fruity, apple, nutty |
<900 | 2-methylbutan-1-ol | 0.18 ± 0.01 | 0.22 ± 0.00 | nd | 0.20 ± 0.00 | ethereal, alcoholic, fatty, greasy |
<900 | butane-2,3-diol | nd | nd | 0.62 ± 0.11 | nd | buttery, creamy, pungent, caramelly |
<900 | hexanal | 0.16 ± 0.05 | nd | nd | 0.09 ± 0.00 | grassy, greenish, fruity |
<900 | furfural | 0.48 ± 0.02 | 0.58 ± 0.08 | 1.02 ± 0.05 | 0.48 ± 0.02 | sweet, woody, bready, caramelly |
<900 | styrene | 1.86 ± 0.36 | 2.15 ± 0.06 | 3.50 ± 0.34 | 1.51 ± 0.09 | sweet, balsam, floral, plastic |
940 | α-pinene | 1.84 ± 0.14 | 2.06 ± 0.12 | 2.22 ± 0.11 | 0.33 ± 0.01 | woody, piney |
969 | benzaldehyde | 0.24 ± 0.02 | 0.20 ± 0.05 | 0.27 ± 0.03 | 0.27 ± 0.01 | strong, sharp, sweet, bitter almond |
979 | β-phellandrene | 0.97 ± 0.07 | 3.67 ± 0.00 | 3.83 ± 0.13 | 0.30 ± 0.01 | minty, terpenic |
985 | β-pinene | 3.17 ± 0.20 | 2.85 ± 0.63 | 2.37 ± 0.08 | 1.75 ± 0.06 | dry, woody, resinous, pine |
994 | β-myrcene | 0.59 ± 0.07 | 1.27 ± 0.44 | 1.02 ± 0.07 | 0.49 ± 0.02 | peppery, terpene, spicy |
996 | ethyl hexanoate | nd | nd | 0.23 ± 0.01 | 0.05 ± 0.00 | sweet, fruity, green banana |
1007 | α-phellandrene | 0.13 ± 0.01 | 0.14 ± 0.07 | 0.22 ± 0.01 | nd | citrus, terpenic, black pepper-like |
1016 | 3-carene | 0.13 ± 0.01 | 0.18 ± 0.04 | 0.22 ± 0.01 | nd | sweet |
1023 | α-terpinene | nd | 0.57 ± 0.02 | nd | nd | citrusy, woody, terpenic |
1030 | p-cymene | 0.57 ± 0.04 | 0.47 ± 0.07 | 0.50 ± 0.02 | 0.24 ± 0.01 | fresh, citrus, terpene, woody, spice |
1035 | limonene | 15.30 ± 1.40 | 36.07 ± 0.81 | 15.85 ± 0.61 | 26.60 ± 0.83 | sweet, citrus and peely |
1038 | eucalyptol | 0.17 ± 0.02 | 0.13 ± 0.00 | nd | 0.12 ± 0.01 | eucalyptus, herbal, camphor |
1065 | γ-terpinene | 2.35 ± 0.20 | 2.38 ± 0.07 | 2.29 ± 0.05 | 1.70 ± 0.06 | terpenic, sweet, citrus |
1091 | 4-carene | 0.37 ± 0.07 | 0.46 ± 0.04 | 0.49 ± 0.01 | nd | nf |
1103 | linalool | 0.71 ± 0.05 | 0.66 ± 0.06 | 2.51 ± 0.09 | 0.21 ± 0.01 | citrus, orange, floral, terpenic, rose |
1105 | nonanal | 0.31 ± 0.07 | nd | nd | nd | waxy, aldehydic, citrus |
1119 | 2-phenylethanol | 0.27 ± 0.01 | 0.34 ± 0.05 | 0.64 ± 0.09 | 0.25 ± 0.03 | sweet, floral, fresh, bready |
1166 | 3-phenylpropanal | 0.25 ± 0.01 | nd | nd | 0.07 ± 0.00 | nf |
1189 | terpinen-4-ol | 2.87 ± 0.15 | 2.15 ± 0.49 | 1.81 ± 0.06 | 0.20 ± 0.01 | pine, terpene, citrus, woody, floral |
1194 | α-terpineol | 0.28 ± 0.02 | 0.20 ± 0.05 | 0.21 ± 0.00 | 0.07 ± 0.00 | pine, terpene, citrus, woody, floral |
1200 | estragole | 0.38 ± 0.06 | 0.12 ± 0.17 | nd | 0.62 ± 0.02 | sweet, anise, spice, fennel |
1235 | 3-phenylpropanol | 2.57 ± 0.19 | 1.72 ± 0.49 | 1.97 ± 0.19 | 2.66 ± 0.27 | spicy, cinnamon, fruity, floral |
1248 | carvone | 0.69 ± 0.04 | nd | nd | 1.41 ± 0.03 | spearmint |
1277 | p-anisaldehyde | nd | nd | nd | 0.56 ± 0.01 | sweet, vanilla, anise, coumarin |
1279 | (E)-cinnamaldehyde | 16.88 ± 0.73 | 0.89 ± 0.06 | 0.95 ± 0.10 | 9.71 ± 0.32 | sweet, cinnamon, clove, spicy |
1292 | anethole | 13.04 ± 1.30 | 10.20 ± 1.89 | 10.19 ± 4.53 | 26.67 ± 1.17 | sweet, anise, liquorice, medicinal |
1293 | safrole | 2.01 ± 0.22 | 1.98 ± 0.04 | 2.10 ± 0.09 | nd | sweet, spicy, sassafras, anise |
1304 | (E)-cinnamyl alcohol | 1.62 ± 0.24 | 1.59 ± 0.00 | nd | 3.84 ± 0.45 | cinnamon, spice, floral, green |
1362 | eugenol | 1.41 ± 0.22 | 3.67 ± 1.53 | 5.52 ± 0.44 | 3.30 ± 0.12 | sweet, spicy, clove, woody |
1379 | α-copaene | 0.29 ± 0.02 | 0.29 ± 0.00 | 0.24 ± 0.00 | nd | woody, spicy, honey |
1392 | geranyl acetate | nd | 0.27 ± 0.00 | 0.34 ± 0.00 | nd | floral, fruity, green, rose |
1406 | methyl eugenol | 1.08 ± 0.08 | 1.26 ± 0.16 | 1.29 ± 0.08 | 0.16 ± 0.00 | spicy, clove, blossom, woody |
1422 | β-caryophyllene | 0.14 ± 0.10 | 0.53 ± 0.24 | 0.53 ± 0.00 | 0.43 ± 0.01 | sweet, woody, spice, clove, dry |
1432 | coumarin | 1.85 ± 0.54 | 0.80 ± 0.70 | 0.29 ± 0.04 | 1.04 ± 0.26 | sweet, coumarinic |
1445 | cinnamyl acetate | 0.91 ± 0.32 | 0.69 ± 0.00 | nd | 0.75 ± 0.04 | sweet, floral, spicy, balsam, cinnamon |
1500 | (E)-methyl isoeugenol | 0.08 ± 0.11 | 0.15 ± 0.10 | nd | nd | spicy, clove, woody |
1519 | myristicin | 9.93 ± 1.33 | 7.01 ± 1.51 | 4.92 ± 0.29 | 0.51 ± 0.04 | spicy, warm, balsamic, woody |
1558 | elemicin | 0.31 ± 0.11 | 0.44 ± 0.12 | 0.42 ± 0.02 | nd | spicy, floral |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radonić, A.; Šarić, L.; Marijanović, Z.; Šarolić, M. The Volatile Compound Profile of “Lumblija”, the Croatian Protected Geographical Indication Sweet Bread. AppliedChem 2025, 5, 29. https://doi.org/10.3390/appliedchem5040029
Radonić A, Šarić L, Marijanović Z, Šarolić M. The Volatile Compound Profile of “Lumblija”, the Croatian Protected Geographical Indication Sweet Bread. AppliedChem. 2025; 5(4):29. https://doi.org/10.3390/appliedchem5040029
Chicago/Turabian StyleRadonić, Ani, Lucia Šarić, Zvonimir Marijanović, and Mladenka Šarolić. 2025. "The Volatile Compound Profile of “Lumblija”, the Croatian Protected Geographical Indication Sweet Bread" AppliedChem 5, no. 4: 29. https://doi.org/10.3390/appliedchem5040029
APA StyleRadonić, A., Šarić, L., Marijanović, Z., & Šarolić, M. (2025). The Volatile Compound Profile of “Lumblija”, the Croatian Protected Geographical Indication Sweet Bread. AppliedChem, 5(4), 29. https://doi.org/10.3390/appliedchem5040029