Oxyresveratrol-Loaded Electrospun Cellulose Acetate/Poly(ε-caprolactone) Nanofibers with Enhanced Stability and Bioactivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of trans-Oxyresveratrol from Artrocarpus Lakoocha Powder Using Microwave-Assisted Extraction (MAE)
2.3. Identification of Trans-Oxyresveratrol
2.4. Optimal Fabrication of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.5. The Morphology of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.6. Determination of Percent Loading of Trans-Oxyresveratrol in trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.7. In Vitro trans-Oxyresveratrol Release of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.8. Chemical Characterization of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets by Using ATR-FTIR Spectroscopy
2.9. Thermal Stability Analysis by Thermogravimetric Analysis (TGA) of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.10. Swelling and Weight Loss of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.11. Tensile Testing of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.12. Anti-Oxidative Capacity of trans-Oxyresveratrol in trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.13. Anti-Tyrosinase Activity of trans-Oxyresveratrol in trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
2.14. Stability of trans-Oxyresveratrol in trans-Oxyresveratrol-Loaded CA PCL Fiber Sheet
2.15. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of trans-Oxyresveratrol from Artrocarpus Lakoocha Powder Using Microwave-Assisted Extraction (MAE)
3.2. Optimal Fabrication of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
3.3. In Vitro trans-Oxyresveratrol Release of trans-Oxyresveratrol-Loaded CA-PCL Fiber Sheets
3.4. Proving the Structural Identity of Oxyresveratrol from CA-PCL Nanofiber Sheet Using the FT-IR Technique
3.5. Study of the Thermal Properties of CA-PCL Nanofibers Using Thermogravimetric Analysis (TGA) with Encapsulated Resveratrol
3.6. Study of Swelling Properties in Water and Percentage of Weight Loss
3.7. Study of the Mechanical Properties of Nanofiber Mats of Oxyresveratrol from Polymer Blends of CA:PCL in Various Ratios
3.8. The DPPH Radical Scavenging Activity of Oxyresveratrol Encapsulated in CA-PCL Nanofibers Compared to Free Oxyresveratrol
3.9. Study of the DPPH Radical Scavenging Activity of Oxyresveratrol Encapsulated in Fibers Under Accelerated Conditions Compared to Free Oxyresveratrol
3.10. Study of the Tyrosinase Inhibitory Activity of Fiber-Encapsulated Oxyresveratrol Compared to Free Oxyresveratrol at the Same Concentration
3.11. Study of the Inhibitory Effect on Tyrosinase Enzyme of Oxyresveratrol Encapsulated in Fibers Under Accelerated Conditions Compared to Free Oxyresveratrol at the Same Concentration
3.12. Study of the Stability of Oxyresveratrol Encapsulated in CA-PCL Nanofibers Under Accelerated Conditions Compared to Free Oxyresveratrol at the Same Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Cellulose acetate |
PCL | poly(ε-caprolactone) |
DMF | Dimethylformamide |
DPPH | 1,1′-diphenyl-2-picrylhydrazyl |
References
- Aneklaphakij, C.; Bunsupa, S.; Sirichamorn, Y.; Bongcheewin, B.; Satitpatipan, V. Taxonomic Notes on the ‘Mahat’ (Artocarpus lacucha and A. thailandicus, Moraceae) Species Complex in Thailand. Plants 2020, 9, 391. [Google Scholar] [CrossRef]
- Sitorus, P.; Keliat, J.M.; Asfianti, V.; Muhammad, M.; Satria, D. A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant. Molecules 2022, 27, 6940. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K. Oxyresveratrol: Sources, productions, biological activities, pharmacokinetics, and delivery systems. Molecules 2021, 26, 4212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Tien, Y.J.; Chen, C.H.; Beltran, F.N.; Amor, E.C.; Wang, R.J.; Wu, D.J.; Mettling, C.; Lin, Y.L.; Yang, W.C. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement. Med. Ther. 2013, 13, 45. [Google Scholar] [CrossRef]
- Wei, J.; Chen, J.-R.; Pais, E.M.; Wang, T.-Y.; Miao, L.; Li, L.; Li, L.-Y.; Qiu, F.; Hu, L.-M.; Gao, X.-M.; et al. Oxyresveratrol is a phytoestrogen exerting anti-inflammatory effects through NF-κB and estrogen receptor signaling. Inflammation 2017, 40, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants 2021, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Chatsumpun, N.; Chuanasa, T.; Sritularak, B.; Lipipun, V.; Jongbunprasert, V.; Ruchirawat, S.; Likhitwitayawuid, K. Oxyresveratrol: Structural modification and evaluation of biological activities. Molecules 2016, 21, 489. [Google Scholar] [CrossRef]
- Mattio, L.M.; Catinella, G.; Pinto, A.; Dallavalle, S. Natural and nature-inspired stilbenoids as antiviral agents. Eur. J. Med. Chem. 2020, 202, 112541. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Y.; Wang, X.; Jiang, X.; Zou, J.; Huang, R. Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression. Eur. J. Oral Sci. 2020, 128, 18–26. [Google Scholar] [CrossRef]
- Joo, J.H.; Han, M.H.; Kim, J.I.; Kim, J.E.; Jung, K.H.; Oh, H.S.; Lee, H.Y. Antimicrobial activity of Smilax china L. root extracts against the acne-causing bacterium, Cutibacterium acnes, and its active compounds. Molecules 2022, 27, 8331. [Google Scholar] [CrossRef]
- Mahamud, N.; Songvut, P.; Muangnoi, C.; Rodsiri, R.; Dahlan, W.; Tansawat, R. Untargeted metabolomics reveal pathways associated with neuroprotective effect of oxyresveratrol in SH-SY5Y cells. Sci. Rep. 2023, 13, 20385. [Google Scholar] [CrossRef]
- Zeng, H.J.; Li, Q.Y.; Ma, J.; Yang, R.; Qu, L.B. A comparative study on the effects of resveratrol and oxyresveratrol against tyrosinase activity and their inhibitory mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119405. [Google Scholar] [CrossRef]
- Panichakul, T.; Rodboon, T.; Suwannalert, P.; Tripetch, C.; Rungruang, R.; Boohuad, N.; Youdee, P. Additive effect of a combination of Artocarpus lakoocha and Glycyrrhiza glabra extracts on tyrosinase inhibition in melanoma B16 cells. Pharmaceuticals 2020, 13, 310. [Google Scholar] [CrossRef]
- Promden, W.; Chanvorachote, P.; Viriyabancha, W.; Sintupachee, S.; De-Eknamkul, W. Maclura cochinchinensis (Lour.) Corner heartwood extracts containing resveratrol and oxyresveratrol inhibit melanogenesis in B16F10 melanoma cells. Molecules 2024, 29, 2473. [Google Scholar] [CrossRef]
- Donini, M.; Gaglio, S.C.; Laudanna, C.; Perduca, M.; Dusi, S. Oxyresveratrol-loaded PLGA nanoparticles inhibit oxygen free radical production by human monocytes: Role in nanoparticle biocompatibility. Molecules 2021, 26, 4351. [Google Scholar] [CrossRef]
- Rajimol, P.R.; Ulaeto, S.B.; Puthiyamadam, A.; Sahoo, S.K.; Rajan, T.P.D.; Radhakrishnan, K.V.; Sukumaran, R.K. Development of an oxyresveratrol incorporated bio-based smart nanocomposite coating with anti-corrosive, self-healing, and anti-microbial properties. Green Chem. 2023, 25, 7189–7215. [Google Scholar]
- Ozkan, G.; Kostka, T.; Esatbeyoglu, T.; Capanoglu, E. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules 2020, 25, 5545. [Google Scholar] [CrossRef] [PubMed]
- Cheong, A.M.; Tan, C.P.; Nyam, K.L. In vitro evaluation of the structural and bioaccessibility of kenaf seed oil nanoemulsions stabilised by binary emulsifiers and β-cyclodextrin complexes. J. Food Eng. 2016, 189, 90–98. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Lanjari-Pérez, Y.; Martín-Belloso, O. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem. 2018, 266, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Zeeb, B.; Saberi, A.H.; Weiss, J.; McClements, D.J. Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release. Food Hydrocoll. 2015, 50, 27–36. [Google Scholar] [CrossRef]
- Jacob, S.; Kather, F.S.; Morsy, M.A.; Boddu, S.H.; Attimarad, M.; Shah, J.; Nair, A.B. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. Nanomaterials 2024, 14, 672. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yang, X.; Che, X.; Yang, M.; Zhai, G. Biomedical application and controlled drug release of electrospun fibrous materials. Mater. Sci. Eng. C 2018, 90, 750–763. [Google Scholar] [CrossRef]
- Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm. Biopharm. 2017, 112, 1–17. [Google Scholar] [CrossRef]
- Chiu, C.M.; Nootem, J.; Santiwat, T.; Srisuwannaket, C.; Pratumyot, K.; Lin, W.-C.; Mingvanish, W.; Niamnont, N. Enhanced Stability and Bioactivity of Curcuma comosa Roxb. Extract in Electrospun Gelatin Nanofibers. Fibers 2019, 7, 76. [Google Scholar] [CrossRef]
- Rongthong, W.; Niamnont, N.; Srisuwannaket, C.; Paradee, N.; Mingvanish, W. Electrospun gelatin fiber mats mixed with C. carandas extract and its enhanced stability and bioactivity. J. Pharm. Sci. 2021, 110, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Suner, S.C.; Yildirim, Y.; Yurt, F.; Ozel, D.; Oral, A.; Ozturk, I. Antibiotic loaded electrospun poly (lactic acid) nanofiber mats for drug delivery system. J. Drug Deliv. Sci. Technol. 2022, 71, 103263. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wang, C.; Abdalkarim, S.Y.H. Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly (lactic acid) nanofibers for controlling long-term in vitro drug release. Cellulose 2017, 24, 4461–4477. [Google Scholar] [CrossRef]
- Li, X.; Kanjwal, M.A.; Lin, L.; Chronakis, I.S. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf. B Biointerfaces 2013, 103, 182–188. [Google Scholar]
- Jalvandi, J.; White, M.; Gao, Y.; Truong, Y.B.; Padhye, R.; Kyratzis, I.L. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. Mater. Sci. Eng. C 2017, 73, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevisan, K.; Maleki, H.; Samadian, H.; Shahsavari, S.; Sarrafzadeh, M.H.; Larijani, B.; Khorramizadeh, M.R. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr. Polym. 2018, 198, 131–141. [Google Scholar] [CrossRef]
- Spasova, M.; Manolova, N.; Rashkov, I.; Tsekova, P.; Georgieva, A.; Toshkova, R.; Markova, N. Cellulose acetate-based electrospun materials with a variety of biological potentials: Antibacterial, antifungal and anticancer. Polymers 2021, 13, 1631. [Google Scholar] [CrossRef]
- Huo, P.; Han, X.; Zhang, W.; Zhang, J.; Kumar, P.; Liu, B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics 2021, 13, 1228. [Google Scholar] [CrossRef]
- Miranda, C.S.; Marinho, E.; Seabra, C.L.; Evenou, C.; Lamartine, J.; Fromy, B.; Costa, S.P.G.; Homem, N.C.; Felgueiras, H.P. Antimicrobial, antioxidant and cytocompatible coaxial wet-spun fibers made of polycaprolactone and cellulose acetate loaded with essential oils for wound care. Int. J. Biol. Macromol. 2024, 277, 134565. [Google Scholar] [CrossRef]
- Munteanu, B.S.; Vasile, C. Encapsulation of natural bioactive compounds by electrospinning-Applications in food storage and safety. Polymers 2021, 13, 3771. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, M.; Williams, G.R.; Wu, J.; Sun, X.; Lv, Y.; Zhu, L.M. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv. 2016, 6, 50267–50277. [Google Scholar] [CrossRef]
- Coelho, S.C.; Estevinho, B.N.; Rocha, F. Recent advances in water-soluble vitamins delivery systems prepared by mechanical processes (electrospinning and spray-drying techniques) for food and nutraceuticals applications—A review. Foods 2022, 11, 1271. [Google Scholar] [CrossRef] [PubMed]
- Fadhila, M.; Mun’im, A.; Jufr, M. Ionic liquid-based microwave-assisted extraction (Il-MAE) of oxyresveratrol from Morus alba roots. J. Appl. Pharm. Sci. 2018, 8, 8–13. [Google Scholar]
- Jiratanakittiwat, K.; Satirapipathkul, C.; Charnvanich, D. The Influences of extraction on the quantity of oxyresveratrol from Artocarpus lakoocha Roxb. Int. J. Biosci Biochem. Bioinforma. 2020, 10, 110–116. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, H.Y.; Khil, M.S.; Ra, Y.M.; Lee, D.R. Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer 2013, 44, 1287–1294. [Google Scholar] [CrossRef]
- Ahmed, F.; Saleemi, S.; Khatri, Z.; Abro, M.I.; Kim, I.S. Co-electrospun poly (ɛ-caprolactone)/cellulose nanofibers-fabrication and characterization. Carbohydr. Polym. 2015, 115, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Nootem, J.; Chalorak, P.; Meemon, K.; Mingvanish, W.; Pratumyot, K.; Ruckthong, L.; Srisuwannaket, C.; Niamnont, N. Electrospun cellulose acetate doped with astaxanthin derivatives from Haematococcus pluvialis for in vivo anti-aging activity. RSC Adv. 2018, 8, 37151–37158. [Google Scholar] [CrossRef]
- Song, H.; Gong, X.; Williams, G.R.; Quan, J.; Nie, H.; Zhu, L.; Nan, E.; Shao, M. Self-assembled magnetic liposomes from electrospun fibers. Mater. Res. Bull. 2014, 53, 280–289. [Google Scholar] [CrossRef]
- Mendes, A.C.; Gorzelanny, C.; Halter, N.; Schneider, S.W.; Chronakis, I.S. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm. 2016, 1, 48–56. [Google Scholar] [CrossRef]
- Han, J.; Chen, T.X.; Branford-White, C.J.; Zhu, L.M. Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int. J. Pharm. 2009, 382, 215–221. [Google Scholar] [CrossRef]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Taepaiboon, P.; Rungsardthong, U.; Supaphol, P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm. 2007, 67, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.X.; Xu, X.X.; Zheng, W.; Zhou, H.M.; Li, L.; Zheng, Y.F.; Lou, X. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf. B Biointerfaces 2011, 84, 97–102. [Google Scholar] [CrossRef]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Kataria, K.; Gupta, A.; Rath, G.; Mathur, R.B.; Dhakate, S.R. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm. 2014, 469, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.; Blicker, M.; Piquette-Miller, M.; Allen, C. Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J. Pharm. Sci. 2025, 94, 1512–1527. [Google Scholar] [CrossRef] [PubMed]
- Neo, Y.P.; Ray, S.; Jin, J.; Gizdavic-Nikolaidis, M.; Nieuwoudt, M.K.; Liu, D.; Quek, S.Y. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chem. 2013, 136, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
Formulation | Loading Content (%) |
---|---|
CA:PCL (1:0) | 80.53 ± 5.89 a |
CA:PCL (3:1) | 82.85 ± 0.66 a |
CA:PCL (1:1) | 80.84 ± 2.67 a |
CA:PCL (1:3) | 81.36 ± 3.72 a |
CA:PCL (0:1) | 76.81 ± 1.84 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornkaew, N.; Thuamwong, P.; Anantanasan, A.; Pratumyot, K.; Choodej, S.; Chaiseeda, K.; Srisuwannaket, C.; Mingvanish, W.; Niamnont, N. Oxyresveratrol-Loaded Electrospun Cellulose Acetate/Poly(ε-caprolactone) Nanofibers with Enhanced Stability and Bioactivity. AppliedChem 2025, 5, 28. https://doi.org/10.3390/appliedchem5040028
Sornkaew N, Thuamwong P, Anantanasan A, Pratumyot K, Choodej S, Chaiseeda K, Srisuwannaket C, Mingvanish W, Niamnont N. Oxyresveratrol-Loaded Electrospun Cellulose Acetate/Poly(ε-caprolactone) Nanofibers with Enhanced Stability and Bioactivity. AppliedChem. 2025; 5(4):28. https://doi.org/10.3390/appliedchem5040028
Chicago/Turabian StyleSornkaew, Nilubon, Piyanan Thuamwong, Apisit Anantanasan, Kornkanya Pratumyot, Siwattra Choodej, Kittichai Chaiseeda, Choladda Srisuwannaket, Withawat Mingvanish, and Nakorn Niamnont. 2025. "Oxyresveratrol-Loaded Electrospun Cellulose Acetate/Poly(ε-caprolactone) Nanofibers with Enhanced Stability and Bioactivity" AppliedChem 5, no. 4: 28. https://doi.org/10.3390/appliedchem5040028
APA StyleSornkaew, N., Thuamwong, P., Anantanasan, A., Pratumyot, K., Choodej, S., Chaiseeda, K., Srisuwannaket, C., Mingvanish, W., & Niamnont, N. (2025). Oxyresveratrol-Loaded Electrospun Cellulose Acetate/Poly(ε-caprolactone) Nanofibers with Enhanced Stability and Bioactivity. AppliedChem, 5(4), 28. https://doi.org/10.3390/appliedchem5040028