Tetrahydroisoquinoline-Triazole Derivatives: Novel Nicotinamide N-Methyltransferase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Assay
2.1.1. Primary Assays
2.1.2. Secondary Assays
2.1.3. Biological Data
2.2. Molecular Docking Study
2.2.1. Ligands Preparation
2.2.2. Protein Structure Preparation
2.2.3. Preparing Grid Parameters
2.2.4. Preparing Docking Parameters
2.2.5. AutoDock Results Analysis
3. Results and Discussion
3.1. Synthesis of Inhibitors
Compound | R1 | R2 |
---|---|---|
4a | H | H |
4b | H | 4-tert-butyl |
4c | H | 4-CF3 |
4d | H | 4-Ph |
4e | H | 4-Cl |
4f | H | 4-CN |
4g | H | 4-NO2 |
4h | H | 4-CON(CH3)2 |
4i | H | 4-CH=CH-Ph |
4j | 3-F | 4-OCH2Ph |
4k | 2-F | 4-OCH2Ph |
4l | H | 4-CH2OPh |
4m | H | 3-CH2OPh |
4n | H | 4-CH2SPh |
3.2. Compounds Cheminformatic Evaluation Using OIDD in Silico Screening
3.3. Biological Activities Novel NNMT Inhibitors
3.4. SAR Analysis
3.5. Molecular Docking
3.5.1. Docking Method Validation
3.5.2. Docking Scores of 4a–n
3.5.3. Ligand Interactions Analysis
3.6. Summary of SAR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trammell, S.A.; Brenner, C. NNMT: A bad actor in fat makes good in liver. Cell Metab. 2015, 22, 200–201. [Google Scholar] [CrossRef]
- Aksoy, S.; Szumlanski, C.L.; Weinshilboum, R.M. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J. Biol. Chem. 1994, 269, 14835–14840. [Google Scholar] [CrossRef]
- Riederer, M.; Erwa, W.; Zimmermann, R.; Frank, S.; Zechner, R. Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis 2009, 204, 412–417. [Google Scholar] [CrossRef]
- Parsons, R.B.; Smith, M.-L.; Williams, A.C.; Waring, R.H.; Ramsden, D.B. Expression of nicotinamide N-methyltransferase (EC 2.1. 1.1) in the Parkinsonian brain. J. Neuropathol. Exp. Neurol. 2002, 61, 111–124. [Google Scholar] [CrossRef]
- Williams, A.C.; Ramsden, D.B. Autotoxicity, methylation and a road to the prevention of Parkinson’s disease. J. Clin. Neurosci. 2005, 12, 6–11. [Google Scholar] [CrossRef]
- Sartini, D.; Muzzonigro, G.; Milanese, G.; Pierella, F.; Rossi, V.; Emanuelli, M. Identification of nicotinamide N-methyltransferase as a novel tumor marker for renal clear cell carcinoma. J. Urol. 2006, 176, 2248–2254. [Google Scholar] [CrossRef]
- Pissios, P. Nicotinamide N-methyltransferase: More than a vitamin B3 clearance enzyme. Trends Endocrinol. Metab. 2017, 28, 340–353. [Google Scholar] [CrossRef]
- Ramsden, D.B.; Waring, R.H.; Barlow, D.J.; Parsons, R.B. Nicotinamide N-methyltransferase in health and cancer. J. Tryptophan Res. 2017, 10, 1178646917691739. [Google Scholar]
- Lu, X.; Long, H. Nicotinamide N-methyltransferase as a potential marker for cancer. Neoplasma 2018, 65, 656–663. [Google Scholar] [CrossRef]
- Giuliante, R.; Sartini, D.; Bacchetti, T.; Rocchetti, R.; Klöting, I.; Polidori, C.; Ferretti, G.; Emanuelli, M. Potential involvement of nicotinamide N-methyltransferase in the pathogenesis of metabolic syndrome. Metab. Syndr. Relat. Disord. 2015, 13, 165–170. [Google Scholar] [CrossRef]
- Kraus, D.; Yang, Q.; Kong, D.; Banks, A.S.; Zhang, L.; Rodgers, J.T.; Pirinen, E.; Pulinilkunnil, T.C.; Gong, F.; Wang, Y.-c. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 2014, 508, 258–262. [Google Scholar] [CrossRef]
- Milani, Z.H.; Ramsden, D.B.; Parsons, R.B. Neuroprotective Effects of Nicotinamide N-Methyltransferase and its Metabolite 1-Methylnicotinamide. J. Biochem. Mol. Toxicol. 2013, 27, 451–456. [Google Scholar] [CrossRef]
- Ulanovskaya, O.A.; Zuhl, A.M.; Cravatt, B.F. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat. Chem. Biol. 2013, 9, 300–306. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Huang, X.; Yong, H.; Shen, J.; Tang, Q.; Zhu, J.; Ni, J.; Feng, Z. Nicotinamide N-methyltransferase: A potential biomarker for worse prognosis in gastric carcinoma. Am. J. Cancer Res. 2016, 6, 649. [Google Scholar]
- Wang, W.; Yang, C.; Wang, T.; Deng, H. Complex roles of nicotinamide N-methyltransferase in cancer progression. Cell Death Dis. 2022, 13, 267. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Li, G.; Yu, H.; Xie, X. Down-regulation of nicotinamide N-methyltransferase induces apoptosis in human breast cancer cells via the mitochondria-mediated pathway. PLoS ONE 2014, 9, e89202. [Google Scholar] [CrossRef]
- Neelakantan, H.; Wang, H.-Y.; Vance, V.; Hommel, J.D.; McHardy, S.F.; Watowich, S.J. Structure–Activity Relationship for Small Molecule Inhibitors of Nicotinamide N-Methyltransferase. J. Med. Chem. 2017, 60, 5015–5028. [Google Scholar] [CrossRef]
- van Haren, M.J.; Taig, R.; Kuppens, J.; Toraño, J.S.; Moret, E.E.; Parsons, R.B.; Sartini, D.; Emanuelli, M.; Martin, N.I. Inhibitors of nicotinamide N-methyltransferase designed to mimic the methylation reaction transition state. Org. Biomol. Chem. 2017, 15, 6656–6667. [Google Scholar] [CrossRef]
- Peng, Y.; Sartini, D.; Pozzi, V.; Wilk, D.; Emanuelli, M.; Yee, V.C. Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry 2011, 50, 7800–7808. [Google Scholar] [CrossRef]
- Babault, N.; Allali-Hassani, A.; Li, F.; Fan, J.; Yue, A.; Ju, K.; Liu, F.; Vedadi, M.; Liu, J.; Jin, J. Discovery of bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). J. Med. Chem. 2018, 61, 1541–1551. [Google Scholar] [CrossRef]
- Kannt, A.; Rajagopal, S.; Kadnur, S.V.; Suresh, J.; Bhamidipati, R.K.; Swaminathan, S.; Hallur, M.S.; Kristam, R.; Elvert, R.; Czech, J. A small molecule inhibitor of Nicotinamide N-methyltransferase for the treatment of metabolic disorders. Sci. Rep. 2018, 8, 3660. [Google Scholar] [CrossRef]
- Gao, Y.; van Haren, M.J.; Buijs, N.; Innocenti, P.; Zhang, Y.; Sartini, D.; Campagna, R.; Emanuelli, M.; Parsons, R.B.; Jespers, W. Potent inhibition of nicotinamide N-methyltransferase by alkene-linked bisubstrate mimics bearing electron deficient aromatics. J. Med. Chem. 2021, 64, 12938–12963. [Google Scholar] [CrossRef]
- Gao, Y.; Martin, N.I.; van Haren, M.J. Nicotinamide N-methyl transferase (NNMT): An emerging therapeutic target. Drug Discov. Today 2021, 26, 2699–2706. [Google Scholar] [CrossRef]
- Yoshida, S.; Uehara, S.; Kondo, N.; Takahashi, Y.; Yamamoto, S.; Kameda, A.; Kawagoe, S.; Inoue, N.; Yamada, M.; Yoshimura, N. Peptide-to-Small Molecule: A Pharmacophore-Guided Small Molecule Lead Generation Strategy from High-Affinity Macrocyclic Peptides. J. Med. Chem. 2022, 65, 10655–10673. [Google Scholar] [CrossRef]
- Payne, M.; Bottomley, A.L.; Och, A.; Hiscocks, H.G.; Asmara, A.P.; Harry, E.J.; Ung, A.T. Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds. Bioorg. Med. Chem. 2022, 57, 116648. [Google Scholar] [CrossRef]
- Alvim-Gaston, M.; Grese, T.; Mahoui, A.; Palkowitz, A.D.; Pineiro-Nunez, M.; Watson, I. Open Innovation Drug Discovery (OIDD): A potential path to novel therapeutic chemical space. Curr. Top. Med. Chem. 2014, 14, 294–303. [Google Scholar] [CrossRef]
- van Haren, M.J.; Sastre Torano, J.; Sartini, D.; Emanuelli, M.; Parsons, R.B.; Martin, N.I. A rapid and efficient assay for the characterization of substrates and inhibitors of nicotinamide N-methyltransferase. Biochemistry 2016, 55, 5307–5315. [Google Scholar] [CrossRef]
- Roberti, A.; Tejedor, J.R.; Díaz-Moreno, I.; López, V.; Santamarina-Ojeda, P.; Pérez, R.F.; Urdinguio, R.G.; Concellón, C.; Martínez-Chantar, M.L.; Fernández-Morera, J.L. Nicotinamide N-methyltransferase (NNMT) regulates the glucocorticoid signaling pathway during the early phase of adipogenesis. Sci. Rep. 2023, 13, 8293. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. User Guide, AutoDock Version 4.2, Updated for Version 4.2.6, Automated Docking of Flexible Ligands to Flexible Receptors; The Scripps Research Institute: San Diego, CA, USA, 2014; Volume 6. [Google Scholar]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and Vina with AutoDockTools: A Tutorial; The Scripps Research Institute: San Diego, CA, USA, 2011. [Google Scholar]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef]
- Bock, V.D.; Hiemstra, H.; Van Maarseveen, J.H. CuI-catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem. 2006, 2006, 51–68. [Google Scholar] [CrossRef]
- Worrell, B.; Malik, J.; Fokin, V. Direct evidence of a dinuclear copper intermediate in Cu (I)-catalyzed azide-alkyne cycloadditions. Science 2013, 340, 457–460. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Rangsinth, P.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Ung, A.T.; Chuchawankul, S. Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. J. Tradit. Complement. Med. 2021, 11, 158–172. [Google Scholar] [CrossRef]
- Gibbs, J.W. A method of geometrical representation of the thermodynamic properties by means of surfaces. In The Collected Works of J. Willard Gibbs, Ph. D., LL. D; Yale University Press: New Haven, CT, USA, 1957; pp. 33–54. [Google Scholar]
- Gao, Y.; Van Haren, M.J.; Moret, E.E.; Rood, J.J.; Sartini, D.; Salvucci, A.; Emanuelli, M.; Craveur, P.; Babault, N.; Jin, J. Bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT) with enhanced activity. J. Med. Chem. 2019, 62, 6597–6614. [Google Scholar] [CrossRef]
- Sauve, A.A. NAD+ and vitamin B3: From metabolism to therapies. J. Pharmacol. Exp. Ther. 2008, 324, 883–893. [Google Scholar] [CrossRef]
Compound | hNNMT MNA, % Inhibition (%) at 10 µM | hNNMT SAH, Inhibition (%) at 10 µM | hNNMT MNA, IC50 (µM) | hNNMT SAH, IC50 (µM) | hNNMT in HEK293, IC50 (µM) |
---|---|---|---|---|---|
4a | 91.29 | 89.73 | 3.177 | 3.207 | 21.75 |
4b | 40.09 | 40.16 | ND | ND | ND |
4c | 58.68 | 56.76 | 7.9 | 8.035 | 2.81 |
4f | 86.74 | 87.21 | 4.477 | 4.389 | 1.97 |
4h | 99.34 | 99.13 | 121.6 | 134.5 | ND |
4m | 97.99 | 97.99 | ND | ND | 1.011 |
MS2734 | Binding Energy (kcal/mol) | H-Bonds | Amino Acids Involved in Hydrogen Bonding | ||
---|---|---|---|---|---|
Pocket A | Pocket B | Pocket C | |||
In X-ray structure (6CHH) | NA | 11 | ASP42, VAL143, ASN90, CYS165, ASP85 | TYR25, TYR69, GLY63, THR163, THR67, | SER213, SER201, LEU164 |
redocked-conf-6 | −11.29 | 11 | CYS165, ASN90, TYR86 | TYR20, THR163, GLY63, THR67, SER64 | ASP197 |
redocked-conf-2 | −8.52 | 3 | ASN90 | GLY63, THR163, | |
redocked-conf-7 | −7.91 | 3 | ASN90 | THR163, GLY63, | |
redocked-conf-8 | −7.7 | 4 | VAL143, ASN90 | THR163, GLY63, | |
redocked-conf-3 | −6.76 | 3 | VAL143 | TYR69, TYR204 | |
redocked-conf-10 | −6.5 | 3 | VAL143, ASN90 | ANS16 | |
redocked-conf-9 | −6.26 | 0 | - | - | |
redocked-conf-1 | −5.52 | 1 | ASP85 | ||
redocked conf-4 | −4.95 | 3 | ASN90, ASP85 | - | SER201 |
redocked-conf-5 | −4.71 | 1 | - | ASN16 | - |
Compound | Binding Energy (kcal/mol) | Predicted Ligand Efficiency | Predicted Inhibition Constant | Exp IC50 (µM) a |
---|---|---|---|---|
MS2734 | −11.29 | −0.3 | 5.32 nM | 14.4 |
MvH45 | −11.32 | 0.31 | 5.05 nM | 29.2 |
4a | −12.9 | −0.34 | 350.2 pM | 3.2 |
4b | −11.73 | −0.26 | 2.52 nM | NA |
4c | −11.62 | −0.25 | 3.03 nM | 7.9 |
4d | −9.97 | −0.2 | 49.45 nM | NA |
4e | −13.16 | −0.33 | 227.46 pM | NA |
4f | −12.42 | −0.3 | 793.31 pM | 4.477 |
4g | −11.91 | −0.27 | 1.87 nM | NA |
4h | −11.95 | −0.25 | 1.75 nM | 121.6 |
4i | −11.73 | −0.22 | 2.51 nM | NA |
4j | −9.94 | −0.18 | 51.79 nM | NA |
4k | −9.86 | −0.18 | 59 nM | NA |
4l | −6.96 | −0.13 | 7.9 µM | NA |
4m | −11.45 | −0.21 | 4.07 nM | 1.1 b |
4n | −8.61 | −0.61 | 487.35 nM | NA |
Compound | Hydrogen Bonding | Attractive Charge and pi- Interactions | |||
---|---|---|---|---|---|
Number | Pocket A | Pocket B | Pocket C | ||
MS2734 X-ray structure (6CHH) | 11 | ASP142, VAL143, ASN90, CYS165, ASP85 | TYR25, TYR69, GLY63, THR163, THR67 | SER213, SER201, LEU164, TYR204 | TYR204 |
MS2734 redocked | 11 | CYS165, ASN90, TYR86 | TYR20, THR163, GLY63, THR67, SER64 | ASP197 | LEU164, ALA169, ALA168 |
MvH45 | 10 | ASP85, ASN90 | TYR20, GLY63, THR163 | ASP197, SER213 | TYR204, ALA168, ALA169, LEU164 |
4a | 5 | CYS165, ASN90, ASP85 | SER201, LEU164 | VAL143, ALA169, ALA168, ASP85, PRO17, PHE211,TYR204, ALA198, TYR242 | |
4b | 2 | TYR204, LEU164 | CYS165, TYR68, ALA169, ALA168, ILE206, ALA198, TYR242 | ||
4c | 13 | VAL143, ASP142, ALA169, CYS165, ASP85, ASN90 | TYR20, ASN16, GLY63, SER87, ASN16 | SER201, TYR203, TYR204, LEU164, ALA198 | ASN85, TYR86, PHE211, AL168, TYR204, TYR242, ALA198, ALA247 |
4d | 3 | CYS165 | TYR20 | TYR204 | VAL143, LEU164, TYR204, ALA198, CYS141 |
4e | 4 | ASN90, ASP85 | LEU164 | VAL143, ALA169, CYS165, TYR20, PRO17, ALA168, TYR204, ALA198, TYR242 | |
4f | 9 | VAL143, CYS165, ASN90, ASP85, TRY86 | ASN16, TYR20, | SER201, SER213, ASP197, LEU164 TYR204 | ALA169, PRO17, ALA168, |
4g | 7 | VAL143, CYS165, ASA90, ASP85 | ASN16, TYR20, | SER213, LEU164 | TYR86, ALA169, ALA168, ALA198 |
4h | 8 | ASP142, ASN90, ASP85, THR144 | ASN16, GLY63, TYR20 | TYR204, TYR24, LUE164 | PHE211, ALA169 |
4i | 1 | CYS165 | ASP85, ALA169, TYR20, ASN16, LEU164, ALA168, TYR204 | ||
4j | 6 | CYS165, ASN90 | ASP16, TYR20, | LEU164 | ASP85, VAL143, ALA169, PRO17, PHE211, ALA198 |
4k | 5 | ASP142, ASP85 | TYR24, PRO17 | LEU164, TYR204, CY165, ASP90 | |
4l | 2 | VAL143, SER87 | ASP142, ALA169, CYS165, TRY204, LEU164, ALA198 | ||
4m | 8 | ASP85, ASN90, CYS165, TYR86, ASP142 | ASN16, TYR20 | LEU164, TYR204 | ALA198, TYR247, ALA168, TYR20, PHE211, ILE206, ALA169 |
4n | 5 | ASN90, CYS165 | THR163 | LUE164 | TYR204, ALA198, ALA168, ALA169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ung, A.T.; Payne, M. Tetrahydroisoquinoline-Triazole Derivatives: Novel Nicotinamide N-Methyltransferase Inhibitors. AppliedChem 2023, 3, 509-525. https://doi.org/10.3390/appliedchem3040032
Ung AT, Payne M. Tetrahydroisoquinoline-Triazole Derivatives: Novel Nicotinamide N-Methyltransferase Inhibitors. AppliedChem. 2023; 3(4):509-525. https://doi.org/10.3390/appliedchem3040032
Chicago/Turabian StyleUng, Alison T., and Matthew Payne. 2023. "Tetrahydroisoquinoline-Triazole Derivatives: Novel Nicotinamide N-Methyltransferase Inhibitors" AppliedChem 3, no. 4: 509-525. https://doi.org/10.3390/appliedchem3040032
APA StyleUng, A. T., & Payne, M. (2023). Tetrahydroisoquinoline-Triazole Derivatives: Novel Nicotinamide N-Methyltransferase Inhibitors. AppliedChem, 3(4), 509-525. https://doi.org/10.3390/appliedchem3040032