Cuticular Hydrocarbon Profiling of Australian Gonipterini Weevils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. Extraction of CHCs
2.3. Analysis of CHCs
2.4. Chemometric Analysis
3. Results
3.1. Cuticular Hydrocarbon Profiles
3.2. Chemometric Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, L.G.; Edwards, R.; Crisp, M.; Hardy, N. Need morphology always be required for new species descriptions? Invertebr. Syst. 2010, 24, 322–326. [Google Scholar] [CrossRef]
- Wheeler, Q.D. Undisciplined thinking: Morphology and Hennig’s unfinished revolution. Syst. Entomol. 2008, 33, 2–7. [Google Scholar] [CrossRef]
- DeSalle, R.; Goldstein, P. Review and Interpretation of Trends in DNA Barcoding. Front. Ecol. Evol. 2019, 7, 302. [Google Scholar] [CrossRef]
- Sharkey, M.J.; Janzen, D.H.; Hallwachs, W.; Chapman, E.G.; Smith, M.A.; Dapkey, T.; Brown, A.; Ratnasingham, S.; Naik, S.; Manjunath, R.; et al. Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. ZooKeys 2021, 1013, 1–665. [Google Scholar] [CrossRef]
- Raupach, M.J.; Amann, R.; Wheeler, Q.D.; Roos, C. The application of “-omics” technologies for the classification and identification of animals. Org. Divers. Evol. 2016, 16, 774113. [Google Scholar] [CrossRef]
- Jones, O.A.; Maguire, M.L.; Griffin, J.L.; Dias, D.A.; Spurgeon, D.J.; Svendsen, C. Metabolomics and its use in ecology. Austral Ecol. 2013, 38, 713–720. [Google Scholar] [CrossRef]
- Hegnauer, R. Phytochemistry and plant taxonomy—An essay on the chemotaxonomy of higher plants. Phytochemistry 1986, 25, 1519–1535. [Google Scholar] [CrossRef]
- Martin, S.; Drijfhout, F. A Review of Ant Cuticular Hydrocarbons. J. Chem. Ecol. 2009, 35, 1151. [Google Scholar] [CrossRef]
- Holze, H.; Schrader, L.; Buellesbach, J. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity 2021, 126, 219–234. [Google Scholar] [CrossRef]
- Sprenger, P.P.; Hartke, J.; Schmitt, T.; Menzel, F.; Feldmeyer, B. Candidate genes involved in cuticular hydrocarbon differentiation between cryptic, parabiotic ant species. G3 Genes Genomes Genet. 2021, 11, jkab078. [Google Scholar] [CrossRef]
- Kather, R.; Martin, S.J. Cuticular hydrocarbon profiles as a taxonomic tool: Advantages, limitations and technical aspects. Physiol. Entomol. 2012, 37, 25–32. [Google Scholar] [CrossRef]
- Johnson, J. Near-infrared spectroscopy (NIRS) for taxonomic entomology: A brief review. J. Appl. Entomol. 2020, 144, 241–250. [Google Scholar] [CrossRef]
- Baker, J.E.; Nelson, D.R. Cuticular hydrocarbons of adults of the cowpea weevil, Callosobruchus maculatus. J. Chem. Ecol. 1981, 7, 175–182. [Google Scholar] [CrossRef]
- Lapointe, S.L.; Hunter, W.B.; Alessandro, R.T. Cuticular hydrocarbons on elytra of the Diaprepes root weevil Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae). Agric. For. Entomol. 2004, 6, 251–257. [Google Scholar] [CrossRef]
- Martins, C.B.C.; Saad, E.B.; de Almeida, L.M.; Zarbin, P.H.G. Cuticular Compounds Recognition and Mating Behavior of the Rice Water Weevil Oryzophagus oryzae (Coleoptera, Curculionidae). J. Insect Behav. 2013, 26, 812–823. [Google Scholar] [CrossRef]
- Souza, N.M.; Schröder, M.L.; Hayes, R.A.; Bello, J.E.; Nahrung, H.F. Cuticular hydrocarbons of Gonipterus weevils: Are there species differences? Chemoecology 2021, 31, 159–167. [Google Scholar] [CrossRef]
- Mapondera, T.S.; Burgess, T.; Matsuki, M.; Oberprieler, R.G. Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust. J. Entomol. 2012, 51, 175–188. [Google Scholar] [CrossRef]
- Schröder, M.L.; Slippers, B.; Wingfield, M.J.; Hurley, B.P. Invasion history and management of Eucalyptus snout beetles in the Gonipterus scutellatus species complex. J. Pest Sci. 2020, 93, 11–25. [Google Scholar] [CrossRef]
- Tooke, F. The eucalyptus snout-beetle, Gonipterus scutellatus Gyll. A study of its ecology and control by biological means. Entomol. Mem. 1953, 3, 1–282. [Google Scholar]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Mackley, J.W.; Carlson, D.A.; Butler, J.F. Identification of the cuticular hydrocarbons of the horn fly and assays for attraction. J. Chem. Ecol. 1981, 7, 669–683. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M. The Pherobase: Database of Insect Pheromones and Semiochemicals. Available online: https://www.pherobase.com/ (accessed on 7 July 2022).
- Carlson, D.A.; Bernier, U.R.; Sutton, B.D. Elution Patterns from Capillary GC for Methyl-Branched Alkanes. J. Chem. Ecol. 1998, 24, 1845–1865. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.0.2; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Branco, S.; Mateus, E.P.; da Silva, M.D.R.G.; Mendes, D.; Rocha, S.; Mendel, Z.; Schütz, S.; Paiva, M.R. Electrophysiological and behavioural responses of the Eucalyptus weevil, Gonipterus platensis, to host plant volatiles. J. Pest Sci. 2019, 92, 221–235. [Google Scholar] [CrossRef]
- Wheeler, G.S.; Massey, L.M.; Southwell, I.A. Antipredator Defense of Biological Control Agent Oxyops vitiosa Is Mediated by Plant Volatiles Sequestered from the Host Plant Melaleuca quinquenervia. J. Chem. Ecol. 2002, 28, 297–315. [Google Scholar] [CrossRef]
- Wheeler, G. Development of Pheromone-Based Trapping for the Melaleuca Quinquenervia Biological Control Agent, Oxyops vitiosa; University of Florida: Gainesville, FL, USA, 2016. [Google Scholar]
- Branco, S.; Mateus, E.P.; Gomes da Silva, M.D.R.; Mendes, D.; Pereira, M.M.A.; Schütz, S.; Paiva, M.R. Identification of pheromone candidates for the eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae). J. Appl. Entomol. 2020, 144, 41–53. [Google Scholar] [CrossRef]
- Brückner, A.; Heethoff, M. A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 2017, 27, 33–46. [Google Scholar] [CrossRef]
- Kula, C.; Amendt, J.; Drijfhout, F.P.; Moore, H.E. Geographical Variation of Cuticular Hydrocarbon Profiles of Adult Flies and Empty Puparia Amongst Three Populations of Calliphora vicina (Diptera: Calliphoridae). J. Med. Entomol. 2022, 60, 14–23. [Google Scholar] [CrossRef]
- Kota, M.V.; Heinen-Kay, J.L.; Zuk, M. Geographic variation in cuticular hydrocarbon profiles in Pacific field crickets. Ecol. Entomol. 2021, 46, 1118–1127. [Google Scholar] [CrossRef]
- Claudio-Piedras, F.; Recio-Tótoro, B.; Cime-Castillo, J.; Condé, R.; Maffei, M.; Lanz-Mendoza, H. Dietary and Plasmodium challenge effects on the cuticular hydrocarbon profile of Anopheles albimanus. Sci. Rep. 2021, 11, 11258. [Google Scholar] [CrossRef]
- Otte, T.; Hilker, M.; Geiselhardt, S. The Effect of Dietary Fatty Acids on the Cuticular Hydrocarbon Phenotype of an Herbivorous Insect and Consequences for Mate Recognition. J. Chem. Ecol. 2015, 41, 32–43. [Google Scholar] [CrossRef]
- Braga, M.V.; Pinto, Z.T.; de Carvalho Queiroz, M.M.; Blomquist, G.J. Effect of age on cuticular hydrocarbon profiles in adult Chrysomya putoria (Diptera: Calliphoridae). Forensic Sci. Int. 2016, 259, e37–e47. [Google Scholar] [CrossRef] [PubMed]
- Mpuru, S.; Blomquist, G.J.; Schal, C.; Roux, M.; Kuenzli, M.; Dusticier, G.; Clément, J.-L.; Bagnères, A.-G. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem. Mol. Biol. 2001, 31, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Otte, T.; Hilker, M.; Geiselhardt, S. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. J. Chem. Ecol. 2018, 44, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Menzel, F.; Zumbusch, M.; Feldmeyer, B. How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile. Funct. Ecol. 2018, 32, 657–666. [Google Scholar] [CrossRef]
- Martin, S.J.; Helanterä, H.; Drijfhout, F.P. Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol. J. Linn. Soc. 2008, 95, 131–140. [Google Scholar] [CrossRef]
- van Zweden, J.S.; Dreier, S.; d’Ettorre, P. Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. J. Insect Physiol. 2009, 55, 159–164. [Google Scholar] [CrossRef]
- Soon, V.; Castillo-Cajas, R.F.; Johansson, N.; Paukkunen, J.; Rosa, P.; Ødegaard, F.; Schmitt, T.; Niehuis, O. Cuticular Hydrocarbon Profile Analyses Help Clarify the Species Identity of Dry-Mounted Cuckoo Wasps (Hymenoptera: Chrysididae), Including Type Material, and Reveal Evidence for a Cryptic Species. Insect Syst. Divers. 2021, 5, 3. [Google Scholar] [CrossRef]
- Vaníčková, L.; Břízová, R.; Mendonça, A.L.; Pompeiano, A.; Do Nascimento, R.R. Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex. J. Appl. Entomol. 2015, 139, 679–689. [Google Scholar] [CrossRef]
- Barbosa, R.R.; Braga, M.V.; Blomquist, G.J.; Queiroz, M.M.d.C. Cuticular hydrocarbon profiles as a chemotaxonomic tool for three blowfly species (Diptera: Calliphoridae) of forensic interest. J. Nat. Hist. 2017, 51, 1491–1498. [Google Scholar] [CrossRef]
- Vaníčková, L.; Virgilio, M.; Tomčala, A.; Břízová, R.; Ekesi, S.; Hoskovec, M.; Kalinová, B.; Do Nascimento, R.R.; De Meyer, M. Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bull. Entomol. Res. 2014, 104, 631–638. [Google Scholar] [CrossRef]
- Sakolsky, G.; Carlson, D.A.; Sutton, B.D.; Stoffolano, J.G., Jr. Detection of Cryptic Species in the Tabanus nigrovittatus (Diptera: Tabanidae) Complex in Massachusetts by Morphometric and Cuticular Hydrocarbon Analysis. J. Med. Entomol. 1999, 36, 610–613. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | Class | LRI Rxi-5Sil | Lit. LRI | M+ (m/z) | Other Confirmatory MS Peaks (m/z) | Ident. ^ | Roles # (Coleoptera) | Roles # (Other Insects) |
---|---|---|---|---|---|---|---|---|---|
1 | 3-hexanone | Ketone | 787 | 789 | 100 | 43, 57, 71 | MS, LRI | - | - |
2 | 2-hexanone | Ketone | 791 | 793 | 100 | 43, 58, 85, 71 | MS, LRI | - | - |
3 | 2,4-dimethylheptane | Dimethyl alkane | 820 | 822 | 128 | 43, 85, 57, 71 | MS, LRI | - | - |
4 | Heptanal | Aldehyde | 902 | 902 | 114 | 70, 44, 55, 57, 81, 86, 96 | MS, LRI | A, Al | A, Al, K, P |
5 | Octanal | Aldehyde | 1002 | 1001 | 128 | 57, 56, 84, 69, 95, 100, 110 | MS, LRI | A, Al | A, Al, K, P |
6 | Eucalyptol | Monoterpenoid | 1033 | 1033 | 154 | 81, 108, 139, 93 | MS, LRI | A, Al, P | A, K, P |
7 | 3,6-dimethyldecane | Dimethyl alkane | 1055 | 1086 | 170 | 57, 71, 85, 113, 127 | MS, LRI | - | - |
8 | 2,6,8-trimethyldecane | Trimethyl alkane | 1099 | 1104 | 184 | 85, 99, 127, 113, 155 | MS, LRI | - | - |
9 | Nonanal | Aldehyde | 1104 | 1108 | 142 | 57, 70, 82, 98, 95, 96, 114 | MS, LRI | A, Al, P | A, Al, K, P |
10 | Decanal | Aldehyde | 1205 | 1204 | 156 | 57, 70, 82, 95, 112, 128 | MS, LRI | A, Al, K, P | A, K, P |
11 | Exo-2-hydroxycineole | 1228 | 1228 | 170 | 108, 126, 93 | MS, LRI | - | P | |
12 | 2,6,10-trimethylundecane † | Trimethyl alkane | 1275 | 1275 | 198 | 57, 71, 85, 99, 127, 113, 155 | MS, LRI | - | - |
13 | 10-undecenal | Alkene aldehyde | 1282 | 1277 | 168 | 55, 67, 81, 97, 111, 135 | MS, LRI | - | - |
14 | Carvacrol † | Monoterpenoid | 1297 | 1298 | 150 | 81, 93, 135, 121 | MS, LRI | - | P |
15 | Isoascaridole † | 1312 | 1303 | 168 | 95, 110, 81, 139 | MS, LRI | - | - | |
16 | 4a-methyldecahydro-1-naphthalenol † | 1319 | 1363 | 168 | 95, 67, 97, 135, 121 | MS, LRI | - | - | |
17 | 4,6-dimethyldodecane | Dimethyl alkane | 1321 | 1325 | 198 | 85, 99, 113, 127, 155 | MS, LRI | - | - |
18 | cis-p-menth-1-en-3,8-diol † | 1358 | 1362 | 170 | 84, 71, 109, 138 | MS, LRI | - | - | |
19 | (+)-cis,trans-nepetalactone | Iridoid | 1364 | 1365 | 166 | 81, 95, 123, 109, 138 | MS, LRI | Al | A, Al |
20 | Dodecanal | Aldehyde | 1408 | 1407 | 184 | 57, 82, 96, 110, 140, 123 | MS, LRI | Al | K, P |
21 | Aromadendrene | Sesquiterpenoid | 1444 | 1440 | 204 | 161, 105, 133, 189 | MS, LRI | - | A |
22 | Unidentified hydrocarbon 1 | - | 1488 | - | - | 57, 71, 85, 99, 113, 127, 141, 155, 169 | MS | - | - |
23 | Bicyclogermacrene | Sesquiterpenoid | 1501 | 1494 | 204 | 121, 161, 136, 189 | MS, LRI | - | A, P |
24 | 2,6,10-trimethyltridecane † | Trimethyl alkane | 1534 | 1540 | 226 | 99, 113, 127, 155, 141, 169 | MS, LRI | - | - |
25 | Globulol | Sesquiterpenoid | 1592 | 1604 | 222 | 107, 109, 161, 189, 204 | MS, LRI | - | A |
26 | Tetradecanal | Aldehyde | 1612 | 1611 | 212 | 57, 82, 96, 124, 168 | MS, LRI | Al | A, Al, P |
27 | Heptadecane | n-alkane | 1699 | 1700 | 240 | 169, 183, 197 | MS, LRI | A, Al, P | A, Al, P |
28 | Phytane | Branched alkane | 1743 | 1753 | 282 | 127, 155, 169, 197, 211 | MS, LRI | - | - |
29 | cis-9-hexadecenal | Alkene aldehyde | 1795 | 1800 | 238 | 55, 69, 81, 93, 111, 121, 135, 149 | MS, LRI | - | A, P |
30 | Hexadecanal | Aldehyde | 1816 | 1819 | 240 | 57, 82, 96, 110, 124, 138, 165, 194, 222 | MS, LRI | Al, P | A, Al, P |
31 | 6,10,14-trimethyl-2-pentadecanone | Branched ketone | 1840 | 1842 | 268 | 58, 71, 85, 95, 109, 124, 137, 165, 250 | MS, LRI | - | - |
32 | 2-heptadecanone | Ketone | 1899 | 1886 | 254 | 58, 71, 96, 127, 166 | MS, LRI | - | - |
33 | 2,2-dimethyloctadecane † | Dimethyl alkane | 1910 | 1917 | 282 | 127, 155, 141, 169, 183, 197, 211, 239 | MS, LRI | - | - |
34 | Heptadecanal | Aldehyde | 1918 | 1920 | 254 | 138, 152, 166, 180, 194, 210, 226, 236 | MS, LRI | - | Al, P |
35 | 3-ethyl-3-methylheptadecane † | Branched alkane | 1953 | 1956 | 282 | 127, 141, 155, 169, 183, 197, 223 | MS, LRI | - | - |
36 | 9-octadecanone | Ketone | 1990 | 1980 | 268 | 71, 95, 141, 156, 169, 211, 254 | MS, LRI | - | - |
37 | cis-13-octadecenal | Alkene aldehyde | 1995 | 1985 | 266 | 69, 81, 83, 95, 98, 111, 121, 135, 166, 248 | MS, LRI | - | A, P |
38 | cis-9-octadecenal † | Alkene aldehyde | 2014 | 2007 | 266 | 55, 69, 96, 121 | MS, LRI | P | P |
39 | Octadecanal | Aldehyde | 2019 | 2021 | 268 | 124, 138, 152, 166, 180, 194, 222, 250 | MS, LRI | Al, P | P |
40 | cis-2-octadecen-1-ol acetate | Ester | 2074 | 2086 | 310 | 55, 69, 81, 97, 136 | MS, LRI | - | - |
41 | 2-nonadecanone | Ketone | 2098 | 2101 | 282 | 58, 71, 85, 96, 100, 127, 138, 152, 267, 282 | MS, LRI | - | - |
42 | Nonadecanal | Aldehyde | 2117 | 2105 | 282 | 82, 96, 109, 124, 138, 152, 166, 180 | MS, LRI | - | P |
43 | Unidentified hydrocarbon 2 | - | 2128 | - | - | 211, 225, 239, 253, 267, 281, 295 | MS | - | - |
44 | Unidentified hydrocarbon 3 | - | 2139 | - | - | 127, 155, 183, 211, 239, 267 | MS | - | - |
45 | Unidentified hydrocarbon 4 | - | 2148 | - | - | 225, 238, 252, 267, 295 | MS | - | - |
46 | Unidentified hydrocarbon 5 | - | 2160 | - | - | 155, 169, 183, 253, 197 | MS | - | - |
47 | Unidentified hydrocarbon 6 | - | 2168 | - | - | 99, 127, 155, 183 | MS | - | - |
48 | Docosane | n-alkane | 2197 | 2200 | 310 | 155, 169, 183, 196, 211, 239, 267 | MS, LRI | P | A, Al, P |
49 | Eicosanal | Aldehyde | 2222 | 2224 | 296 | 278, 250, 152, 124 | MS, LRI | Al | P |
50 | Unidentified hydrocarbon 7 a | - | 2260 | - | - | 127, 141, 155, 169, 183, 197, 211, 225, 239, 253, 267, 281 | MS | - | - |
51 | Tricosane | n-alkane | 2297 | 2300 | 324 | 225, 239, 253, 267, 281, 295 | MS, LRI | A, Al, P | A, Al, K, P |
52 | Unidentified ketone 1 | Ketone | 2304 | - | - | 58, 59, 71, 85, 96, 127 | MS | - | - |
53 | Henicosanal | Aldehyde | 2326 | 2329 | 310 | 82, 96, 110, 124, 209 | MS, LRI | - | - |
54 | 11-methyltricosane | Methyl alkane | 2331 | 2330 | 338 | 99, 113, 127, 141, 155, 169, 196, 211, 239 | MS, LRI | - | P |
55 | Unidentified aldehyde | Aldehyde | 2367 | - | - | 82, 97, 109, 125, 139, 180 | MS | - | - |
56 | 3-methyltricosane | Methyl alkane | 2374 | 2375 | 338 | 57, 71, 85, 96, 141, 183, 239 | MS, LRI | P | P |
57 | Tetracosane | n-alkane | 2400 | 2400 | 338 | 267, 281, 295, 309 | MS, LRI | P | A, Al, P |
58 | Docosanal | Aldehyde | 2430 | 2430 | 324 | 82, 96, 152, 166, 250, 278, 306 | MS, LRI | P | P |
59 | 9-methyltetracosane † | Methyl alkane | 2437 | 2433 | 352 | 99, 113, 127, 141, 155, 169, 183, 197 | MS, LRI | P | P |
60 | 2-methyltetracosane | Methyl alkane | 2473 | 2465 | 352 | 309, 267, 281, 295, 337 | MS, LRI | P | P |
61 | x-pentacosene † | Alkene | 2479 | 2477 | 350 | 168, 181, 197, 211, 225, 239, 253, 267 | MS, LRI | - | - |
62 | Pentacosane | n-alkane | 2499 | 2500 | 352 | 267, 281, 295, 309, 323 | MS, LRI | A, Al, P | A, Al, K, P |
63 | Unidentified ketone 2 b | Ketone | 2509 | - | - | 58, 59, 71, 85, 96, 239 | MS | - | - |
64 | 7-methylpentacosane † | Methyl alkane | 2522 | 2530 | 362 | 113, 127, 141, 155, 169, 183, 197, 224, 239, 253, 267, 281, 295, 309 | MS, LRI | P | - |
65 | 11-methylpentacosane † | Methyl alkane | 2530 | 2530 | 366 | 168, 169, 196, 224, 225 | MS, LRI | P | P |
66 | 13-methylpentacosane † | Methyl alkane | 2569 | 2530 | 366 | 127, 139, 141, 169, 183, 197, 225, 229, 254 | MS, LRI | P | P |
67 | 3-methylpentacosane | Methyl alkane | 2574 | 2574 | 366 | 337, 336, 253, 267, 281, 309 | MS, LRI | P | Al, P |
68 | 11,15-dimethylpentacosane † | Dimethyl alkane | 2584 | 2550 | 380 | 168, 169, 239 | MS, LRI | P | P |
69 | Hexacosane | n-alkane | 2600 | 2600 | 366 | 281, 295, 309, 323, 337, 351 | MS, LRI | P | A, Al, P |
70 | Tetracosanal | Aldehyde | 2637 | 2632 | 352 | 334, 306, 278, 264, 250 | MS, LRI | P | P |
71 | 2-methylhexacosane | Methyl alkane | 2663 | 2664 | 380 | 280, 337, 364, 365 | MS, LRI | P | P |
72 | Unidentified hydrocarbon 8 | - | 2672 | - | - | 337, 211, 225, 253, 351 | MS | - | - |
73 | 13-methylhexacosane † | Methyl alkane | 2682 | 2633 | 380 | 196, 197, 308, 309, 211, 280 | MS, LRI | P | P |
74 | Unidentified hydrocarbon 9 | - | 2690 | - | - | 99, 97, 113, 127, 169, 225, 280 | MS | - | - |
75 | Heptacosane | n-alkane | 2704 | 2700 | 380 | 323, 337, 351, 365 | MS, LRI | P | Al, P |
76 | 7-methylheptacosane † | Methyl alkane | 2712 | 2730 | 394 | 99, 97, 113, 127, 141, 155, (224), 225, 309, 337 | MS, LRI | P | - |
77 | Unidentified ketone 3 | Ketone | 2723 | - | - | 59, 58, 96, 111, 125, 137, 250 | MS | - | - |
78 | 13-methylheptacosane | Methyl alkane | 2737 | 2733 | 394 | 168, 196, 197, 224, 253 | MS, LRI | P | P |
79 | Unidentified hydrocarbon 10 | - | 2755 | - | - | 267, 295, 195, 197, 224 | MS | - | - |
80 | 11-methylheptacosane † | Methyl alkane | 2759 | 2734 | 394 | 127, 141, 155, 168, 169, 239, 252, 253 | MS, LRI | P | P |
81 | 2-methylheptacosane | Methyl alkane | 2764 | 2760 | 394 | 141, 183, 351 | MS, LRI | P | P |
82 | Docosyl pentyl ether | Ether | 2770 | 2775 | 396 | 71, 83, 97, 111, 125, 139, 153, 167 | MS, LRI | - | - |
83 | 3-methylheptacosane | Methyl alkane | 2774 | 2773 | 394 | 365, 267, 281, 295, 309, 337 | MS, LRI | P | P |
84 | 5,15- or 5,17-dimethylheptacosane † | Dimethyl alkane | 2777 | 2778 | 408 | 168, 127, 155, 211, 239 | MS, LRI | - | - |
85 | 5,11-dimethylheptacosane † | Dimethyl alkane | 2784 | 2783 | 408 | 99, 113, 127, 141, 155, 168, 169, 239 | MS, LRI | - | P |
86 | Octacosane | n-alkane | 2800 | 2800 | 394 | 337, 351, 365, 379 | MS, LRI | A, P | A, P |
87 | Squalene | Triterpenoid | 2811 | 2790 | 410 | 69, 81, 95, 121, 136, 137, 149 | MS, LRI | P | A, P |
88 | 12-methyloctacosane † | Methyl alkane | 2830 | 2829 | 408 | 224, 210, 211, 182, 183, 197 | MS, LRI | P | P |
89 | Hexacosanal | Aldehyde | 2837 | 2834 | 380 | 57, 71, 82, 96, 111, 124, 180, 362 | MS, LRI | - | P |
90 | x-methyloctacosane † | Methyl alkane | 2858 | 2864 | 408 | 365, 253, 281, 295 | MS, LRI | - | - |
91 | 2-methyloctacosane | Methyl alkane | 2865 | 2864 | 408 | 365, 253, 267, 281, 295, 309 | MS, LRI | P | P |
92 | Nonacosene | Alkene | 2881 | 2888 | 406 | 97, 83, 125, 167, 195 | MS, LRI | - | - |
93 | 1-hexacosanol | Fatty alcohol | 2890 | 2865 | 382 | 57, 97, 83, 69, 71, 111, 125, 153, 167, 181, 195, 209 | MS, LRI | - | P |
94 | Nonacosane | n-alkane | 2918 | 2900 | 408 | 337, 351, 365, 379, 393 | MS, LRI | P | A, Al, P |
95 | Triacontane | n-alkane | 2982 | 3000 | 422 | 168, 169, 224, 197 | MS, LRI | P | A, P |
96 | x,12-dimethylnonacosane † | Dimethyl alkane | 3002 | 3000 | 437 | 112, 113, 169, 182, 183, 336, 337 | MS, LRI | - | - |
97 | 2-methyltriacontane † | Methyl alkane | 3039 | 3058 | 437 | 239, 224, 337, 365 | MS, LRI | P | P |
No. | Compound | B. squamicollis (n = 3) | G. cinnamomeus (n = 3) | G. sp. n. 2 (n = 1) | O. fasciculatus (n = 5) | Oxyops sp. 1 (n = 3) | p Value |
---|---|---|---|---|---|---|---|
1 | 3-hexanone | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.08 | 0.05 ± 0.04 | 0.04 ± 0.00 | NS |
2 | 2-hexanone | 0.02 ± 0.02 | 0.07 ± 0.01 | 0.07 | 0.06 ± 0.04 | 0.04 ± 0.01 | NS |
4 | Heptanal | 0.03 ± 0.01 | 0.03 ± 0.02 | 0 | 0 | 0 | * |
5 | Octanal | 0.01 ± 0.01 | 0 | 0 | 0 | 0 | NS |
6 | Eucalyptol | 0 | 0 | 0.10 | 0.01 ± 0.02 | 0 | *** |
9 | Nonanal | 0.13 ± 0.05 | 0 | 0 | 0 | 0 | *** |
10 | Decanal | 0.01 ± 0.01 | 0.02 ± 0.04 | 0 | 0 | 0 | NS |
11 | Exo-2-hydroxycineole | 0.04 ± 0.02 | 0.08 ± 0.04 | 0 | 0.02 ± 0.02 | 0 | * |
13 | 10-undecenal | 0.14 ± 0.17 | 0 | 0 | 0 | 0 | NS |
14 | Tentative: carvacrol | 2.42 ± 3.83 | 0.04 ± 0.07 | 0 | 0.02 ± 0.04 | 0 | NS |
15 | Tentative: isoascaridole | 0.01 ± 0.01 | 0 | 0 | 0 | 0 | NS |
16 | Tentative: 4a-methyldecahydro-1-naphthalenol | 0.21 ± 0.23 | 0 | 0 | 0 | 0 | NS |
18 | Tentative: cis-p-menth-1-en-3,8-diol | 0.02 ± 0.03 | 0 | 0 | 0 | 0 | NS |
19 | (+)-cis,trans-nepetalactone | 0.02 ± 0.03 | 0 | 0 | 0 | 0 | NS |
20 | Dodecanal | 0 | 0.02 ± 0.03 | 0 | 0.01 ± 0.01 | 0.01 ± 0.02 | NS |
21 | Aromadendrene | 0 | 0 | 0 | 0.01 ± 0.03 | 0 | NS |
23 | Bicyclogermacrene | 0.03 ± 0.05 | 0 | 0 | 0.02 ± 0.02 | 0 | NS |
25 | Globulol | 0 | 0 | 0.07 | 0.01 ± 0.03 | 0 | NS |
26 | Tetradecanal | 0.04 ± 0.02 | 0 | 0.05 | 0.01 ± 0.02 | 0.02 ± 0.03 | NS |
29 | cis-9-hexadecenal | 0.05 ± 0.01 | 0 | 0 | 0 | 0 | *** |
30 | Hexadecanal | 0.17 ± 0.05 | 0.09 ± 0.04 | 0.10 | 0.16 ± 0.13 | 0.13 ± 0.08 | NS |
31 | 6,10,14-trimethyl-2-pentadecanone | 0 | 0 | 0 | 0 | 0.01 ± 0.02 | NS |
32 | 2-heptadecanone | 0.09 ± 0.02 | 0.07 ± 0.03 | 0.14 | 0.04 ± 0.05 | 0.06 ± 0.02 | NS |
36 | 9-octadecanone | 0 | 0 | 0 | 0.1 ± 0.1 | 0 | NS |
37 | cis-13-octadecenal | 0.12 ± 0.03 | 0 | 0 | 0 | 0 | *** |
38 | Tentative: cis-9-octadecenal | 0 | 0 | 0 | 0.03 ± 0.07 | 0 | NS |
39 | Octadecanal | 0.61 ± 0.14 | 0.07 ± 0.04 | 0.13 | 0.19 ± 0.18 | 0.16 ± 0.13 | ** |
40 | cis-2-octadecen-1-ol acetate | 0 | 0 | 0 | 0.01 ± 0.01 | 0 | NS |
41 | 2-nonadecanone | 0.09 ± 0.02 | 0.04 ± 0.04 | 0.18 | 0.02 ± 0.05 | 0.08 ± 0.05 | NS |
42 | Nonadecanal | 0.06 ± 0.01 | 0 | 0 | 0 | 0 | *** |
49 | Eicosanal | 0.09 ± 0.04 | 0 | 0.71 | 0.03 ± 0.07 | 0 | *** |
52 | Unidentified ketone 1 | 0 | 0 | 0.09 | 0 | 0 | *** |
53 | Henicosanal | 0 | 0 | 0.50 | 0 | 0 | *** |
55 | Unidentified aldehyde | 0.02 ± 0.01 | 0 | 0 | 0 | 0 | * |
58 | Docosanal | 0.01 ± 0.01 | 0.58 ± 0.31 | 1.12 | 0 | 0 | *** |
63 | Unidentified ketone 2 | 0 | 0.05 ± 0.09 | 0.13 | 0 | 0 | NS |
70 | Tetracosanal | 1.95 ± 2.56 | 4.22 ± 0.91 | 0 | 0 | 0.16 ± 0.27 | ** |
77 | Unidentified ketone 3 | 0 | 0.75 ± 0.31 | 0 | 0 | 0 | *** |
82 | Docosyl pentyl ether | 0 | 0 | 0 | 0 | 0.27 ± 0.47 | NS |
87 | Squalene | 0.38 ± 0.65 | 0.36 ± 0.37 | 0.71 | 0.43 ± 0.20 | 0.27 ± 0.08 | NS |
89 | Hexacosanal | 0.94 ± 0.24 | 0.94 ± 0.3 | 0 | 0 | 0 | *** |
No. | Compound | B. squamicollis (n = 3) | G. cinnamomeus (n = 3) | G. sp. n. 2 (n = 1) | O. fasciculatus (n = 5) | Oxyops sp. 1 (n = 3) | p Value |
---|---|---|---|---|---|---|---|
3 | 2,4-dimethylheptane | 0.02 ± 0.01 | 0.02 ± 0.02 | 0.05 | 0.03 ± 0.02 | 0.02 ± 0.00 | NS |
7 | 3,6-dimethyldecane | 0.03 ± 0.01 | 0.06 ± 0.02 | 0.06 | 0.05 ± 0.03 | 0.03 ± 0.01 | NS |
8 | 2,6,8-trimethyldecane | 0.02 ± 0.02 | 0.02 ± 0.03 | 0 | 0.01 ± 0.03 | 0.01 ± 0.01 | NS |
12 | Tentative: 2,6,10-trimethylundecane | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.05 | 0.06 ± 0.03 | 0.03 ± 0.00 | NS |
17 | 4,6-dimethyldodecane | 0.03 ± 0.01 | 0.02 ± 0.03 | 0 | 0.03 ± 0.03 | 0.01 ± 0.02 | NS |
22 | Unidentified hydrocarbon 1 | 0.01 ± 0.01 | 0.01 ± 0.02 | 0.06 | 0.05 ± 0.02 | 0.03 ± 0.00 | NS |
24 | Tentative: 2,6,10-trimethyltridecane | 0.01 ± 0.01 | 0.01 ± 0.02 | 0 | 0 | 0 | NS |
27 | Heptadecane | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.05 | 0.04 ± 0.03 | 0.02 ± 0.02 | NS |
28 | Phytane | 0.01 ± 0.02 | 0 | 0 | 0 | 0 | NS |
33 | Tentative: 2,2-dimethyloctadecane | 0.04 ± 0.02 | 0.06 ± 0.06 | 0.09 | 0.03 ± 0.03 | 0.02 ± 0.03 | NS |
34 | Heptadecanal | 0.05 ± 0.01 | 0 | 0 | 0 | 0 | *** |
35 | Tentative: 3-ethyl-3-methylheptadecane | 0.03 ± 0.02 | 0.06 ± 0.02 | 0.05 | 0.06 ± 0.03 | 0.03 ± 0.00 | NS |
43 | Unidentified hydrocarbon 2 | 0.23 ± 0.21 | 0.25 ± 0.43 | 0 | 0.03 ± 0.07 | 0.12 ± 0.22 | NS |
44 | Unidentified hydrocarbon 3 | 0 | 0.35 ± 0.60 | 0 | 0 | 0.23 ± 0.40 | NS |
45 | Unidentified hydrocarbon 4 | 0.48 ± 0.46 | 0.42 ± 0.73 | 0 | 0.06 ± 0.14 | 0.28 ± 0.48 | NS |
46 | Unidentified hydrocarbon 5 | 0.10 ± 0.08 | 0.14 ± 0.24 | 0.07 | 0.04 ± 0.02 | 0.01 ± 0.02 | NS |
47 | Unidentified hydrocarbon 6 | 0.08 ± 0.08 | 0.09 ± 0.15 | 0 | 0 | 0.28 ± 0.49 | NS |
48 | Docosane | 0.02 ± 0.02 | 0 | 0 | 0.06 ± 0.05 | 0 | NS |
50 | Unidentified hydrocarbon 7 | 0 | 0 | 0 | 0 | 0.03 ± 0.03 | * |
51 | Tricosane | 0.74 ± 0.19 | 0.37 ± 0.09 | 0 | 1.35 ± 0.54 | 0.27 ± 0.06 | ** |
54 | 11-methyltricosane | 0.20 ± 0.34 | 0 | 0 | 0 | 0.02 ± 0.04 | NS |
56 | 3-methyltricosane | 0.02 ± 0.03 | 0 | 0 | 0 | 0 | NS |
57 | Tetracosane | 0.03 ± 0.02 | 0.07 ± 0.01 | 0.16 | 0.09 ± 0.05 | 0.02 ± 0.02 | * |
59 | Tentative: 9-methyltetracosane | 0.01 ± 0.02 | 0 | 0 | 0 | 0 | NS |
60 | 2-methyltetracosane | 0 | 0.94 ± 1.64 | 0 | 0 | 0.69 ± 1.19 | NS |
61 | Tentative: x-pentacosene | 0 | 0 | 0 | 0.03 ± 0.07 | 0 | NS |
62 | Pentacosane | 1.67 ± 0.93 | 1.83 ± 0.37 | 1.82 | 4.26 ± 2.02 | 0.97 ± 0.88 | NS |
64 | Tentative: 7-methylpentacosane | 0 | 0.27 ± 0.46 | 0 | 0.48 ± 0.42 | 0 | NS |
65 | Tentative: 11-methylpentacosane | 0 | 0.15 ± 0.26 | 0 | 0.11 ± 0.14 | 0 | NS |
66 | Tentative: 13-methylpentacosane | 0.03 ± 0.05 | 0 | 0 | 0 | 0 | NS |
67 | 3-methylpentacosane | 0.26 ± 0.23 | 1.09 ± 0.64 | 0.27 | 0 | 0 | ** |
68 | Tentative: 11,15-dimethylpentacosane | 0 | 0 | 0 | 0.70 ± 1.57 | 0 | NS |
69 | Hexacosane | 9.04 ± 6.87 | 13.26 ± 7.6 | 14.70 | 8.30 ± 7.10 | 11.01 ± 8.76 | NS |
71 | 2-methylhexacosane | 0 | 0 | 0 | 0.03 ± 0.07 | 0 | NS |
72 | Unidentified hydrocarbon 8 | 0 | 0.51 ± 0.46 | 0 | 0 | 0.15 ± 0.15 | NS |
73 | Tentative: 13-methylhexacosane | 0.65 ± 1.12 | 0.02 ± 0.04 | 0 | 0.88 ± 1.37 | 0 | NS |
74 | Unidentified hydrocarbon 9 | 0.36 ± 0.62 | 0 | 0 | 0 | 0 | NS |
75 | Heptacosane | 11.32 ± 2.95 | 4.3 ± 4.94 | 2.27 | 1.54 ± 3.44 | 0.36 ± 0.62 | * |
76 | Tentative: 7-methylheptacosane | 21.49 ± 5.33 | 28.94 ± 7.24 | 25.45 | 27.58 ± 6.29 | 16.77 ± 6.68 | NS |
78 | 13-methylheptacosane | 0.32 ± 0.06 | 0.07 ± 0.13 | 0 | 0.08 ± 0.15 | 0.73 ± 0.24 | ** |
79 | Unidentified hydrocarbon 10 | 1.14 ± 1.2 | 0 | 0 | 0.01 ± 0.02 | 0.10 ± 0.17 | NS |
80 | Tentative: 11-methylheptacosane | 0 | 4.60 ± 4.16 | 0 | 1.18 ± 2.49 | 0.14 ± 0.23 | NS |
81 | 2-methylheptacosane | 0 | 0 | 0 | 0 | 0.08 ± 0.07 | * |
83 | 3-methylheptacosane | 0 | 3.14 ± 1.61 | 2.82 | 0 | 0 | *** |
84 | Tentative: 5,15- or 5,17-dimethylheptacosane | 1.06 ± 1.07 | 0 | 0 | 0 | 0 | NS |
85 | Tentative: 5,11-dimethylheptacosane | 0.36 ± 0.62 | 1.93 ± 3.35 | 0 | 3.93 ± 7.21 | 0.79 ± 1.37 | NS |
86 | Octacosane | 6.89 ± 2.27 | 3.55 ± 0.89 | 19.10 | 4.16 ± 0.85 | 4.43 ± 1.34 | *** |
88 | Tentative: 12-methyloctacosane | 0.22 ± 0.14 | 0.05 ± 0.08 | 0 | 0 | 0 | * |
90 | Tentative: x-methyloctacosane | 0.05 ± 0.05 | 0 | 0.11 | 0 | 0 | *** |
91 | 2-methyloctacosane | 0.24 ± 0.14 | 0.93 ± 0.22 | 0.96 | 0 | 8.28 ± 6.05 | ** |
92 | Nonacosene | 1.03 ± 0.40 | 0 | 0 | 0 | 0 | * |
93 | 1-hexacosanol | 0 | 0.21 ± 0.20 | 0 | 0 | 0 | *** |
94 | Nonacosane | 26.54 ± 5.05 | 17.34 ± 3.08 | 24.90 | 42.99 ± 14.09 | 51.41 ± 13.58 | * |
95 | Triacontane | 5.72 ± 0.63 | 7.31 ± 3.07 | 2.79 | 0.51 ± 0.37 | 1.38 ± 0.68 | *** |
96 | Tentative: x,12-dimethylnonacosane | 0.30 ± 0.50 | 0 | 0 | 0.01 ± 0.02 | 0 | NS |
97 | Tentative: 2-methyltriacontane | 1.38 ± 0.43 | 0 | 0 | 0 | 0 | *** |
Category | B. squamicollis | G. cinnamomeus | G. sp. n. 2 | O. fasciculatus | Oxyops sp. 1 |
---|---|---|---|---|---|
Number of identified compounds | 71 | 54 | 35 | 52 | 45 |
Number of unique compounds | 20 | 2 | 2 | 7 | 4 |
Percentage of unique compounds | 28.2% | 3.7% | 5.7% | 13.5% | 8.9% |
Number of identified CHCs | 43 | 37 | 20 | 34 | 33 |
Number of unique CHCs | 8 | 1 | 0 | 3 | 2 |
Percent of unique CHCs | 18.6% | 2.7% | 0% | 8.8% | 6.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, J.B. Cuticular Hydrocarbon Profiling of Australian Gonipterini Weevils. AppliedChem 2023, 3, 414-427. https://doi.org/10.3390/appliedchem3030026
Johnson JB. Cuticular Hydrocarbon Profiling of Australian Gonipterini Weevils. AppliedChem. 2023; 3(3):414-427. https://doi.org/10.3390/appliedchem3030026
Chicago/Turabian StyleJohnson, Joel B. 2023. "Cuticular Hydrocarbon Profiling of Australian Gonipterini Weevils" AppliedChem 3, no. 3: 414-427. https://doi.org/10.3390/appliedchem3030026
APA StyleJohnson, J. B. (2023). Cuticular Hydrocarbon Profiling of Australian Gonipterini Weevils. AppliedChem, 3(3), 414-427. https://doi.org/10.3390/appliedchem3030026