Catalyst Recycling in the Suzuki Coupling Reaction: Toward a Greener Synthesis in the Pharmaceutical Industry
Abstract
:1. Introduction
2. Principles of the Suzuki Coupling Reaction
3. Sustainable Synthesis and Catalyst Recycling
3.1. Green Chemistry
3.2. Recyclable Palladium Catalysts
3.3. Recyclable Nickel Catalysts
3.4. Recyclable Copper Catalysts
4. Suzuki Coupling and AI: Toward a Greener Synthesis in the Pharmaceutical Industry
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gujral, S.; Khatri, S.; Riyal, P. Suzuki Cross Coupling Reaction-A Review. Indo Glob. J. Pharm. Sci. 2012, 2, 351–367. [Google Scholar] [CrossRef]
- Frederick, M.O.; Kjell, D.P. A Synthesis of Abemaciclib Utilizing a Leuckart–Wallach Reaction. Tetrahedron Lett. 2015, 56, 949–951. [Google Scholar] [CrossRef]
- Eggersmann, T.K.; Degenhardt, T.; Gluz, O.; Wuerstlein, R.; Harbeck, N. CDK4/6 Inhibitors Expand the Therapeutic Options in Breast Cancer: Palbociclib, Ribociclib and Abemaciclib. BioDrugs 2019, 33, 125–135. [Google Scholar] [CrossRef]
- Alison, P.; Gary, L.; Megan, S. Abemaciclib: The Newest CDK4/6 Inhibitor for the Treatment of Breast Cancer. Ann. Pharmacother. 2019, 53, 178–185. [Google Scholar] [CrossRef]
- Schäfer, P.; Palacin, T.; Sidera, M.; Fletcher, S. Asymmetric Suzuki-Miyaura Coupling of Heterocycles via Rhodium-Catalysed Allylic Arylation of Racemates. Nat. Commun. 2017, 8, 15762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogoi, P.; Bezboruah, P.; Boruah, R.C. Ligand-Free Suzuki Cross-Coupling Reactions: Application to Β-Halo-α,Β-Unsaturated Aldehydes. Eur. J. Org. Chem. 2013, 2013, 5032–5035. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ratti, R. Industrial Applications of Green Chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2020, 2, 263. [Google Scholar] [CrossRef] [Green Version]
- Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA 2008, 105, 13197–13202. [Google Scholar] [CrossRef] [Green Version]
- Costa, N.E.; Pelotte, A.L.; Simard, J.M.; Syvinski, C.A.; Deveau, A.M. Discovering Green, Aqueous Suzuki Coupling Reactions: Synthesis of Ethyl (4-Phenylphenyl)Acetate, a Biaryl with Anti-Arthritic Potential. J. Chem. Educ. 2012, 89, 1064–1067. [Google Scholar] [CrossRef]
- Buskes, M.J.; Blanco, M.-J. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules 2020, 25, 3493. [Google Scholar] [CrossRef]
- D’Alterio, M.C.; Casals-Cruañas, È.; Tzouras, N.V.; Talarico, G.; Nolan, S.P.; Poater, A. Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Chem. A Eur. J. 2021, 27, 13481–13493. [Google Scholar] [CrossRef]
- Aghahosseini, H.; Saadati, M.R.; Rezaei, S.J.T.; Ramazani, A.; Asadi, N.; Yahiro, H.; Mori, M.; Shajari, N.; Kazemizadeh, A.R. A Robust Polyfunctional Pd(II)-Based Magnetic Amphiphilic Nanocatalyst for the Suzuki–Miyaura Coupling Reaction. Sci. Rep. 2021, 11, 10239. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.F.; Rodrigues, A.S.; Silva, V.L.; Silva, A.M.; Santos, L.M. Role of the Base and Control of Selectivity in the Suzuki-Miyaura Cross-Coupling Reaction. ChemCatChem 2014, 6, 1291–1302. [Google Scholar] [CrossRef]
- Ridgway, B.H.; Woerpel, K.A. Transmetalation of Alkylboranes to Palladium in the Suzuki Coupling Reaction Proceeds with Retention of Stereochemistry. J. Org. Chem. 1998, 63, 458–460. [Google Scholar] [CrossRef]
- Suzuki, A. Organoborane Coupling Reactions (Suzuki Coupling). Proc. Jpn. Acad. Ser. B 2004, 80, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Maleczka, R.E.; Gallagher, W.P.; Terstiege, I. Stille Couplings Catalytic in Tin: Beyond Proof-of-Principle. J. Am. Chem. Soc. 2000, 122, 384–385. [Google Scholar] [CrossRef]
- Miyaura, N.; Yanagi, T.; Suzuki, A. The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases. Synth. Commun. 1981, 11, 513–519. [Google Scholar] [CrossRef] [Green Version]
- García-Melchor, M.; Solans-Monfort, X.; Ujaque, G. CC Bond Formation. In Comprehensive Inorganic Chemistry II, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 9, pp. 767–805. [Google Scholar] [CrossRef]
- Maluenda, I.; Navarro, O. Recent Developments in the Suzuki-Miyaura Reaction: 2010–2014. Molecules 2015, 20, 7528–7557. [Google Scholar] [CrossRef]
- Rau, H.H.; Werner, N.S. Stereocontrolled Synthesis of (E)-Stilbene Derivatives by Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Bioorganic Med. Chem. Lett. 2018, 28, 2693–2696. [Google Scholar] [CrossRef]
- Martin, R.; Buchwald, S.L. Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seechurn, C.; Kitching, M.; Colacot, T.J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lavigne, J.J. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials; Wiley-VCH: Weinheim, Germany, 2011; ISBN 978-3-527-63932-8. [Google Scholar]
- Lee, V. Application of Copper (i) Salt and Fluoride Promoted Stille Coupling Reactions in the Synthesis of Bioactive Molecules. Org. Biomol. Chem. 2019, 17, 9095–9123. [Google Scholar] [CrossRef] [PubMed]
- Seechurn, C.; De Angelis, A.; Colacot, T. Introduction to New Trends in Cross-Coupling. In New Trends in Cross-Coupling: Theory and Applications; RSC Publishing: London, UK, 2015; pp. 1–19. [Google Scholar] [CrossRef]
- Campeau, L.-C.; Hazari, N. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics 2019, 38, 3–35. [Google Scholar] [CrossRef]
- Heravi, M.M.; Hashemi, E. Recent Applications of the Suzuki Reaction in Total Synthesis. Tetrahedron 2012, 68, 9145–9178. [Google Scholar] [CrossRef]
- Key, R.J.; Tengco, J.M.M.; Smith, M.D.; Vannucci, A.K. A Molecular/Heterogeneous Nickel Catalyst for Suzuki–Miyaura Coupling. Organometallics 2019, 38, 2007–2014. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World: New Tricks for an Old Dog? IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Helmers, E. Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J. Environmentally Friendly Suzuki Aryl-Aryl Cross-Coupling Reaction. Curr. Org. Chem. 2005, 9, 535–553. [Google Scholar] [CrossRef]
- US EPA. Basics of Green Chemistry. Available online: https://www.epa.gov/greenchemistry/basics-green-chemistry (accessed on 21 June 2022).
- Rashmi Pradhan, S.; Colmenares-Quintero, R.F.; Colmenares Quintero, J.C. Designing Microflowreactors for Photocatalysis Using Sonochemistry: A Systematic Review Article. Molecules 2019, 24, 3315. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, H.; Sakumoto, C.; Takekoshi, E.; Maeda, Y.; Hiramoto, N.; Itoh, T.; Kato, Y. Effective Method to Remove Metal Elements from Pharmaceutical Intermediates with Polychelated Resin Scavenger. Org. Process Res. Dev. 2015, 19, 1054–1061. [Google Scholar] [CrossRef]
- López, Ó.; Padrón, J.M. Iridium- and Palladium-Based Catalysts in the Pharmaceutical Industry. Catalysts 2022, 12, 164. [Google Scholar] [CrossRef]
- Zell, T.; Langer, R. Iron-Catalyzed Hydrogenation and Dehydrogenation Reactions with Relevance to Reversible Hydrogen Storage Applications. Recycl. Catal. 2015, 2, 87–109. [Google Scholar] [CrossRef]
- Phan, N.T.S.; Van Der Sluys, M.; Jones, C.W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings—Homogeneous or Heterogeneous Catalysis, A Critical Review. Adv. Synth. Catal. 2006, 348, 609–679. [Google Scholar] [CrossRef]
- Cole-Hamilton, D. Homogeneous Catalysis—New Approaches to Catalyst Separation, Recovery, and Recycling. Science 2003, 299, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Amayuelas, E.; Fidalgo-Marijuán, A.; Bazán, B.; Urtiaga, M.K.; Barandikabc, G.; Arriortua, M.I. Highly Thermally Stable Heterogeneous Catalysts: Study of 0D and 3D Porphyrinic MOFs. CrystEngComm 2017, 19, 7244–7252. [Google Scholar] [CrossRef] [Green Version]
- Manjunatha, S.G.; Rangappa, P.; Sythana, S.; Babu, S.M.; Tadiparthi, K.; Gundala, C. A Simple Way of Recycling of Homogeneous Catalyst in Suzuki Reaction. Green Chem. Lett. Rev. 2013, 6, 77–87. [Google Scholar] [CrossRef]
- Yang, W.; Vogler, B.; Lei, Y.; Wu, T. Metallic Ion Leaching from Heterogeneous Catalysts: An Overlooked Effect in the Study of Catalytic Ozonation Processes. Environ. Sci. Water Res. Technol. 2017, 3, 1143–1151. [Google Scholar] [CrossRef]
- Sádaba, I.; Granados, M.L.; Riisager, A.; Taarning, E. Deactivation of Solid Catalysts in Liquid Media: The Case of Leaching of Active Sites in Biomass Conversion Reactions. Green Chem. 2015, 17, 4133–4145. [Google Scholar] [CrossRef] [Green Version]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef] [Green Version]
- Alonso, F.; Beletskaya, I.P.; Yus, M. Non-Conventional Methodologies for Transition-Metal Catalysed Carbon–Carbon Coupling: A Critical Overview. Part 2: The Suzuki Reaction. Tetrahedron 2008, 64, 3047–3101. [Google Scholar] [CrossRef]
- Mohammed, A.T.A.; Wang, L.; Jin, R.; Liu, G.; Tan, C. Hollow-Shell-Structured Mesoporous Silica-Supported Palladium Catalyst for an Efficient Suzuki-Miyaura Cross-Coupling Reaction. Catalysts 2021, 11, 582. [Google Scholar] [CrossRef]
- Zhou, E.; Jin, J.; Zheng, K.; Zhang, L.; Xu, H.; Shen, C. Novel Recyclable Pd/H-MOR Catalyst for Suzuki-Miyaura Coupling and Application in the Synthesis of Crizotinib. Catalysts 2021, 11, 1213. [Google Scholar] [CrossRef]
- Koohgard, M.; Hosseini-Sarvari, M. Enhancement of Suzuki–Miyaura Coupling Reaction by Photocatalytic Palladium Nanoparticles Anchored to TiO2 under Visible Light Irradiation. Catal. Commun. 2018, 111, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Kilic, A.; Gezer, E.; Durap, F.; Aydemir, M.; Baysal, A. Pd(II) Supported Dioxime Functionalized Fe3O4 Nanoparticles as Efficient, Eco-Friendly and Reusable Catalysts for the Suzuki-Miyaura Cross-Coupling Reaction in Water. J. Organomet. Chem. 2019, 896, 129–138. [Google Scholar] [CrossRef]
- Pan, H.; Yen, C.H.; Yoon, B.; Sato, M.; Wai, C.M. Recyclable and Ligandless Suzuki Coupling Catalyzed by Carbon Nanotube-Supported Palladium Nanoparticles Synthesized in Supercritical Fluid. Synth. Commun. 2006, 36, 3473–3478. [Google Scholar] [CrossRef]
- Veisi, H.; Abrifam, M.; Kamangar, S.A.; Pirhayati, M.; Saremi, S.G.; Noroozi, M.; Tamoradi, T.; Karmakar, B. Pd Immobilization Biguanidine Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in Suzuki–Miyaura Coupling. Sci. Rep. 2021, 11, 21883. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.-W.; Zhang, F.; He, Y.-M.; Fan, Q.-H. Air-Stable and Highly Active Dendritic Phosphine Oxide- Stabilized Palladium Nanoparticles: Preparation, Characterization and Applications in the Carbon-Carbon Bond Formation and Hydrogenation Reactions. Adv. Synth. Catal. 2008, 350, 846–862. [Google Scholar] [CrossRef]
- Veisi, H.; Rashtiani, A.; Barjasteh, V. Biosynthesis of palladium nanoparticles usingRosa caninafruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. Appl. Organomet. Chem. 2016, 30, 231–235. [Google Scholar] [CrossRef]
- Akbarzadeh, P.; Koukabi, N.; Kolvari, E. Polythiophene-functionalized Magnetic Carbon Nanotube-Supported Copper(I) Complex: A Novel and Retrievable Heterogeneous Catalyst for the “Phosphine- and Palladium-Free” Suzuki–Miyaura Cross-Coupling Reaction. Mol. Divers. 2020, 24, 1125–1137. [Google Scholar] [CrossRef]
- Qiu, H.; Sarkar, S.M.; Lee, D.-H.; Jin, M.-J. Highly Effective Silica Gel-Supported N-Heterocyclic Carbene–Pd Catalyst for Suzuki–Miyaura Coupling Reaction. Green Chem. 2008, 10, 37–40. [Google Scholar] [CrossRef]
- Baleizão, C.; Corma, A.; García, H.; Leyva, A. An Oxime-Carbapalladacycle Complex Covalently Anchored to Silica as an Active and Reusable Heterogeneous Catalyst for Suzuki Cross-Coupling in Water. Chem. Commun. 2003, 5, 606–607. [Google Scholar] [CrossRef]
- Li, G.; Yang, H.; Li, W.; Zhang, G. ChemInform Abstract: Rationally Designed Palladium Complexes on a Bulky N-Heterocyclic Carbene-Functionalized Organosilica: An Effficient Solid Catalyst for the Suzuki-Miyaura Coupling of Challenging Aryl Chlorides. Green Chem. 2011, 13, 2939–2947. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Liu, H.; Sun, T.; Fan, D.; Yang, M.; Tian, P.; Liu, Z. Preparation of Spherical Mordenite Zeolite Assemblies with Excellent Catalytic Performance for Dimethyl Ether Carbonylation. ACS Appl. Mater. Interfaces 2018, 10, 32239–32246. [Google Scholar] [CrossRef]
- Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J.; Arnold, D.P.; Liu, H.; Zhu, H. Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16, 4272–4285. [Google Scholar] [CrossRef]
- Bhat, K.S.; Lanke, V.; Prasad, J.D.; Prabhu, K.R. Ligand-Free Suzuki Coupling Reaction with Highly Recyclable Ionic Palladium Catalyst, Ti1-XPdxO2-x (X = 0.03). Appl. Catal. A Gen. 2020, 596, 117516. [Google Scholar] [CrossRef]
- Sobhani, S.; Zarifi, F. Pd-Isatin Schiff Base Complex Immobilized on γ-Fe2O3 as a Magnetically Recyclable Catalyst for the Heck and Suzuki Cross-Coupling Reactions. Chin. J. Catal. 2015, 36, 555–563. [Google Scholar] [CrossRef]
- Sobhani, S.; Ghasemzadeh, M.S.; Honarmand, M.; Zarifi, F. Acetamidine–Palladium Complex Immobilized on γ-Fe2O3 Nanoparticles: A Novel Magnetically Separable Catalyst for Heck and Suzuki Coupling Reactions. RSC Adv. 2014, 4, 44166–44174. [Google Scholar] [CrossRef]
- Rosario-Amorin, D.; Gaboyard, M.; Clérac, R.; Vellutini, L.; Nlate, S.; Heuzé, K. Metallodendritic Grafted Core-Shell γ-Fe2O3 Nanoparticles Used as Recoverable Catalysts in Suzuki C-C Coupling Reactions. Chemistry 2012, 18, 3305–3315. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Deraedt, C.; Salmon, L.; Labrugère, C.; Etienne, L.; Ruiz, J.; Astruc, D. Efficient and Magnetically Recoverable “Click” PEGylated γ-Fe2O3-Pd Nanoparticle Catalysts for Suzuki-Miyaura, Sonogashira, and Heck Reactions with Positive Dendritic Effects. Chemistry 2015, 21, 1508–1519. [Google Scholar] [CrossRef]
- Wittmann, S.; Majoral, J.-P.; Grass, R.N.; Stark, W.J.; Reiser, O. Carbon Coated Magnetic Nanoparticles as Supports in Microwave-Assisted Palladium Catalyzed Suzuki-Miyaura Couplings. Green Process. Synth. 2012, 1, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Stevens, P.D.; Fan, J.; Gardimalla, H.M.R.; Yen, M.; Gao, Y. Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions. Org. Lett. 2005, 7, 2085–2088. [Google Scholar] [CrossRef]
- Dadras, A.; Naimi-Jamal, M.R.; Moghaddam, F.M.; Ayati, S.E. Suzuki–Miyaura Coupling Reaction in Water in the Presence of Robust Palladium Immobilized on Modified Magnetic Fe3O4 Nanoparticles as a Recoverable Catalyst. Appl. Organomet. Chem. 2018, 32, e3993. [Google Scholar] [CrossRef]
- Calvino-Casilda, V.; López-Peinado, A.J.; Durán-Valle, C.J.; Martín-Aranda, R.M. Last Decade of Research on Activated Carbons as Catalytic Support in Chemical Processes. Catal. Rev. 2010, 52, 325–380. [Google Scholar] [CrossRef]
- Desmecht, A.; Pennetreau, F.; L’hoost, A.; Nircha, I.; Pichon, B.P.; Riant, O.; Hermans, S. Preparation of Magnetically Recoverable Carbon Nanotube-Supported Pd(II) Catalyst. Catal. Today 2019, 334, 24–29. [Google Scholar] [CrossRef]
- Luo, S.; Zeng, Z.; Zeng, G.; Liu, Z.; Xiao, R.; Chen, M.; Tang, L.; Tang, W.; Lai, C.; Cheng, M.; et al. Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Appl. Mater. Interfaces 2019, 11, 32579–32598. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, H.; Zhang, Y.; Kang, C.; Chen, S.; Song, L.; Liu, D.; Zhong, C. A Versatile MOF-Based Trap for Heavy Metal Ion Capture and Dispersion. Nat. Commun. 2018, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Z.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Selective Synthesis of Rh5 Carbonyl Clusters within a Polyamine Dendrimer for Chemoselective Reduction of Nitro Aromatics. Chem. Commun. 2014, 50, 6526–6529. [Google Scholar] [CrossRef]
- Zhao, M.; Crooks, R.M. Intradendrimer Exchange of Metal Nanoparticles. Chem. Mater. 1999, 11, 3379–3385. [Google Scholar] [CrossRef]
- Wu, L.; Li, B.-L.; Huang, Y.-Y.; Zhou, H.-F.; He, Y.-M.; Fan, Q.-H. Phosphine Dendrimer-Stabilized Palladium Nanoparticles, a Highly Active and Recyclable Catalyst for the Suzuki−Miyaura Reaction and Hydrogenation. Org. Lett. 2006, 8, 3605–3608. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M. Green Synthesis of Palladium Nanoparticles Using Hippophae Rhamnoides Linn Leaf Extract and Their Catalytic Activity for the Suzuki–Miyaura Coupling in Water. J. Mol. Catal. A Chem. 2015, 396, 297–303. [Google Scholar] [CrossRef]
- Machado, S.; Pinto, S.L.; Grosso, J.P.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C. Green Production of Zero-Valent Iron Nanoparticles Using Tree Leaf Extracts. Sci. Total Environ. 2013, 445, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The Greener Synthesis of Nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Inada, K.; Miyaura, N. Synthesis of Biaryls via Cross-Coupling Reaction of Arylboronic Acids with Aryl Chlorides Catalyzed by NiCl2/Triphenylphosphine Complexes. Tetrahedron 2000, 56, 8657–8660. [Google Scholar] [CrossRef]
- Ananikov, V.P.; Gayduk, K.A.; Starikova, Z.A.; Beletskaya, I.P. Ni(Acac)2/Phosphine as an Excellent Precursor of Nickel(0) for Catalytic Systems. Organometallics 2010, 29, 5098–5102. [Google Scholar] [CrossRef]
- Wu, L.; Ling, J.; Wu, Z.-Q. A Highly Active and Recyclable Catalyst: Phosphine Dendrimer-Stabilized Nickel Nanoparticles for the Suzuki Coupling Reaction. Adv. Synth. Catal. 2011, 353, 1452–1456. [Google Scholar] [CrossRef]
- Elumalai, P.; Mamlouk, H.; Yiming, W.; Feng, L.; Yuan, S.; Zhou, H.-C.; Madrahimov, S.T. Recyclable and Reusable Heteroleptic Nickel Catalyst Immobilized on Metal–Organic Framework for Suzuki–Miyaura Coupling. ACS Appl. Mater. Interfaces 2018, 10, 41431–41438. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Yao, Y.; Gao, Y.; Yang, W.; Zhao, W. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Oxygen-Substituted Allylboronates with Aryl/Vinyl (Pseudo)Halides. J. Org. Chem. 2022, 87, 6951–6959. [Google Scholar] [CrossRef]
- Ge, S.; Hartwig, J.F. Highly Reactive, Single-Component Nickel Catalyst Precursor for Suzuki–Miyuara Cross-Coupling of Heteroaryl Boronic Acids with Heteroaryl Halides. Angew. Chem. Int. Ed. 2012, 51, 12837–12841. [Google Scholar] [CrossRef] [Green Version]
- Hickman, A.J.; Sanford, M.S. High-Valent Organometallic Copper and Palladium in Catalysis. Nature 2012, 484, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Maaliki, C.; Thiery, E.; Thibonnet, J. Emergence of Copper-Mediated Formation of C-C Bonds: Emergence of Copper-Mediated Formation of C-C Bonds. Eur. J. Org. Chem. 2017, 2017, 209–228. [Google Scholar] [CrossRef]
- Gurung, S.K.; Thapa, S.; Vangala, A.S.; Giri, R. Copper-Catalyzed Hiyama Coupling of (Hetero)Aryltriethoxysilanes with (Hetero)Aryl Iodides. Org. Lett. 2013, 15, 5378–5381. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial Intelligence in Medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Xie, X.-Q. Generative Chemistry: Drug Discovery with Deep Learning Generative Models. J. Mol. Model. 2021, 27, 71. [Google Scholar] [CrossRef]
- Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Mol. Inf. 2018, 37, 1700153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struble, T.J.; Alvarez, J.C.; Brown, S.P.; Chytil, M.; Cisar, J.; DesJarlais, R.L.; Engkvist, O.; Frank, S.A.; Greve, D.R.; Griffin, D.J.; et al. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. J. Med. Chem. 2020, 63, 8667–8682. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Li, X.; Wang, Z.; Li, Z.; Liu, X.; Wu, X.; Zhao, J.; Ding, X.; Wan, X.; Zhong, F.; et al. Optimizing Chemical Reaction Conditions Using Deep Learning: A Case Study for the Suzuki–Miyaura Cross-Coupling Reaction. Org. Chem. Front. 2020, 7, 2269–2277. [Google Scholar] [CrossRef]
- Akwi, F.M.; Watts, P. Continuous Flow Chemistry: Where Are We Now? Recent Applications, Challenges and Limitations. Chem. Commun. 2018, 54, 13894–13928. [Google Scholar] [CrossRef] [PubMed]
- Guidi, M. An Automated Platform for Multistep Synthesis Based on a New Paradigm for Combining Flow Modules. Ph.D. Dissertation, Freie Universität Berlin, Berlin, Germany, 2020. [Google Scholar]
- Yoshida, J.; Nagaki, A.; Yamada, D. Continuous Flow Synthesis. Drug Discov. Today Technol. 2013, 10, e53–e59. [Google Scholar] [CrossRef]
- Ötvös, S.B.; Kappe, C.O. Continuous Flow Asymmetric Synthesis of Chiral Active Pharmaceutical Ingredients and Their Advanced Intermediates. Green Chem. 2021, 23, 6117–6138. [Google Scholar] [CrossRef]
- Movsisyan, M.; Heugebaert, T.S.A.; Dams, R.; Stevens, C.V. Safe, Selective, and High-Yielding Synthesis of Acryloyl Chloride in a Continuous-Flow System. ChemSusChem 2016, 9, 1945–1952. [Google Scholar] [CrossRef]
- Schweidtmann, A.M.; Clayton, A.D.; Holmes, N.; Bradford, E.; Bourne, R.A.; Lapkin, A.A. Machine Learning Meets Continuous Flow Chemistry: Automated Optimization towards the Pareto Front of Multiple Objectives. Chem. Eng. J. 2018, 352, 277–282. [Google Scholar] [CrossRef]
- Ramaotsoa, G.V.; Strydom, I.; Panayides, J.-L.; Riley, D. Immobilized Tetrakis(Triphenylphosphine)Palladium(0) for Suzuki–Miyaura Coupling Reactions under Flow Conditions. React. Chem. Eng. 2019, 4, 372–382. [Google Scholar] [CrossRef]
- Coley, C.W.; Barzilay, R.; Jaakkola, T.S.; Green, W.H.; Jensen, K.F. Prediction of Organic Reaction Outcomes Using Machine Learning. ACS Cent. Sci. 2017, 3, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beker, W.; Roszak, R.; Wołos, A.; Angello, N.H.; Rathore, V.; Burke, M.D.; Grzybowski, B.A. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. J. Am. Chem. Soc. 2022, 144, 4819–4827. [Google Scholar] [CrossRef]
- Trinh, C.; Meimaroglou, D.; Hoppe, S. Machine Learning in Chemical Product Engineering: The State of the Art and a Guide for Newcomers. Processes 2021, 9, 1456. [Google Scholar] [CrossRef]
- Christ, C.D.; Zentgraf, M.; Kriegl, J.M. Mining Electronic Laboratory Notebooks: Analysis, Retrosynthesis, and Reaction Based Enumeration. J. Chem. Inf. Model. 2012, 52, 1745–1756. [Google Scholar] [CrossRef]
Product | Reactants | Catalyst | Recyclability | Yield (%) | Turnover Frequency * (h−1) | Turnover Number † | Reference | |
---|---|---|---|---|---|---|---|---|
Aryl Halide | Organo Borate | |||||||
4-Methoxybiphenyl | 4-Iodoanisole | Phenylboronic acid | Hollow-shell-structured silica-supported Pd | ≥5 runs | 94% (Fresh) 90% (5th run) | 93 | 93 | [46] |
4-Methoxybiphenyl | 4-Iodoanisole | Phenylboronic acid | Pd/H-MOR | ≥10 runs | 95% (Fresh) 90% (10th run) | 617 | 308 | [47] |
4-Methoxybiphenyl | 4-Iodoanisole | Phenylboronic acid | TiO2 supported Pd | ≥5 runs | 89% (Fresh) 87% (5th run) | 31 | 124 | [48] |
4-Acetylbiphenyl | 4’-Bromoacetophenone | Phenylboronic acid | Dioxime-functionalized Fe3O4 supported Pd | ≥5 runs | 98% (Fresh) 93% (5th run) | 50,336 | 839 | [49] |
Biphenyl | 4-Iodobenzene | Phenylboronic acid | Carbon nanotube supported Pd | ≥6 runs | 94% (Fresh) 96% (7th run) | 450 | 337 | [50] |
Biphenyl | Iodobenzene | Phenylboronic acid | Zr-UiO-66 MOF supported Pd | ≥9 runs | 98% (Fresh) 86% (9th run) | 11,276 | 1879 | [51] |
4-Hydroxybiphenyl | 4-HydroxyIodobenzene | Phenylboronic acid | Dendrimer supported Pd | ≥ 8 runs | 98% (Fresh) 94% (8th run) | 76 | 1523 | [52] |
4-Methylbiphenyl | 4-Bromotoluene | Phenylboronic acid | Phytochemical supported Pd | ≥7 runs | – | – | – | [53] |
4-Methylbiphenyl | 4-Iodotoluene | Phenylboronic acid | Silica Supported Ni | ≤ 4 runs | 76% (Fresh) 37% (5th run) | 16 | 375 | [29] |
4-Methylbiphenyl | Iodobenzene | Phenylboronic acid | Carbon nanotube supported Cu | ≥ 5 runs | 90% (Fresh) 84% (5th run) | 244 | 223 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukai, S.; Yamada, Y. Catalyst Recycling in the Suzuki Coupling Reaction: Toward a Greener Synthesis in the Pharmaceutical Industry. Knowledge 2023, 3, 1-17. https://doi.org/10.3390/knowledge3010001
Mukai S, Yamada Y. Catalyst Recycling in the Suzuki Coupling Reaction: Toward a Greener Synthesis in the Pharmaceutical Industry. Knowledge. 2023; 3(1):1-17. https://doi.org/10.3390/knowledge3010001
Chicago/Turabian StyleMukai, Shoma, and Yusuke Yamada. 2023. "Catalyst Recycling in the Suzuki Coupling Reaction: Toward a Greener Synthesis in the Pharmaceutical Industry" Knowledge 3, no. 1: 1-17. https://doi.org/10.3390/knowledge3010001