Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Husbandry
2.2. Experimental Designed
2.3. Growth and Survival
2.4. Feeding
2.5. Statistical Analyses
3. Results
3.1. Growth, Biomass, and Survival
3.2. Feeding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CC BY-NC-SA 30 IGO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Sicuro, B. World aquaculture diversity: Origins and perspectives. Rev. Aquac. 2021, 13, 1619–1634. [Google Scholar] [CrossRef]
- Leu, M.Y.; Meng, P.J.; Siong Tew, K.; Kuo, J.; Hung, C.C. Spawning and development of larvae and juveniles of the Indian Ocean oriental sweetlips, Plectorhinchus vittatus (Linnaeus, 1758), in the aquarium. J. World Aquac. Soc. 2012, 43, 595–606. [Google Scholar] [CrossRef]
- Hecht, T.; Irish, A.; Sales, J. Effect of Protein Level and Varying Protein–Lipid Concentrations on Growth Characteristics of Juvenile Spotted Grunter Pomadasys Commersonnii (Haemulidae). Afr. J. Mar. Sci. 2003, 25, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Cassiano, E.J.; Wittenrich, M.L.; Violetta, G.C.; Watson, C.A. Growth and survival of porkfish (Anisotremus virginicus) larvae: Comparing rotifers and copepod nauplii during first feeding. Anim. Biol. Anim. Husb. 2012, 4, 72–78. [Google Scholar]
- Ramos, L.A.E.; Layme, V.F.C.; Victoriano, R.G.P.; Choqueapaza, J.P.; Mamani, Z.C. Captura, acondicionamiento y primer desove de sargo Anisotremus scapularis en la Región Tacna. Cienc. Desarro. 2019, 31, 68–74. [Google Scholar] [CrossRef]
- Tavera, V.J. Análisis Filogenético y Biogeográfico del Género Anisotremus Gill, 1861 (Perciformes: Haemulidae). Ph.D. Thesis, Centro Interdisciplinario de Ciencias marinas—Instituto Politécnico Nacional—México: La Paz, Baja California S., Mexico, 2006. [Google Scholar]
- Bernardi, G.; Alva-Campbell, Y.R.; Gasparini, J.L.; Floeter, S.R. Molecular ecology, speciation, and evolution of the reef fish genus Anisotremus. Mol. Phylogenet. Evol. 2008, 48, 929–935. [Google Scholar] [CrossRef]
- Chirichigno, N.; Vélez, M. Clave Para Identificar los Peces Marinos del Perú; Publicación Especial, Instituto del Mar del Perú: Callao, Peru, 1998; p. 302. [Google Scholar]
- Medina, M.; Araya, M.; Vega, C. Alimentación y relaciones tróficas de peces costeros de la zona norte de Chile. Investig. Mar. 2004, 32, 33–47. [Google Scholar] [CrossRef]
- Gomes-dos-Santos, A.; Nande, M.; Espinoza-Ramos, L.A.; Pepe-Victoriano, R.G.; Contreras-Mamani, Z.; Huanacuni, J.I.; Quispe-Mayta, M.J.; Fernández-Cárdenas, C.P.; Froufe, E.L.; Castro, L.F.C. Constructing the mitochondrial genome of the Peruvian grunt Anisotremus scapularis Tschudi, 1846 (Lutjaniformes: Haemulidae) using RNA-seq data. Mitochondrial DNA Part B. 2020, 5, 1921–1923. [Google Scholar] [CrossRef]
- De La Lama, R.L.; De La Puente, S.; Valdés-Velásquez, A. Bringing sustainable seafood back to the table: Exploring chefs’ knowledge, attitudes and practices in Peru. Oryx 2020, 54, 520–528. [Google Scholar] [CrossRef]
- Ministerio de la Produción (PRODUCE). Anuario Estadístico Pesquero Acuícola 2014 Ministerio de la Produción, Lima. 2019. Available online: http://www.produce.gob.pe/index.php/estadisticas/anuarios-estadistico (accessed on 22 February 2021).
- Montes, M.; Castro, A.M.; Linares, J.F.; Orihuela, L.I.; Carrera, L.J. Embryonic development of Peruvian grunt Anisotremus scapularis (Perciformes: Haemulidae). Rev. Biol. Mar. Oceanogr. 2019, 54, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Webber, H.H.; Riordan, P.F. Criteria for candidate species for aquaculture. Aquaculture 1976, 7, 107–123. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Hassan, S.G.; Li, D. Models for estimating feed intake in aquaculture: A review. Comput. Electron. Agric. 2016, 127, 425–438. [Google Scholar] [CrossRef]
- Hatch, U.; Tai, C.F. A survey of aquaculture production economics and management. Aquac. Econ. Manag. 1997, 1, 13–27. [Google Scholar] [CrossRef]
- Kankainen, M.; Setälä, J.; Berrill, I.K.; Ruohonen, K.; Noble, C.; Schneider, O. How to measure the economic impacts of changes in growth, feed efficiency and survival in aquaculture. Aquac. Econ. Manag. 2012, 16, 341–364. [Google Scholar] [CrossRef]
- Zoccarato, I.; Benatti, G.; Bianchini, M.L.; Boccignone, M.; Conti, A.; Palmegiano, G.B. The effect of density and feeding level on performances and body composition in Oncorhynchus mykiss. Product. Environ. Qual. 1992, 18, 128–136. [Google Scholar]
- El-Sayed, A.F.M. Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus L.) fry. Aquac. Res. 2002, 33, 621–626. [Google Scholar] [CrossRef]
- Refstie, T.; Kittelsen, A. Effect of density on growth and survival of artificially reared Atlantic salmon. Aquaculture 1976, 8, 319–326. [Google Scholar] [CrossRef]
- Lambert, Y.; Dutil, J.D. Food intake and growth of adult Atlantic cod (Gadus morhua L.) reared under different conditions of stocking density, feeding frequency and size-grading. Aquaculture 2001, 192, 233–247. [Google Scholar] [CrossRef]
- Bjornsson, B. Effects of stocking density on growth rate of halibut (Hippoglossus hippoglossus L.) reared in large circular tanks for three years. Aquaculture 1994, 123, 259–270. [Google Scholar] [CrossRef]
- Biswas, A.K.; Seoka, M.; Takii, K.; Kumai, H. Comparison of apparent digestibility coefficient among replicates and different stocking density in red sea bream Pagrus major. Fish Sci. 2007, 73, 19–26. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Arabacİ, M. The influence of stocking density on growth and feed efficiency in gilthead seabream, Sparus aurata. J. Anim. Veter. Adv. 2010, 9, 1280–1284. [Google Scholar] [CrossRef]
- Carbonara, P.; Alfonso, S.; Zupa, W.; Manfrin, A.; Fiocchi, E.; Pretto, T.; Lembo, G. Behavioral and physiological responses to stocking density in sea bream (Sparus aurata): Do coping styles matter? Physiol. Behav. 2019, 212, 112698. [Google Scholar] [CrossRef] [PubMed]
- Żarski, D.; Targońska, K.; Krejszeff, S.; Kwiatkowski, M.; Kupren, K.; Kucharczyk, D. Influence of stocking density and type of feed on the rearing of crucian carp, Carassius carassius (L.), larvae under controlled conditions. Aquac. Int. 2011, 19, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yuan, Y.; Dai, Y.; Gong, Y. Economic profitability of tilapia farming in China. Aquac. Int. 2017, 25, 1253–1264. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Sun, G. Effects of stocking density on growth performance and welfare-related physiological parameters of Atlantic salmon Salmo salar L. in recirculating aquaculture system. Aquac. Res. 2017, 48, 2133–2144. [Google Scholar] [CrossRef]
- Gasca-Leyva, E.; León, C.J.; Hernández, J.M.; Vergara, J.M. Bioeconomic analysis of production location of sea bream (Sparus aurata) cultivation. Aquaculture 2002, 213, 219–232. [Google Scholar] [CrossRef]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Pearson Education: Singapore/New Delhi, India, 1999; Volume 4, pp. 1–663. [Google Scholar]
- Dionicio-Acedo, J.; Rosado-Salazar, M.; Flores-Mego, J.; Flores-Ramos, L.; Aguirre-Velarde, A. Evaluation of commercial diets on growth and its effect on muscle biochemical composition of juvenile Peruvian grunt, Anisotremus scapularis (Tschudi, 1846) (Familia: Haemulidae). Lat. Am. J. Aquat. Res. 2017, 45, 410–420. [Google Scholar] [CrossRef]
- Yanac-Porras, C.F. Efecto del Contenido Proteico en la Dieta Sobre el Crecimiento y Utilización del Alimento en Juveniles de Chita (Anisotremus scapularis). Tesis Ingenería Agraria, Universidad Nacional Agraria La Molina, Lima, Peru, 2021. [Google Scholar]
- Guerrero-Tortolero, D.A.; Muhlia-Melo, A.; Rodríguez-Romero, J. Preliminary study on the effect of stocking density on the growth and survival of the yellow snapper Lutjanus argentiventris confined in cages in a tidal pond. N. Am. J. Aquac. 1999, 61, 82–84. [Google Scholar] [CrossRef]
- Castillo-Vargasmachuca, S.; Ponce-Palafox, J.T.; García-Ulloa, M.; Arredondo-Figueroa, J.L.; Ruiz-Luna, A.; Chávez, E.A.; Tacon, A.G. Effect of stocking density on growth performance and yield of subadult pacific red snapper cultured in floating sea cages. N. Am. J. Aquac. 2012, 74, 413–418. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Tziha, G.; Vrettos, X.; Athanasiou, A. Effects of stocking density on behavior and growth rate of European sea bass (Dicentrarchus labrax) juveniles reared in a closed circulated system. Aquac. Eng. 1998, 18, 135–144. [Google Scholar] [CrossRef]
- Karakatsouli, N.; Papoutsoglou, S.E.; Manolessos, G. Combined effects of rearing density and tank colour on the growth and welfare of juvenile white sea bream Diplodus sargus L. in a recirculating water system. Aquac. Res. 2007, 38, 1152–1160. [Google Scholar] [CrossRef]
- Qi, C.; Xie, C.; Tang, R.; Qin, X.; Wang, D.; Li, D. Effect of stocking density on growth, physiological responses, and body composition of juvenile blunt snout bream, Megalobrama amblycephala. J. World Aquac. Soc. 2016, 47, 358–368. [Google Scholar] [CrossRef]
- DiMaggio, M.A.; Ohs, C.L.; Broach, J.S.; Sink, T.D. Effects of stocking density on growth, survival, and stress physiology of pigfish. N. Am. J. Aquac. 2014, 76, 201–210. [Google Scholar] [CrossRef]
- Calabrese, S.; Nilsen, T.O.; Kolarevic, J.; Ebbesson, L.O.; Pedrosa, C.; Fivelstad, S.; Hosfeld, C.; Stefansson, S.O.; Terjesen, B.F.; Takle, H.; et al. Stocking density limits for post-smolt Atlantic salmon (Salmo salar L.) with emphasis on production performance and welfare. Aquaculture 2017, 468, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Irwin, S.; O’halloran, J.; FitzGerald, R.D. Stocking density, growth and growth variation in juvenile turbot, Scophthalmus maximus (Rafinesque). Aquaculture 1999, 178, 77–88. [Google Scholar] [CrossRef]
- Schram, E.; Van der Heul, J.W.; Kamstra, A.; Verdegem, M.C.J. Stocking density-dependent growth of Dover sole (Solea solea). Aquaculture 2006, 252, 339–347. [Google Scholar] [CrossRef]
- Yengkokpam, S.; Das, B.K.; Debnath, D.; Das, P.; Yadav, A.K.; Sharma, N.; Borah, S.; Singh, N.S.; Sarma, K.K.; Ray, B.C.; et al. Effect of stocking density on growth and yield of Labeo bata fingerlings reared in cages. Aquac. Rep. 2020, 18, 100506. [Google Scholar] [CrossRef]
- Kabir, K.A.; Verdegem, M.C.J.; Verreth, J.A.J.; Phillips, M.J.; Schrama, J.W. Effect of dietary protein to energy ratio, stocking density and feeding level on performance of Nile tilapia in pond aquaculture. Aquaculture 2019, 511, 634200. [Google Scholar] [CrossRef]
- Millot, S.; Bégout, M.L. Individual fish rhythm directs group feeding: A case study with sea bass juveniles (Dicentrarchus labrax) under self-demand feeding conditions. Aquat. Living Resour. 2009, 22, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Li, H.W.; Brocksen, R.W. Approaches to the analysis of energetic costs of intraspecific competition for space by rainbow trout (Salmo gairdneri). J. Fish Biol. 1977, 11, 329–341. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Nazzaro-Alvarez, J.; Jardí-Pons, A.; Reig, L.; Carella, F.; Carrassón, M.; Roque, A. Linking stocking densities and feeding strategies with social and individual stress responses on gilthead seabream (Sparus aurata). Physiol. Behav. 2020, 213, 112723. [Google Scholar] [CrossRef] [PubMed]
- Carbonara, P.; Dioguardi, M.; Cammarata, M.; Zupa, W.; Vazzana, M.; Spedicato, M.T.; Lembo, G. Basic knowledge of social hierarchies and physiological profile of reared sea bass Dicentrarchus labrax (L.). PLoS ONE 2019, 14, e0208688. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, D.N.; Mohapatra, B.C.; Adhikari, S.; Pani, K.C.; Jena, J.K.; Eknath, A.E. Effects of stocking density of Labeo rohita on survival, growth and production in cages. Aquac. Int. 2013, 21, 19–29. [Google Scholar] [CrossRef]
Ingredient | Percentage (%) |
---|---|
Fish meal | 61.98 |
Soybean meal | 20.66 |
Wheat meal | 1.15 |
Fish oil | 12.78 |
Gelatine * | 0.65 |
Vitamin C | 0.51 |
Vitamin E | 0.04 |
Vitamin B | 0.44 |
Mineral mix | 1.48 |
Methionine | 0.10 |
Threonine | 0.10 |
Lysine | 0.10 |
Proximate analysis | |
Ash | 12.86 |
Crude lipid | 14.49 |
Crude protein | 52.29 |
Cellulose | 1.24 |
Moisture | 8.81 |
Parameters | LSD | MSD | HSD | F-Value | p |
---|---|---|---|---|---|
Initial average length (cm) | 4.08 + 0.14 | 4.15 + 0.03 | 4.15 + 0.03 | 0.62 | 0.57 |
Middle (30 days) average length (cm) | 4.97 + 0.04 a | 4.78 + 0.06 b | 4.53 + 0.03 c | 70.62 | <0.001 |
Final average length (cm) | 6.48 + 0.42 a | 6.35 + 0.53 a | 5.81 + 0.65 b | 27.38 | 0.001 |
Initial average wet weight (g) | 0.79 + 0.06 | 0.79 + 0.04 | 0.79 + 0.01 | 0.00 | 1.00 |
Middle (30 days) average wet weight (g) | 1.50 + 0.03 a | 1.34 + 0.06 b | 1.12 + 0.01 c | 83.7 | <0.001 |
Final average wet weight (g) | 3.53 + 0.17 | 3.40 + 0.03 | 2.57 + 0.20 | 35.54 | <0.001 |
Individual Growth (g) | 2.74 + 0.22 a | 2.61+ 0.02 a | 1.78 + 0.19 b | 29.15 | <0.001 |
Specific growth rate (%·day−1) | 2.38 + 0.18 a | 2.33 + 0.06 a | 1.87 + 0.10 b | 14.84 | 0.005 |
Biomass gained (g) | 822.84 ± 50.96 a | 1562.55 ± 18.23 b | 1599.12 ± 183.51 b | 47.17 | <0.001 |
Biomass harvest (%) | 77.60 ± 1.06 a | 76.72 ± 0.21 a | 69.10 ± 2.42 b | 28.08 | <0.001 |
Weight gain (%) | 349.57 ± 51.85 a | 330.15 ± 16.51 a | 224.73 ± 21.69 b | 11.84 | 0.008 |
Survival (%) | 99 + 0.33 | 99 + 0.10 | 99 + 0.29 | 3 | 0.16 |
Parameters | LSD | MSD | HSD | F-Value | p |
---|---|---|---|---|---|
Total food consumed (g) | 3912.3 a | 7202 b | 10,477.06 c | 14,343.1 | <0.001 |
Food average consumed per indv. (g) | 4.35 ± 0.02 a | 4 ± 0.01 a | 3.88 ± 0.03 b | 349.7 | <0.001 |
Feeding efficiency (%) | 63.09 + 4.68 a | 65.15 + 0.21 a | 49.61 + 5.17 b | 13.17 | 0.006 |
Feed conversion ratio (FCR) | 1.59 + 0.12 a | 1.53 + 0.00 a | 2.20 + 0.22 b | 19.87 | 0.002 |
Protein efficient ratio (PER) | 1.21 + 0.09 a | 1.25 + 0.00 a | 0.88 + 0.09 b | 19.87 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Ramos, L.A.; Quispe-Mayta, J.M.; Chili-Layme, V.; Nande, M. Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile. Aquac. J. 2022, 2, 13-22. https://doi.org/10.3390/aquacj2010002
Espinoza-Ramos LA, Quispe-Mayta JM, Chili-Layme V, Nande M. Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile. Aquaculture Journal. 2022; 2(1):13-22. https://doi.org/10.3390/aquacj2010002
Chicago/Turabian StyleEspinoza-Ramos, Luis Antonio, José Miguel Quispe-Mayta, Victor Chili-Layme, and Manuel Nande. 2022. "Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile" Aquaculture Journal 2, no. 1: 13-22. https://doi.org/10.3390/aquacj2010002
APA StyleEspinoza-Ramos, L. A., Quispe-Mayta, J. M., Chili-Layme, V., & Nande, M. (2022). Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile. Aquaculture Journal, 2(1), 13-22. https://doi.org/10.3390/aquacj2010002