Exercise-Induced Acute Physiological Responses of Velocity, Power, and Temperature in Paralympic and Conventional Powerlifting Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Instruments/Procedures
2.3.1. Maximum Load Test (1RM)
2.3.2. Dynamic Force Measurements
2.3.3. Skin Temperature Measurement
2.3.4. Load Determination
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. MPV, Vmax, and Power
4.2. Skin Temperature
4.3. Train Considerations
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spence, A.-J.; Helms, E.R.; Sousa, C.A.; McGuigan, M.R. Range of Motion Predicts Performance in National-Level New Zealand Male Powerlifters. J. Strength Cond. Res. 2023, 37, 123–128. [Google Scholar] [CrossRef]
- International Paralympic Committee. Para Powerlifting Rules and Regulations. Available online: https://www.paralympic.org/powerlifting/rules (accessed on 30 May 2025).
- Austin, D.; Mann, B. Powerlifting: The Complete Guide to Technique, Training, and Competition; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Dorrell, H. Guidelines and Resources for Prescribing Load Using Velocity Based Training. IUSCA Journal 2020, 1. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Mesquita Souza, R.L.; Aidar, F.J.; Villar, R.; Greco, G.; Santos, L.D.; Poli, L.; Lima de Santana, J.; Carvutto, R.; Gama de Matos, D.; Badicu, G.; et al. Assessment of Asymmetry at Different Intensities between Conventional and Paralympic Powerlifting Athletes. Heliyon 2023, 9, e16211. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement Velocity as a Measure of Exercise Intensity in Three Lower Limb Exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef]
- Jandačka, D.; Beremlijski, P. Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship. J. Hum. Kinet. 2011, 28, 33–44. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Abad, C.C.C.; Tabares, F.; Moraes, J.E.; Kobal, R.; Kitamura, K.; Nakamura, F.Y. Bar Velocities Capable of Optimising the Muscle Power in Strength-Power Exercises. J. Sports Sci. 2017, 35, 734–741. [Google Scholar] [CrossRef]
- Studencki, M.; Ignatjeva, A.; Nitychoruk, M.; Gołaś, A.; Smółka, W.; Maszczyk, A. Effect of Bench Press at a Specified Movement Tempo on Post-Exercise Testosterone and Cortisol Levels. Phys. Act. Rev. 2021, 9, 111–119. [Google Scholar] [CrossRef]
- Viegas, F.; de Mello, M.T.; Rodrigues, S.A.; Costa, C.M.A.; Freitas, L.d.S.N.; Rodrigues, E.L.; Silva, A. The use of thermography and its control variables: A systematic review. Rev. Bras. Med. Esporte 2020, 26, 82–86. [Google Scholar] [CrossRef]
- Menezes, P.; Rhea, M.R.; Herdy, C.; Simão, R. Effects of Strength Training Program and Infrared Thermography in Soccer Athletes Injuries. Sports 2018, 6, 148. [Google Scholar] [CrossRef] [PubMed]
- Naperalsky, M.; Ruby, B.; Slivka, D. Environmental Temperature and Glycogen Resynthesis. Int. J. Sports Med. 2010, 31, 561–566. [Google Scholar] [CrossRef]
- Quesada, J.I.P.; Carpes, F.P. Application of Infrared Thermography in the Assessment of Sport Equipment. In Elsevier eBooks; Woodhead Publishing: Sawston, UK, 2019; pp. 37–69. [Google Scholar] [CrossRef]
- Filho, G.F.d.S.; Aidar, F.J.; Getirana-Mota, M.; Brito, C.J.; Aedo-Muñoz, E.; de Almeida Paz, Â.; de Souza Leite Júnior, J.A.; Vieira, E.L.M.; Nikolaidis, P.T. Analysis of Velocity, Power and Skin Temperature in Paralympic Powerlifting Athletes with Fixed and Variable Resistance. Sports 2024, 12, 250. [Google Scholar] [CrossRef]
- Van Den Hoek, D.; Garrett, J.; Howells, R.; Latella, C. Paralympians Are Stronger Than You Know: A Comparison of Para and Nondisabled Powerlifting Bench Press World Records. J. Strength Cond. Res. 2023, 37, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Flanagan, E.P. Researched applications of velocity based strength training. J. Aust. Strength Cond. 2014, 22, 58–69. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Ball, R.; Weidman, D. Analysis of USA Powerlifting Federation Data from January 1, 2012–June 11, 2016. J. Strength Cond. Res. 2018, 32, 1843–1851. [Google Scholar] [CrossRef]
- Jukic, I.; King, A.; Sousa, C.A.; Prnjak, K.; McGuigan, M.R. Implementing a velocity-based approach to resistance training: The reproducibility and sensitivity of different velocity monitoring technologies. Sci. Rep. 2023, 13, 7152. [Google Scholar] [CrossRef]
- Sánchez-Cuevas, F.; Fernández-Cuevas, I.; García-Márquez, C.; González, F.; López, J.; Arbelo-Casas, S.; de la Torre, A.; Martín-Ruiz, P.; Abad-Flores, A.; Serrano, G.; et al. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review. Infrared Phys. Technol. 2015, 71, 28–50. [Google Scholar] [CrossRef]
- Santos, L.C.V.; Aidar, F.J.; Villar, R.; Greco, G.; de Santana, J.L.; Marçal, A.C.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Badicu, G.; Nobari, H.; et al. Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators. Sports 2023, 11, 151. [Google Scholar] [CrossRef]
- Neves, E.B.; Moreira, T.R.; Lemos, R.; Vilaça-Alves, J.; Rosa, C.; Reis, V.M. Using Skin Temperature and Muscle Thickness to Assess Muscle Response to Strength Training. Rev. Bras. Med. Esporte 2015, 21, 350–354. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 978-0-203-77158-7. [Google Scholar]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; González-Badillo, J.J. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations: A systematic review. Sports Med. 2020, 50, 161–175. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2020, 43, 31–49. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.P.; Gnzález-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Yañez-García, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef]
- Sander, A.; Keiner, M.; Wirth, K.; Schmidtbleicher, D. Influence of a 2-Year Strength Training Programme on Power Performance in Elite Youth Soccer Players. Eur. J. Sport Sci. 2013, 13, 445–451. [Google Scholar] [CrossRef]
- Teles, L.J.L.; Aidar, F.J.; de Matos, D.G.; Marçal, A.C.; Almeida-Neto, P.F.d.; Neves, E.B.; Moreira, O.C.; Ribeiro Neto, F.; Garrido, N.D.; Vilaça-Alves, J.; et al. Static and Dynamic Strength Indicators in Paralympic Power-Lifters with and without Spinal Cord Injury. Int. J. Environ. Res. Public Health 2021, 18, 5907. [Google Scholar] [CrossRef]
- Izquierdo, M.; González-Badillo, J.J.; Häkkinen, K.; Ibáñez, J.; Kraemer, W.J.; Altadill, A.; Eslava, J.; Gorostiaga, E.M. Effect of Loading on Unintentional Lifting Velocity Declines during Single Sets of Repetitions to Failure during Upper and Lower Extremity Muscle Actions. Int. J. Sports Med. 2006, 27, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Rodiles-Guerrero, L.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Alcazar, J.; Rodriguez-Lopez, C.; Sánchez-Moreno, M.; Alegre, L.M.; León-Prados, J.A.; Pareja-Blanco, F. Specific Adaptations to 0%, 15%, 25%, and 50% Velocity-Loss Thresholds During Bench Press Training. Int. J. Sports Physiol. Perform. 2022, 17, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.-F.; Wang, X.-X.; Han, M.-Y.; Li, L.-L.; Nassis, G.P.; Li, Y.-M. Effects of Velocity Based Training vs. Traditional 1RM Percentage-Based Training on Improving Strength, Jump, Linear Sprint and Change of Direction Speed Performance: A Systematic Review with Meta-Analysis. PLoS ONE 2021, 16, e0259790. [Google Scholar] [CrossRef]
- Orange, S.T.; Hritz, A.; Pearson, L.; Jeffries, O.; Jones, T.W.; Steele, J. Comparison of the Effects of Velocity-Based vs. Traditional Resistance Training Methods on Adaptations in Strength, Power, and Sprint Speed: A Systematic Review, Meta-Analysis, and Quality of Evidence Appraisal. J. Sports Sci. 2022, 40, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Validation of Power Measurement Techniques in Dynamic Lower Body Resistance Exercises. J. Appl. Biomech. 2007, 23, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Nakamura, F.Y.; Kobal, R.; Gil, S.; Abad, C.C.C.; Cuniyochi, R.; Pereira, L.A.; Roschel, H. Training for Power and Speed: Effects of Increasing or Decreasing Jump Squat Velocity in Elite Young Soccer Players. J. Strength Cond. Res. 2015, 29, 2771–2779. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Cornejo-Daza, P.J.; González-Badillo, J.J.; Pareja-Blanco, F. Effects of Velocity Loss During Body Mass Prone-Grip Pull-up Training on Strength and Endurance Performance. J. Strength Cond. Res. 2020, 34, 911–917. [Google Scholar] [CrossRef]
- Abate, M.; Di Carlo, L.; Di Donato, L.; Romani, G.L.; Merla, A. Comparison of Cutaneous Thermal Response to a Standardised Warm up in Trained and Untrained Individuals. J. Sports Med. Phys. Fitness 2013, 53, 209–215. [Google Scholar] [PubMed]
- Vieira, S.G.; Sillero-Quintana, M.; da Silva, A.G.; Marins, K.O.; Marins, J.C.B. Thermographic Response Resulting from Strength Training: A Preliminary Study. Apunt. Sports Med. 2020, 55, 120–127. [Google Scholar] [CrossRef]
- Fraga, G.S.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Santos, J.L.; Souza, R.F.; Carneiro, A.L.; Vasconcelos, A.B.; Da Silva-Grigoletto, M.E.; van den Tillaar, R.; et al. Effects of Ibuprofen Intake in Muscle Damage, Body Temperature and Muscle Power in Paralympic Powerlifting Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5157. [Google Scholar] [CrossRef]
- Nybo, L.; Rasmussen, P.; Sawka, M.N. Performance in the Heat-Physiological Factors of Importance for Hyperthermia-Induced Fatigue. Compr. Physiol. 2014, 4, 657–689. [Google Scholar] [CrossRef]
- Charkoudian, N. Mechanisms and Modifiers of Reflex Induced Cutaneous Vasodilation and Vasoconstriction in Humans. J. Appl. Physiol. 2010, 109, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.B.; Vilaca-Alves, J.; Antunes, N.; Felisberto, I.M.V.; Rosa, C.; Reis, V.M. Different Responses of the Skin Temperature to Physical Exercise: Systematic Review. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 1307–1310. [Google Scholar] [CrossRef]
- De Almeida Barros, N.; Aidar, F.J.; De Matos, D.G.; De Souza, R.F.; Neves, E.B.; De Araujo Tinoco Cabral, B.G.; Carmargo, E.A.; Reis, V.M. Evaluation of Muscle Damage, Body Temperature, Peak Torque, and Fatigue Index in Three Different Methods of Strength Gain. Int. J. Exerc. Sci. 2020, 13, 1352–1365. [Google Scholar] [CrossRef]
- Uchôa, P.; Matos, F.; Neves, E.B.; Saavedra, F.; Rosa, C.; Reis, V.M.; Vilaça-Alves, J. Evaluation of Two Different Resistance Training Volumes on the Skin Surface Temperature of the Elbow Flexors Assessed by Thermography. Infrared Phys. Technol. 2018, 93, 178–183. [Google Scholar] [CrossRef]
- Formenti, D.; Ludwig, N.; Gargano, M.; Gondola, M.; Dellerma, N.; Caumo, A.; Alberti, G. Thermal Imaging of Exercise-Associated Skin Temperature Changes in Trained and Untrained Female Subjects. Ann. Biomed. Eng. 2012, 41, 863–871. [Google Scholar] [CrossRef]
- de Resende, M.A.; Vasconcelos Resende, R.B.; Reis, G.C.; Barros, L.d.O.; Bezerra, M.R.S.; Matos, D.G.d.; Marçal, A.C.; Almeida-Neto, P.F.d.; Cabral, B.G.d.A.T.; Neiva, H.P.; et al. The Influence of Warm-Up on Body Temperature and Strength Performance in Brazilian National-Level Paralympic Powerlifting Athletes. Med. Kaunas Lith. 2020, 56, 538. [Google Scholar] [CrossRef]
Conventional Powerlifting (CP) | Paralympic Powerlifting (PP) | P | Cohen’s d | |
---|---|---|---|---|
Age (years) | 29.84 ± 4.21 | 30.81 ± 8.05 | 0.715 | XXX |
Body weight (Kg) | 78.52 ± 7.95 | 70.00 ± 16.13 | 0.115 | XXX |
Experience (years) | 1.81 ± 0.41 | 2.84 ± 1.31 | 0.016 | 1.108 |
1RM bench press test (Kg) | 118.49 ± 17.71 | 122.02 ± 38.06 | 0.440 | XXX |
1RM/body mass | 1.51 ± 0.61 * | 1.71 ± 0.42 * | 0.175 | XXX |
Before | After | |||||
---|---|---|---|---|---|---|
CP | PP | CP | PP | p | η2ₚ | |
MPV 45% (m/s) | 0.93 ± 0.23 a (0.78–1.09) | 0.92 ± 0.17 (0.80–1.04) | 0.98 ± 0.24 a (0.82–1.14) | 0.83 ± 0.17 (0.71–0.94) | “a” p = 0.007* | 0.412 |
Vmax 45% (m/s) | 1.24 ± 0.27 a (1.01–1.43) | 1.26 ± 0.20 (1.12–1.39) | 1.31 ± 0.28 a (1.12–1.50) | 1.14 ± 0.19 (1.01–1.27) | “a” p = 0.015* | 0.388 |
Power 45% (W) | 439.72 ± 131.32 a (351.50–527.95) | 524.42 ± 140.50 (430.03–618.81) | 454.09 ± 118.77 a (374.29–533.88) | 478.78 ± 134.72 (388.27–569.298) | “a” p = 0.022* | 0.314 |
MPV 80% (m/s) | 0.46 ± 0.11 a,b (0.40–0.53) | 0.35 ± 0.10 (0.29–0.42) | 0.45 ± 0.11 a (0.38–0.52) | 0.49 ± 0.19 b (0.37–0.61) | “a” p = 0.037* “b” p = 0.043# | 0.305* 0.313# |
Vmax 80% (m/s) | 0.65 ± 0.12 a (0.57–0.72) | 0.50 ± 0.14 (0.41–0.59) | 0.64 ± 0.16 (0.54–0.74) | 0.67 ± 0.25 a (0.51–0.83) | “a” p = 0.019# | 0.399 |
Power 80% (W) | 375.98 ± 91.21 (318.03–433.94) | 386.79 ± 199.35 a (260.13–513.45) | 337.73 ± 80.12 (286.83–388.64) | 460.99 ± 222.15 a (319.84–602.14) | “a” p = 0.034* | 0.427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, R.L.M.; Aidar, F.J.; Santos, L.d.; Santos, J.L.d.; Vieira Souza, L.M.; Carneiro, A.L.G.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Marçal, A.C.; Nikolaidis, P.T. Exercise-Induced Acute Physiological Responses of Velocity, Power, and Temperature in Paralympic and Conventional Powerlifting Athletes. Physiologia 2025, 5, 23. https://doi.org/10.3390/physiologia5030023
Souza RLM, Aidar FJ, Santos Ld, Santos JLd, Vieira Souza LM, Carneiro ALG, de Almeida-Neto PF, de Araújo Tinoco Cabral BG, Marçal AC, Nikolaidis PT. Exercise-Induced Acute Physiological Responses of Velocity, Power, and Temperature in Paralympic and Conventional Powerlifting Athletes. Physiologia. 2025; 5(3):23. https://doi.org/10.3390/physiologia5030023
Chicago/Turabian StyleSouza, Rafael Luiz Mesquita, Felipe J. Aidar, Leonardo dos Santos, Jymmys Lopes dos Santos, Lúcio Marques Vieira Souza, Andre Luiz Gomes Carneiro, Paulo Francisco de Almeida-Neto, Breno Guilherme de Araújo Tinoco Cabral, Anderson Carlos Marçal, and Pantelis T. Nikolaidis. 2025. "Exercise-Induced Acute Physiological Responses of Velocity, Power, and Temperature in Paralympic and Conventional Powerlifting Athletes" Physiologia 5, no. 3: 23. https://doi.org/10.3390/physiologia5030023
APA StyleSouza, R. L. M., Aidar, F. J., Santos, L. d., Santos, J. L. d., Vieira Souza, L. M., Carneiro, A. L. G., de Almeida-Neto, P. F., de Araújo Tinoco Cabral, B. G., Marçal, A. C., & Nikolaidis, P. T. (2025). Exercise-Induced Acute Physiological Responses of Velocity, Power, and Temperature in Paralympic and Conventional Powerlifting Athletes. Physiologia, 5(3), 23. https://doi.org/10.3390/physiologia5030023