The Effect of Flywheel Resistance Training on Executive Function in Older Women: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Desing
2.2. Study Outcomes
2.3. Sample Size Calculation
2.4. Blinding and Registration
2.5. Participants
2.6. Resistance Training Program
2.7. Evaluation Measures
2.7.1. Executive Function
2.7.2. Blood Sampling and IGF-1 Analysis Procedures
2.7.3. Adverse Events
2.7.4. Strength Measurement
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Diamond, A.; Ling, D.S. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 2016, 18, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Cieto, B.B.; Valera, G.G.; Soares, G.B.; Cintra, R.H.d.S.; Vale, F.A.C. Dementia care in public health in Brazil and the world: A systematic review. Dement. Neuropsychol. 2014, 8, 40–46. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Dementia. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 10 May 2025).
- Alzheimer’s Association. 2024 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2024, 20, 3708–3821. [Google Scholar] [CrossRef]
- Zalli, M.; Farah, H.O.; Antunes, M.D. Aspectos epidemiológicos e gastos em saúde por demências no Brasil. Rev. Med. 2020, 99, 563–567. [Google Scholar] [CrossRef]
- Li, Z.; Peng, X.; Xiang, W.; Han, J.; Li, K. The effect of resistance training on cognitive function in the older adults: A systematic review of randomized clinical trials. Aging Clin. Exp. Res. 2018, 30, 1259–1273. [Google Scholar] [CrossRef]
- Caldas, L.R.D.R.; Albuquerque, M.R.; Lopes, E.; Moreira, A.C.; Almada, T.G.B.; de Araújo, S.R.; de Oliveira, A.B.C.; Ribeiro, A.Q.; Carneiro-Júnior, M.A. Multicomponent exercise training is effective in improving health and behavior indicators in Brazilian elderly women: A non-randomized trial. J. Bodyw. Mov. Ther. 2022, 29, 40–48. [Google Scholar] [CrossRef]
- Santos, P.R.P.D.; Cavalcante, B.R.; Vieira, A.K.D.S.; Guimarães, M.D.; Leandro Da Silva, A.M.; Armstrong, A.D.C.; Carvalho, R.G.D.S.; Carvalho, F.O.D.; Souza, M.F.D. Improving cognitive and physical function through 12-weeks of resistance training in older adults: Randomized controlled trial. J. Sports Sci. 2020, 38, 1936–1942. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Aguiar, S.d.S.; Calvani, R.; Picca, A.; Carvalho, D.d.A.; Zwarg-Sá, J.d.C.; Audiffren, M.; Marzetti, E.; Uchida, M.C. Acute Effects of Low- and High-Speed Resistance Exercise on Cognitive Function in Frail Older Nursing-Home Residents: A Randomized Crossover Study. J. Aging Res. 2021, 2021, 9912339. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Agostinho, P.A.G.; Bedoya, É.A.P.; Cota, A.R.; Chaves, S.F.N.; Oliveira, C.E.P.; Carneiro-Júnior, M.A.; Moreira, O.C. Flywheel resistance training: Functionality and strength in older women—A randomized controlled trial. J. Bodyw. Mov. Ther. 2025, 42, 573–582. [Google Scholar] [CrossRef]
- Pérez Bedoya, É.A.; Puerta-López, L.F.; López Galvis, D.A.; Rojas Jaimes, D.A.; Moreira, O.C. Physical exercise and major depressive disorder in adults: Systematic review and meta-analysis. Sci. Rep. 2023, 13, 13223. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Stillman, C.M.; Esteban-Cornejo, I.; Brown, B.; Bender, C.M.; Erickson, K.I. Effects of Exercise on Brain and Cognition Across Age Groups and Health States. Trends Neurosci. 2020, 43, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Čretnik, K.; Pleša, J.; Kozinc, Ž.; Löfler, S.; Šarabon, N. The Effect of Eccentric vs. Traditional Resistance Exercise on Muscle Strength, Body Composition, and Functional Performance in Older Adults: A Systematic Review with Meta-Analysis. Front. Sports Act. Living 2022, 4, 873718. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; Pinto, M.D.; Nosaka, K.; Steele, J. The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo: Meta-analysis of the Influences of Sex, Age, Joint Action, and Velocity. Sports Med. Auckl. NZ 2023, 53, 1125–1136. [Google Scholar] [CrossRef]
- Eckardt, N.; Braun, C.; Kibele, A. Instability Resistance Training improves Working Memory, Processing Speed and Response Inhibition in Healthy Older Adults: A Double-Blinded Randomised Controlled Trial. Sci. Rep. 2020, 10, 2506. [Google Scholar] [CrossRef]
- Sañudo, B.; González-Navarrete, Á.; Álvarez-Barbosa, F.; de Hoyo, M.; Del Pozo, J.; Rogers, M.E. Effect of Flywheel Resistance Training on Balance Performance in Older Adults. A Randomized Controlled Trial. J. Sports Sci. Med. 2019, 18, 344–350. [Google Scholar]
- Chan, A.-W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef]
- Boutron, I.; Altman, D.G.; Moher, D.; Schulz, K.F.; Ravaud, P.; CONSORT NPT Group. CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for Nonpharmacologic Trial Abstracts. Ann. Intern. Med. 2017, 167, 40–47. [Google Scholar] [CrossRef]
- Smart, N.A.; Waldron, M.; Ismail, H.; Giallauria, F.; Vigorito, C.; Cornelissen, V.; Dieberg, G. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int. J. Evid. Based Healthc. 2015, 13, 9–18. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Novoa, P.C.R. What changes in research ethics in Brazil: Resolution no. 466/12 of the National Health Council. Einstein 2014, 12, vii–x. [Google Scholar] [CrossRef]
- Slade, S.C.; Dionne, C.E.; Underwood, M.; Buchbinder, R.; Beck, B.; Bennell, K.; Brosseau, L.; Costa, L.; Cramp, F.; Cup, E.; et al. Consensus on Exercise Reporting Template (CERT): Modified Delphi Study. Phys. Ther. 2016, 96, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
- Bayard, S.; Erkes, J.; Moroni, C.; Collège des Psychologues Cliniciens spécialisés en Neuropsychologie du Languedoc Roussillon (CPCN Languedoc Roussillon). Victoria Stroop Test: Normative data in a sample group of older people and the study of their clinical applications in the assessment of inhibition in Alzheimer’s disease. Arch. Clin. Neuropsychol. 2011, 26, 653–661. [Google Scholar] [CrossRef]
- Greiffenstein, M.F.; Baker, W.J.; Gola, T. Validation of malingered amnesia measures with a large clinical sample. Psychol. Assess. 1994, 6, 218–224. [Google Scholar] [CrossRef]
- Milner, B. Some cognitive effects of frontal-lobe lesions in man. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 211–226. [Google Scholar]
- Nieto-Estévez, V.; Defterali, Ç.; Vicario-Abejón, C. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain. Front. Neurosci. 2016, 10, 52. [Google Scholar] [CrossRef]
- Freites-Martinez, A.; Santana, N.; Arias-Santiago, S.; Viera, A. Using the Common Terminology Criteria for Adverse Events (CTCAE–Version 5.0) to Evaluate the Severity of Side Effects of Antineoplastic Treatments. Actas Dermosifiliogr. 2020, 112, 90–92. [Google Scholar] [CrossRef]
- Moreira, O.; Cardozo, R.; Vicente, M.; Matos, D.; Mazini Filho, M.; Guimaraes, M.; Silva, S.; Jeffreys, I.; Aidar, F.; Oliveira, C. Acute effect of stretching prior to resistance training on morphological, functional and activation indicators of skeletal muscle in young men. Sport Sci. Health 2022, 18, 193–202. [Google Scholar] [CrossRef]
- Pedersen, B.K. Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 2019, 15, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Cassilhas, R.C.; Lee, K.S.; Fernandes, J.; Oliveira, M.G.M.; Tufik, S.; Meeusen, R.; de Mello, M.T. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 2012, 202, 309–317. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Volek, J.S.; Bush, J.A.; Putukian, M.; Sebastianelli, W.J. Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J. Appl. Physiol. 1998, 85, 1544–1555. [Google Scholar] [CrossRef] [PubMed]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Graf, P.; Beattie, B.L.; Ashe, M.C.; Handy, T.C. Resistance Training and Executive Functions: A 12-Month Randomised Controlled Trial. Arch. Intern. Med. 2010, 170, 170–178. [Google Scholar] [CrossRef]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef]
- Best, J.R. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Dev. Rev. DR 2010, 30, 331–551. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.L.G.; Henrique, J.S.; Almeida, S.S.; Arida, R.M.; Gomes da Silva, S. Factors affecting executive function performance of Brazilian elderly in the Stroop test. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 2022, 55, e11917. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognit. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Yoon, D.; Lee, J.; Song, W. Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cognitive Frailty: A Randomized Controlled Trial. J. Nutr. Health Aging 2018, 22, 944–951. [Google Scholar] [CrossRef]
- Viladrosa, M.; Casanova, C.; Ghiorghies, A.C.; Jürschik, P. El ejercicio físico y su efectividad sobre la condición física en personas mayores frágiles. Revisión sistemática de ensayos clínicos aleatorizados. Rev. Esp. Geriatría Gerontol. 2017, 52, 332–341. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Voelcker-Rehage, C.; Niemann, C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci. Biobehav. Rev. 2013, 37, 2268–2295. [Google Scholar] [CrossRef] [PubMed]
- Feter, N.; Schaun, G.Z.; Smith, E.C.; Cassuriaga, J.; Alt, R.; Redig, L.; Alberton, C.L.; Coombes, J.S.; Rombaldi, A.J. High-velocity resistance training improves executive function in mobility-limited older adults. Arch. Gerontol. Geriatr. 2023, 114, 105081. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Voss, M.W.; Khan, K.M.; Handy, T.C. Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiol. Aging 2012, 33, 1690–1698. [Google Scholar] [CrossRef]
- Tesch, P.A.; Ekberg, A.; Lindquist, D.M.; Trieschmann, J.T. Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiol. Scand. 2004, 180, 89–98. [Google Scholar] [CrossRef] [PubMed]
Variable | TRT (n = 15) | FRT (n = 14) | p | IC 95% |
---|---|---|---|---|
Age (years) | 66.4 ± 5.5 | 64.2 ± 4.3 | 0.26 | −1.6; 5.9 |
Resting HR (bpm) | 65.1 ± 3.5 | 70.0 ± 11.7 | 0.87 | −7.7; 9.1 |
SBP (mmHg) | 138.0 ± 3.8 | 134.2 ± 10.8 | 0.45 | −6.2; 13.6 |
DBP (mmHg) | 84.0 ± 4.0 | 82.1 ± 9.7 | 0.70 | −8.0; 11.8 |
MAP (mmHg) | 102.0 ± 2.8 | 99.5 ± 8.6 | 0.51 | −5.1; 10.1 |
Waist circumference (cm) | 92.0 ± 11.1 | 94.6 ± 14.5 | 0.59 | −12.4; 7.2 |
Body mass (kg) | 65.1 ±13.6 | 73.1 ± 15.9 | 0.15 | −19.3; 3.2 |
BMI (kg/m2) | 27.3 ± 4.9 | 29.5 ± 5.9 | 0.29 | −6.3; 1.9 |
Number of NCDs | 1.2 ± 1.0 | 1.5 ± 0.6 | 0.24 | −1.0; 0.2 |
Sedentary behavior (h/day) | 5.5 ± 2.1 | 6.5 ± 2.5 | 0.25 | −2.8; 0.7 |
TRT (n = 14) | FRT (n = 15) | Intragroup | Intergroup | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | p | ηp2 | 1 − β | p | ηp2 | 1 − β | |
Victoria Stroop Test (s) | 18.1 ± 9.7 | 13.7 ± 6.9 | 15.7 ± 5.4 | 12.4 ± 5.3 | 0.673 | 0.07 | 0.51 | 0.350 | 0.19 | 0.87 |
Digit Span (Direct Order-Score) | 7.9 ± 1.6 | 9.4 ± 1.7 | 7.4 ± 1.7 | 8.7 ± 1.9 | 0.002 | 0.19 | 0.91 | 0.067 | 0.07 | 0.44 |
Digit Span (Indirect Order-Score) | 6.2 ± 1.7 | 6.8 ± 1.4 | 5.3 ± 1.4 | 6.1 ± 2.3 | 0.025 | 0.10 | 0.62 | 0.083 | 0.06 | 0.41 |
Trail Making Test Part A (s) | 68.8 ± 54.0 | 57.0 ± 26.7 | 61.0 ± 29.8 | 50.9 ± 25.1 | 0.164 | 0.04 | 0.27 | 0.241 | 0.02 | 0.21 |
Trail Making Test Part B (s) | 184.9 ± 96.8 | 158.7 ± 96.6 | 177.9 ± 94.0 | 138.7 ± 89.6 | 0.037 | 0.09 | 0.56 | 0.024 | 0.10 | 0.61 |
Trail Making Test B-A (s) | 116.0 ± 77.4 | 101.7 ± 65.0 | 116.8 ± 69.6 | 87.8 ± 67.2 | 0.071 | 0.06 | 0.42 | 0.047 | 0.08 | 0.51 |
IGF-1 (ng/mL) | 105.3 ± 33.9 | 105.7 ± 31.10 | 109.7 ± 37.7 | 111.4 ± 33.4 | 0.843 | 0.01 | 0.05 | 0.288 | 0.02 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cota, A.d.R.; Bedoya, É.A.P.; Agostinho, P.A.G.; Leite, L.B.; Schneider, A.; Forte, P.; Monteiro, A.M.; Branquinho, L.; Teixeira, J.E.; Oliveira, C.E.P.d.; et al. The Effect of Flywheel Resistance Training on Executive Function in Older Women: A Randomized Controlled Trial. Physiologia 2025, 5, 22. https://doi.org/10.3390/physiologia5030022
Cota AdR, Bedoya ÉAP, Agostinho PAG, Leite LB, Schneider A, Forte P, Monteiro AM, Branquinho L, Teixeira JE, Oliveira CEPd, et al. The Effect of Flywheel Resistance Training on Executive Function in Older Women: A Randomized Controlled Trial. Physiologia. 2025; 5(3):22. https://doi.org/10.3390/physiologia5030022
Chicago/Turabian StyleCota, Amanda dos Reis, Édison Andrés Pérez Bedoya, Pablo Augusto Garcia Agostinho, Luciano Bernardes Leite, André Schneider, Pedro Forte, António M. Monteiro, Luís Branquinho, José E. Teixeira, Claudia Eliza Patrocínio de Oliveira, and et al. 2025. "The Effect of Flywheel Resistance Training on Executive Function in Older Women: A Randomized Controlled Trial" Physiologia 5, no. 3: 22. https://doi.org/10.3390/physiologia5030022
APA StyleCota, A. d. R., Bedoya, É. A. P., Agostinho, P. A. G., Leite, L. B., Schneider, A., Forte, P., Monteiro, A. M., Branquinho, L., Teixeira, J. E., Oliveira, C. E. P. d., Moreira, O. C., & Carneiro-Júnior, M. A. (2025). The Effect of Flywheel Resistance Training on Executive Function in Older Women: A Randomized Controlled Trial. Physiologia, 5(3), 22. https://doi.org/10.3390/physiologia5030022