Influence of Oestradiol Fluctuations in the Menstrual Cycle on Respiratory Exchange Ratio at Different Exercise Intensities: A Systematic Review, Meta-Analysis and Pooled-Data Analysis
Abstract
1. Introduction
2. Results
2.1. Literature Search
2.2. Study Characteristics and Quality Assessment
2.3. Pairwise Meta-Analysis of Phase Differences
2.4. Pooled-Analysis
3. Discussion
3.1. Limitations Addressed
3.2. Implications for Practice
4. Materials and Methods
4.1. Eligibility Criteria
4.2. Search Strategy
4.3. Quality Assessment, Data Synthesis and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deuster, P.; Heled, Y. Testing for Maximal Aerobic Power. Sports Med. Resour. Man. 2008, 520–528. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Gibson, A.S.C.; Grobler, L.; Collins, M.; Noakes, T.D.; Lambert, E.V. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am. J. Physiol. Endocrinol. Metab. 2000, 279, 1325–1334. [Google Scholar] [CrossRef]
- Mul, J.D.; Stanford, K.I.; Hirshman, M.F.; Goodyear, L.J. Exercise and Regulation of Carbohydrate Metabolism. Prog. Mol. Biol. Transl. Sci. 2015, 135, 17. [Google Scholar] [PubMed Central]
- Venables, M.C.; Achten, J.; Jeukendrup, A.E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005, 98, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, J.; Amaro-Gahete, F.J.; Landgrebe, A.; Dela, F.; Ruiz, J.R.; Helge, J.W.; Larsen, S. The influence of age, sex and cardiorespiratory fitness on maximal fat oxidation rate. Appl. Physiol. Nutr. Metab. 2021, 46, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Besson, T.; Macchi, R.; Rossi, J.; Morio, C.Y.; Kunimasa, Y.; Nicol, C.; Vercruyssen, F.; Millet, G.Y. Sex Differences in Endurance Running. Sex. Differ. Endur. Run. Sport. Med. 2022, 52, 1235–1257. Available online: https://link.springer.com/article/10.1007/s40279-022-01651-w (accessed on 15 April 2024). [CrossRef] [PubMed]
- Isacco, L.; Duch, P.; Boisseau, N. Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sports Med. 2012, 42, 327–342. Available online: https://pubmed.ncbi.nlm.nih.gov/22380007 (accessed on 15 April 2024). [CrossRef]
- Gould, L.M.; Gordon, A.N.; Cabre, H.E.; Hoyle, A.T.; Ryan, E.D.; Hackney, A.C.; Smith-Ryan, A.E. Metabolic effects of menopause: A cross-sectional characterization of body composition and exercise metabolism. Menopause 2022, 29, 377–389. Available online: https://pubmed.ncbi.nlm.nih.gov/35231009 (accessed on 15 April 2024). [CrossRef]
- Wasserman, K.; Whipp, B.J.; Koyl, S.N.; Beaver, W.L. Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 1973, 35, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Bellar, D.; Judge, L.W. Modeling and relationship of respiratory exchange ratio to athletic performance. J. Strength. Cond. Res. 2012, 26, 2484–2489. [Google Scholar] [CrossRef]
- Korkmaz Eryılmaz, S.; Polat, M. Correlation of maximal respiratory exchange ratio with anaerobic power and maximal oxygen uptake in anaerobic trained athletes. Pedagog. Phys. Cult. Sports 2021, 25, 261–266. [Google Scholar] [CrossRef]
- Dombovy, M.L.; Bonekat, H.W.; Williams, T.J.; Staats, B.A. Exercise performance and ventilatory response in the menstrual cycle. Med. Sci. Sports Exerc. 1987, 19, 111–117. [Google Scholar] [CrossRef]
- Irwin, R.W.; Yao, J.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D.; Nilsen, J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 2008, 149, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Yoh, K.; Ikeda, K.; Horie, K.; Inoue, S. Roles of Estrogen, Estrogen Receptors, and Estrogen-Related Receptors in Skeletal Muscle: Regulation of Mitochondrial Function. Int. J. Mol. Sci. 2023, 24, 1853. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; Koltun, K.J.; Williett, H.N. Menstrual cycle hormonal changes: Estradiol-β-17 and progesterone interactions on exercise fat oxidation. Endocrine 2022, 76, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C. Menstrual Cycle Hormonal Changes and Energy Substrate Metabolism in Exercising Women: A Perspective. Int. J. Environ. Res. Public Health 2021, 18, 10024. [Google Scholar] [CrossRef] [PubMed]
- Ribas, V.; Drew, B.G.; Zhou, Z.; Phun, J.; Kalajian, N.Y.; Soleymani, T.; Daraei, P.; Widjaja, K.; Wanagat, J.; de Aguiar Vallim, T.Q.; et al. Skeletal muscle action of estrogen receptor a is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 2016, 334, 334ra54. [Google Scholar] [CrossRef]
- Dakin, R.S.; Walker, B.R.; Seckl, J.R.; Hadoke, P.W.F.; Drake, A.J. Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism. Int. J. Obes. 2015, 39, 1539–1547. Available online: https://pubmed.ncbi.nlm.nih.gov/26032810/ (accessed on 15 April 2024). [CrossRef]
- Litwak, S.A.; Wilson, J.L.; Chen, W.; Garcia-Rudaz, C.; Khaksari, M.; Cowley, M.A.; Enriori, P.J. Estradiol prevents fat accumulation and overcomes leptin resistance in female high-fat diet mice. Endocrinology 2014, 155, 4447–4460. Available online: https://pubmed.ncbi.nlm.nih.gov/25147981 (accessed on 15 April 2024). [CrossRef]
- Kendrick, Z.V.; Steffen, C.A.; Rumsey, W.L.; Goldberg, D.I. Effect of estradiol on tissue glycogen metabolism in exercised oophorectomized rats. J. Appl. Physiol. 1987, 63, 492–496. Available online: https://pubmed.ncbi.nlm.nih.gov/3654408 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faulds, M.H.; Zhao, C.; Dahlman-Wright, K.; Gustafsson, J.Å. The diversity of sex steroid action: Regulation of metabolism by estrogen signaling. J. Endocrinol. 2012, 212, 3–12. Available online: https://joe.bioscientifica.com/view/journals/joe/212/1/3.xml (accessed on 15 April 2024). [CrossRef] [PubMed]
- D’Souza, A.C.; Wageh, M.; Williams, J.S.; Colenso-Semple, L.M.; McCarthy, D.G.; McKay, A.K.; Elliott-Sale, K.J.; Burke, L.M.; Parise, G.; MacDonald, M.J.; et al. Menstrual cycle hormones and oral contraceptives: A multimethod systems physiology-based review of their impact on key aspects of female physiology. J. Appl. Physiol. (1985) 2023, 135, 1284–1299. [Google Scholar] [CrossRef] [PubMed]
- Maher, A.C.; Akhtar, M.; Tarnopolsky, M.A. Men supplemented with 17β-estradiol have increased β-oxidation capacity in skeletal muscle. Physiol. Genom. 2010, 42, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Hamadeh, M.J.; Devries, M.C.; Tarnopolsky, M.A. Estrogen Supplementation Reduces Whole Body Leucine and Carbohydrate Oxidation and Increases Lipid Oxidation in Men during Endurance Exercise. J. Clin. Endocrinol. Metab. 2005, 90, 3592–3599. [Google Scholar] [CrossRef] [PubMed]
- Ives, S.J.; Blegen, M.; Redmond, J. Salivary estradiol, interleukin-6 production, and the relationship to substrate metabolism during exercise in females. Artic. Eur. J. Appl. Physiol. 2011, 111, 1649–1658. Available online: https://www.researchgate.net/publication/4972667823 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Hackney, A.C.; McCracken-Compton, M.A.; Ainsworth, B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int. J. Sport. Nutr. 1994, 4, 299–308. Available online: https://pubmed.ncbi.nlm.nih.gov/7987364 (accessed on 15 April 2024). [CrossRef]
- Choe, J.K.; Khan-Dawood, F.S.; Yusoff-Dawood, M. Progesterone and estradiol in the saliva and plasma during the menstrual cycle. Am. J. Obs. Gynecol. 1983, 147, 557–562. [Google Scholar] [CrossRef]
- Ashley, C.D.; Bishop, P.; Smith, J.F.; Reneau, P.; Perkins, C. Metabolic Responses to Exercise Menstrual Phase Effects on Fat and Carbohydrate Oxidation During Prolonged Exercise in Active Females. Menstrual Eff Metab Act Females JEPonline. J. Exerc. Physiol. Off. J. Am. Soc. Exerc. Physiol. 2000, 3, 35. [Google Scholar]
- Beidleman, B.A.; Rock, P.B.; Muza, S.R.; Fulco, C.S.; Gibson, L.L.; Kamimori, G.H.; Cymerman, A. Substrate oxidation is altered in women during exercise upon acute altitude exposure. Med. Sci. Sports Exerc. 2002, 34, 430–437. Available online: https://europepmc.org/article/med/1188080636 (accessed on 15 April 2024). [CrossRef]
- Bemben, D.; Boileau, R.A.; Bahr, J.M.; Nelson, R.A.; Misner, J.E. Effects of oral contraceptives on hormonal and metabolic responses during exercise. Med. Sci. Sports Exerc. 1992, 24, 434–441. Available online: https://europepmc.org/article/med/156073937 (accessed on 15 April 2024). [CrossRef]
- Braun, B.; Mawson, J.T.; Muza, S.R.; Dominick, S.B.; Brooks, G.A.; Horning, M.A.; Rock, P.B.; Moore, L.G.; Mazzeo, R.S.; Ezeji-Okoye, S.C.; et al. Women at altitude: Carbohydrate utilization during exercise at 4300 m. J. Appl. Physiol. 2000, 88, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Casazza, G.A.; Suh, S.H.; Miller, B.F.; Navazio, F.M.; Brooks, G.A. Effects of oral contraceptives on peak exercise capacity. J. Appl. Physiol. 2002, 93, 1698–1702. Available online: https://pubmed.ncbi.nlm.nih.gov/12381756 (accessed on 15 April 2024). [CrossRef] [PubMed]
- De Souza, M.J.; Maguire, M.S.; Rubin, K.R.; Maresh, C.M. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med. Sci. Sports Exerc. 1990, 22, 575–580. Available online: https://pubmed.ncbi.nlm.nih.gov/2233194 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Dean, T.M.; Perreault, L.; Mazzeo, R.S.; Horton, T.J. No effect of menstrual cycle phase on lactate threshold. J. Appl. Physiol. 2003, 95, 2537–2543. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C.; Hamadeh, M.J.; Phillips, S.M.; Tarnopolsky, M.A. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1120–R1128. Available online: https://pubmed.ncbi.nlm.nih.gov/16690766 (accessed on 15 April 2024). [CrossRef]
- Galliven, E.A.; Singh, A.; Michelson, D.; Bina, S.; Gold, P.W.; Deuster, P.A. Hormonal and metabolic responses to exercise across time of day and menstrual cycle phase. J. Appl. Physiol. 1997, 83, 1822–1831. Available online: https://pubmed.ncbi.nlm.nih.gov/9390951 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Horton, T.J.; Miller, E.K.; Glueck, D.; Tench, K. No effect of menstrual cycle phase on glucose kinetics and fuel oxidation during moderate-intensity exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 282, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Horton, T.J.; Grunwald, G.K.; Lavely, J.; Donahoo, W.T. Glucose kinetics differ between women and men, during and after exercise. J. Appl. Physiol. 2006, 100, 1883–1894. [Google Scholar] [CrossRef]
- Isacco, L.; Thivel, D.; Pereira, B.; Duclos, M.; Boisseau, N. Maximal fat oxidation, but not aerobic capacity, is affected by oral contraceptive use in young healthy women. Eur. J. Appl. Physiol. 2015, 115, 937–945. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Boileau, R.A.; Bahr, J.A.; Misner, J.E.; Nelson, R.A. Substrate oxidation and GH responses to exercise are independent of menstrual phase and status. Med. Sci. Sport. Exerc. 1992, 24, 873–880. [Google Scholar] [CrossRef]
- Kraemer, R.R.; Francois, M.; Webb, N.D.; Worley, J.R.; Rogers, S.N.; Norman, R.L.; Shah, U.; Daniel Castracane, V. No effect of menstrual cycle phase on glucose and glucoregulatory endocrine responses to prolonged exercise. Eur. J. Appl. Physiol. 2013, 113, 2401–2408. [Google Scholar] [CrossRef]
- Lebrun, C.M.; McKenzie, D.C.; Prior, J.C.; Taunton, J.E. Effects of menstrual cycle phase on athletic performance. Med. Sci. Sports Exerc. 1995, 27, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, C.M.; Petit, M.A.; McKenzie, D.C.; Taunton, J.E.; Prior, J.C. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: A randomised controlled trial. Br. J. Sports Med. 2003, 37, 315–320. Available online: https://pubmed.ncbi.nlm.nih.gov/12893716 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Oosthuyse, T.; Bosch, A.N.; Jackson, S. Cycling time trial performance during different phases of the menstrual cycle. Eur. J. Appl. Physiol. 2005, 94, 268–276. Available online: https://pubmed.ncbi.nlm.nih.gov/15778867 (accessed on 15 April 2024). [CrossRef]
- Rael, B.; Alfaro-Magallanes, V.M.; Romero-Parra, N.; Castro, E.A.; Cupeiro, R.; Janse de Jonge, X.A.; Wehrwein, E.A.; Peinado, A.B. Menstrual Cycle Phases Influence on Cardiorespiratory Response to Exercise in Endurance-Trained Females. Int. J. Environ. Res. Public Health 2021, 18, 860. Available online: https://pubmed.ncbi.nlm.nih.gov/33498274 (accessed on 15 April 2024). [CrossRef]
- Rael, B.; Barba-Moreno, L.; Romero-Parra, N.; Alfaro-Magallanes, V.M.; Castro, E.A.; Cupeiro, R.; Peinado, A.B. Cardiorespiratory response to exercise in endurance-trained premenopausal and postmenopausal females. Eur. J. Appl. Physiol. 2021, 121, 903–913. [Google Scholar] [CrossRef]
- Redman, L.M.; Scroop, G.C.; Norman, R.J. Impact of menstrual cycle phase on the exercise status of young, sedentary women. Eur. J. Appl. Physiol. 2003, 90, 505–513. [Google Scholar] [CrossRef]
- Smekal, G.; Von Duvillard, S.P.; Frigo, P.; Tegelhofer, T.; Pokan, R.; Hofmann, P.; Tschan, H.; Baron, R.; Wonisch, M.; Renezeder, K.; et al. Menstrual cycle: No effect on exercise cardiorespiratory variables or blood lactate concentration. Med. Sci. Sports Exerc. 2007, 39, 1098–1106. Available online: https://pubmed.ncbi.nlm.nih.gov/17596777 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Suh, S.H.; Casazza, G.A.; Horning, M.A.; Miller, B.F.; Brooks, G.A. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J. Appl. Physiol. 2003, 94, 285–294. [Google Scholar] [CrossRef]
- Vaiksaar, S.; Jürimäe, J.; Mäestu, J.; Purge, P.; Kalytka, S.; Shakhlina, L.; Jürimäe, T. No effect of menstrual cycle phase on fuel oxidation during exercise in rowers. Eur. J. Appl. Physiol. 2011, 111, 1027–1034. Available online: https://pubmed.ncbi.nlm.nih.gov/21088972 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Vaiksaar, S.; Jürimäe, J.; Mäestu, J.; Purge, P.; Kalytka, S.; Shakhlina, L.; Jürimäe, T. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J. Strength. Cond. Res. 2011, 25, 1571–1578. Available online: https://pubmed.ncbi.nlm.nih.gov/21399539 (accessed on 15 April 2024). [CrossRef]
- Bauman, J.E. Basal Body Temperature: Unreliable Method of Ovulation Detection. Fertil. Steril. 1981, 36, 729–733.2. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, M.A.; Thomson, R.L.; Moran, L.J.; Wycherley, T.P. The Impact of Menstrual Cycle Phase on Athletes’ Performance: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 1667. [Google Scholar] [CrossRef]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813. [Google Scholar] [CrossRef]
- Zderic, T.W.; Coggan, A.R.; Ruby, B.C. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J. Appl. Physiol. 2001, 90, 447–453. [Google Scholar] [CrossRef]
- Solberg, G.; Robstad, B.; Skjønsberg, O.H.; Borchsenius, F. Respiratory gas exchange indices for estimating the anaerobic threshold. J. Sports Sci. Med. 2005, 4, 29–36. [Google Scholar]
- Jeukendrup, A.E.; Wallis, G.A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 2005, 26 (Suppl. S1), S28–S37. [Google Scholar] [CrossRef]
- Willett, H.N.; Koltun, K.J.; Hackney, A.C. Influence of Menstrual Cycle Estradiol-β-17 Fluctuations on Energy Substrate Utilization-Oxidation during Aerobic, Endurance Exercise. Int. J. Environ. Res. Public Health 2021, 18, 7209. [Google Scholar] [CrossRef]
- Hawley, J.A.; Leckey, J.J. Carbohydrate Dependence During Prolonged, Intense Endurance Exercise. Sports Med. 2015, 45 (Suppl. S1), S5–S12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frandsen, J.; Pistoljevic, N.; Quesada, J.P.; Amaro-Gahete, F.J.; Ritz, C.; Larsen, S.; Dela, F.; Helge, J.W. Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test. J. Appl. Physiol. 2020, 128, 681–687. [Google Scholar] [CrossRef]
- Rømer, T.; Thunestvedt Hansen, M.; Frandsen, J.; Larsen, S.; Dela, F.; Wulff Helge, J. The relationship between peak fat oxidation and prolonged double-poling endurance exercise performance. Scand. J. Med. Sci. Sports 2020, 30, 2044–2056. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that affect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hale, G.E.; Burger, H.G. Hormonal changes and biomarkers in late reproductive age, menopausal transition and menopause. Best. Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Wisén, A.G.; Wohlfart, B. A refined technique for determining the respiratory gas exchange responses to anaerobic metabolism during progressive exercise—Repeatability in a group of healthy men. Clin. Physiol. Funct. Imaging 2004, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R502–R516. [Google Scholar] [CrossRef] [PubMed]
- Stringer, W.; Casaburi, R.; Wasserman, K. Acid-base regulation during exercise and recovery in humans. J. Appl. Physiol. (1985) 1992, 72, 954–961. [Google Scholar] [CrossRef]
- Takano, N.; Kaneda, T. Renal contribution to acid-base regulation during the menstrual cycle. Am. J. Physiol. 1983, 244, F320–F324. [Google Scholar] [CrossRef]
- Molinari, C.A.; Edwards, J.; Billat, V. Maximal Time Spent at VO2max from Sprint to the Marathon. Int. J. Environ. Res. Public Health 2020, 17, 9250. [Google Scholar] [CrossRef]
- van Erp, T.; Sanders, D.; de Koning, J.J. Training Characteristics of Male and Female Professional Road Cyclists: A 4-Year Retrospective Analysis. Int. J. Sports Physiol. Perform. 2019, 15, 534–540. [Google Scholar] [CrossRef]
- Flockhart, M.; Nilsson, L.C.; Tais, S.; Ekblom, B.; Apró, W.; Larsen, F.J. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021, 33, 957–970.e6. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic high-intensity intervals improve V˙ O2max more than moderate training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef]
- Olenick, A.A.; Pearson, R.C.; Jenkins, N.T. Impact of aerobic fitness status, menstrual cycle phase, and oral contraceptive use on exercise substrate oxidation and metabolic flexibility in females. Appl. Physiol. Nutr. Metab. 2023, 49, 93–104.33. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Minahan, C.L.; de Jonge, X.A.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sport. Med. 2021, 51, 843–861. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev 2021, 372, n71. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. Available online: https://journals.lww.com/anesthesia-analgesia/fulltext/2018/05000/correlation_coefficients__appropriate_use_and.50.aspx (accessed on 15 April 2024). [CrossRef]
- Verdonk, S.J.E.; Vesper, H.W.; Martens, F.; Sluss, P.M.; Hillebrand, J.J.; Heijboer, A.C. Estradiol reference intervals in women during the menstrual cycle, postmenopausal women and men using an LC-MS/MS method. Clin. Chim. Acta 2019, 495, 198–204. Available online: https://pubmed.ncbi.nlm.nih.gov/30981845 (accessed on 15 April 2024). [CrossRef]
Author | Eligible Sample (n) | Phase and Number (n) | Menstrual Cycle Verification | Exercise Type | Population | Standardised Mean Difference in RER [CI] |
---|---|---|---|---|---|---|
Ashley et al., 2000 [29] | 10 | Follicular (n = 10) Luteal (n = 10) |
Early to mid-follicular: 4–7 days after the onset of menses Luteal: 7–12 days after ovulation | 60 min at 70% V˙O2max (treadmill) | Physically active regularly and naturally menstruating women (23 ± 5 yrs) | 0.64 [−0.26–1.54] |
Beidleman et al., 2002 [30] | 8 | Follicular (n = 8) Luteal (n = 8) |
Midluteal: 6–9 days after ovulation. | 70% V˙O2max until exhaustion (no average time specified) (cycle ergometer) | Healthy physically active naturally and regularly menstruating women (33 ± 3 yrs) | −0.47 [−1.47–0.52] |
Bemben et al., 1992 [31] | 8 | Luteal (n = 8) |
| 50% of V˙O2max for 90 min (cycle ergometer) | Healthy moderately active naturally menstruating or oral contraceptive users (26 ± 1 yrs) | No comparator |
Braun et al., 2000 [32] | 15 | Follicular (n = 15) Luteal (n = 15) |
Follicular: day 1 Luteal: day after ovulation | 50% of V˙O2max (cycle ergometer) | Healthy active women with regular menstrual cycles (22 ± 1 yrs) | 0.00 [−0.72–0.72] |
Casazza et al., 2002 [33] | 8 | Early follicular (n = 8) Midluteal (n = 8) |
Early follicular: 4–8 days after onset of menses Midluteal: 17–25 after ovulation. | Incremental test to exhaustion (cycle ergometer) | Healthy physically active naturally and regularly menstruating women (26 ± 2 yrs) | −0.66 [ −1.67–0.35] |
De Souza et al., 1990 [34] | 8 | Follicular (n = 8) Luteal (n = 8) |
Follicular: days 2–4 after onset of menses Luteal: 2–8 days after ovulation. | V˙O2max and 80% for 40 min (treadmill) | Healthy naturally regularly menstruating trained women (running over 35 miles per week) (29 ± 4 yrs) | 0.33 [ 0.66–1.32] 0.57 [−0.43–1.57] |
Dean et al., 2003 [35] | 10 | Early-follicular (n = 10) Mid-follicular (n = 10) Mid-luteal (n = 10) |
Early follicular: days 2 to 6 after onset of menses Mid-follicular: day 7 ± 11 after onset of menses. Mid-luteal: day 19 to 23 following onset of menses | Incremental test to exhaustion (cycle ergometer) | Naturally menstruating active women (30–60 min aerobic exercise 3–6 days a week) (28 ± 5 yrs) | 0.95 [ 0.09–1.98] |
Devries et al., 2006 [36] | 7 | Follicular (n = 7) Luteal (n = 7) |
Mid-follicular: 8–10 days after the onset of menses Luteal: day 19–21 after the onset of menses | 90-min at 65% V˙O2max (cycle ergometer) | Healthy recreationally active naturally menstruating or oral contraceptive users (22 ± 2 yrs) | 0.06 [ −0.70–0.45] |
Galliven et al., 1997 [37] | 8 | Follicular (n = 8) Midluteal (n = 8) |
Follicular: 3–9 days after onset of menses Midluteal: 18–26 days after onset of menses | 70% V˙O2max for 15 min (treadmill) | Healthy, low to moderate fitness, and regularly menstruating women (29 ± 1 yrs) | 0.48 [ −0.46–1.41] |
Horton et al., 2002 [38] | 11 | Early-follicular (n = 10) Mid-follicular (n = 11) Mid-luteal (n = 10) |
Early follicular: days 1 to 4 after onset of menses. Mid-Follicular: days 8–11 after onset of menses Luteal days: 19–23 after onset of menses | 90 min at 50% V˙O2max (cycle ergometer) | Naturally regularly menstruating active (over 90 min per week of aerobic exercise) women (29 ± 5 yrs) | 0.96 [0.03–1.88] |
Horton et al., 2006 [39] | 10 | Luteal (n = 10) |
| 50% V˙O2max for 90 min (cycle ergometer) | Healthy physically active and regularly menstruating women (34 ± 6 yrs) | No comparator |
Isacco et al., 2015 [40] | 10 | Midluteal (n = 10) |
| Incremental test to exhaustion (cycle ergometer) | Healthy physically active regularly menstruating women (23 ± 4 yrs) | No comparator |
Kanaley et al., 1992 [41] | 13 | Follicular (n = 7) Late follicular (n = 7) Mid-luteal(n = 7) |
Early follicular: days 3–5 after onset of menses Late follicular: days 14–16 after onset of menses Mid-luteal phases: days 22–25 after onset of menses | 90-min at 60% V˙O2max (cycle ergometer) | Naturally menstruating athletes (running over 35 miles per week) (25 ± 1 yrs) | No standard deviation |
Kraemer et al., 2013 [42] | 5 | Follicular (n = 5) Luteal (n = 5) |
Early follicular: days 3–7 after onset of menses Mid-luteal: days 20–22 following onset of menses | 90-min at 60% V˙O2max (cycle ergometer) | Healthy naturally menstruating women able to complete 90 min of aerobic exercise (24 ± 5 yrs) | No standard deviation |
Lebrun et al., 1995 [43] | 16 | Follicular (n = 16) Luteal (n = 16) |
Early follicular: days 3–8 after onset of menses Mid-luteal: days 4–9 after ovulation | Incremental test to exhaustion (treadmill) | Healthy naturally regularly menstruating trained women (V˙O2max over 50ml/kg/min) (28 ± 4 yrs) | 1.95 [1.11–2.79] |
Lebrun et al., 2003 [44] | 14 | Follicular (n = 7) Luteal (n = 7) Follicular (n = 7) Luteal (n = 7) |
Early follicular: days 3–8 after onset of menses Mid-luteal: days 4–9 after ovulation. | Incremental test to exhaustion (treadmill) | Healthy trained women (V˙O2 max over 50ml/kg/min) naturally regularly menstruating followed by oral contraceptive or placebo (18–40 yrs) | No standard deviation |
Oosthuyse et al., 2005 [45] | 13 | Untrained: Early follicular (n = 8) Late follicular(n = 7) Mid-luteal(n = 7) Trained: Early follicular (n = 5) Late follicular (n = 4) Mid-luteal (n = 4) |
Early follicular: 2–7 days after the onset of menses Late follicular: 2 days before a positive LH result to the day of a positive LH reading Mid-luteal: 4–10 days following ovulation. | Time trials of ~41 min at approximately 70–75% V˙O2max (cycle ergometer) | Healthy naturally & regularly menstruating untrained & trained (5.4 ± 2.3 h aerobic per week) (Untrained: 23 ± 3 yrs Trained: 24 ± 3 yrs) | 00.32 [−0.71–1.33] 0.30 [ −1.03–1.62] |
Rael et al., 2021a [46] | 21 | Follicular (n = 21) Luteal (n = 21) |
Follicular: 2–5 days after onset of menses Luteal: within 3 days of ovulation. | 8 bouts at 3 min at 85% of V˙O2max (treadmill) | Healthy naturally regularly menstruating women with 3–12 h of endurance training a week (31 ± 7 yrs) | −0.18 [−0.78–0.43] |
Rael et al., 2021b [47] | 47 | Early follicular (n = 47) |
Follicular: 2–5 days after onset of menses | Incremental test to exhaustion (treadmill) | Healthy physically active and regularly menstruating women (33 ± 5 yrs) | No comparator |
Redman et al., 2003 [48] | 14 | Follicular (n = 14) Luteal (n = 14) |
Early to mid-follicular: 5–7 days after onset of menses Mid-luteal: days 21–23 | Incremental test to exhaustion (cycle ergometer) & 25% and 75% of V˙O2max for 20 min (cycle ergometer) | Healthy naturally and regularly menstruating sedentary women (21 ± 4 yrs) | No standard deviation |
Smekal et al., 2007 [49] | 19 | Follicular (n = 19) Midluteal (n = 19) |
Midluteal: 23–27 days after onset of menses | Incremental test to exhaustion (cycle ergometer) | Healthy physically active naturally and regularly menstruating women (27 ± 2 yrs) | −0.03 [−0.66–0.61] |
Suh et al., 2003 [50] | 12 | Follicular (n = 7) Luteal (n = 5) |
Follicular: Days 3–9 following onset of menses Luteal: 18–24 days following onset of menses. | 45 and 65% V˙O2max for 60 min (cycle ergometer) | Healthy naturally regularly menstruating moderately active women (2–6 h exercise per week) (FP: 25 ± 1 yrs LP: 26 ± 2 yrs) | 0.00 [−1.15–1.15] 0.00 [−1.15–1.15] |
Vaiksaar et al., 2010 [51] | 11 | Follicular (n = 11) Luteal (n = 11) |
Follicular: 7–11 days after onset of menses Midluteal: 18–22 days after onset of menses | 70% V˙O2max for 60 min (rowing ergometer) | Healthy physically active and regularly menstruating women (18 ± 2 yrs) | −0.70 [−1.56–0.16] |
Vaiksaar et al., 2011 [52] | 15 | Competitive follicular (n = 8) Competitive luteal (n = 8) Recreational follicular (n = 7) Recreational luteal (n = 7) |
Follicular: 5–11 days after onset of menses Midluteal: 18–22 days after onset of menses | Incremental test to exhaustion (rowing ergometer) | Healthy recreational or competitive and regularly menstruating women (Competitive: 19 ± 2 yrs Recreational: (18 ± 1 yrs) | −0.27 [−1.25–0.71] 0.08 [ −0.97–1.13] |
Intensity (%V˙O2max) | Standardised Mean Difference | Confidence Intervals | I2 |
---|---|---|---|
>59% | −0.31 | −0.94–0.33 | 32.12% |
60–74% | −0.05 | −0.48–0.39 | 27.69% |
75–99% | 0.01 | −0.48–0.49 | 0% |
100% | 0.60 * | 0.00–1.19 | 65.65% ** |
Menstrual Cycle Phase | Average Oestradiol (pmol/L) | Range (pmol/L) | n |
---|---|---|---|
Early to mid-follicular | 154.4 ± 60.4 | 86–312 | 327 |
Late follicular | 728.1 ± 494.9 | 662–1009 | 39 |
Luteal | 432.4 ± 265.2 | 203–823 | 284 |
(a) | Follicular (n = 327) | Luteal (n = 284) | |||||||
Intensity (%V˙O2 max) | RER | Oestradiol | n | RER | Oestradiol | n | p | Difference | |
Constant load | Low (25–59%) | 0.90 ± 0.01 | 149.12 ± 42.91 | 57 | 0.87 ± 0.01 | 435.68 ± 237.75 | 63 | <0.001 | 0.03 |
Moderate (60–74%) | 0.89 ± 0.04 | 150.76 ± 38.78 | 72 | 0.89 ± 0.03 | 412.97 ± 267.66 | 69 | 0.99 | 0.00 | |
High (75–99%) | 0.97 ± 0.04 | 129.06 ± 41.91 | 48 | 0.93 ± 0.06 | 483.34 ± 219.47 | 47 | <0.001 | 0.04 | |
Incremental | Max (100%) | 1.18 ± 0.19 | 166.31 ± 76.72 | 15 | 1.16 ± 0.06 | 419.75 ± 119.63 | 105 | 0.22 | 0.02 |
(b) | Low (n = 344) | High (n = 306) | |||||||
Intensity (%V˙O2 max) | RER | Oestradiol | n | RER | Oestradiol | n | p | Difference | |
Constant load | Low (25–59%) | 0.90 ± 0.01 | 149.12 ± 42.91 | 57 | 0.87 ± 0.01 | 435.68 ± 237.75 | 63 | <0.001 | 0.03 |
Moderate (60–74%) | 0.89 ± 0.03 | 152.44 ± 62.29 | 89 | 0.88 ± 0.03 | 499.84 ± 284.03 | 59 | 0.23 | 0.01 | |
High (75–99%) | 0.97 ± 0.04 | 129.06 ± 41.91 | 48 | 0.94 ± 0.05 | 588.33 ± 384.08 | 79 | <0.001 | 0.03 | |
Incremental | Max (100%) | 1.18 ± 0.19 | 164.13 ± 75.30 | 15 | 1.16 ± 0.06 | 422.85 ± 129.94 | 105 | 0.30 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattley, C.A.; Ansdell, P.; Burgess, L.C.; Felton, M.; Dewhurst, S.; Neal, R.A. Influence of Oestradiol Fluctuations in the Menstrual Cycle on Respiratory Exchange Ratio at Different Exercise Intensities: A Systematic Review, Meta-Analysis and Pooled-Data Analysis. Physiologia 2024, 4, 486-505. https://doi.org/10.3390/physiologia4040033
Rattley CA, Ansdell P, Burgess LC, Felton M, Dewhurst S, Neal RA. Influence of Oestradiol Fluctuations in the Menstrual Cycle on Respiratory Exchange Ratio at Different Exercise Intensities: A Systematic Review, Meta-Analysis and Pooled-Data Analysis. Physiologia. 2024; 4(4):486-505. https://doi.org/10.3390/physiologia4040033
Chicago/Turabian StyleRattley, Catherine A., Paul Ansdell, Louise C. Burgess, Malika Felton, Susan Dewhurst, and Rebecca A. Neal. 2024. "Influence of Oestradiol Fluctuations in the Menstrual Cycle on Respiratory Exchange Ratio at Different Exercise Intensities: A Systematic Review, Meta-Analysis and Pooled-Data Analysis" Physiologia 4, no. 4: 486-505. https://doi.org/10.3390/physiologia4040033
APA StyleRattley, C. A., Ansdell, P., Burgess, L. C., Felton, M., Dewhurst, S., & Neal, R. A. (2024). Influence of Oestradiol Fluctuations in the Menstrual Cycle on Respiratory Exchange Ratio at Different Exercise Intensities: A Systematic Review, Meta-Analysis and Pooled-Data Analysis. Physiologia, 4(4), 486-505. https://doi.org/10.3390/physiologia4040033