Plyometric and Resistance Training: A Dual Approach to Enhance Physical Fitness in 12–15-Year-Old Girls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Study Procedures
3. Measures
3.1. The 20 m Sprint Test
3.2. Squat Jump Test
3.3. Vertical Jump
3.4. Handgrip Strength
3.5. Sit and Reach Test
4. Training Protocol
4.1. Plyometric Training
4.2. Static Stretching
4.3. Resistance Training
5. Statistical Analysis
6. Results
7. Discussion
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliver, J.L.; Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R.; Lloyd, R.S. The Effects of Strength, Plyometric and Combined Training on Strength, Power and Speed Characteristics in High-Level, Highly Trained Male Youth Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Kons, R.L.; Orssatto, L.B.R.; Ache-Dias, J.; De Pauw, K.; Meeusen, R.; Trajano, G.S.; Pupo, J.D. Effects of Plyometric Training on Physical Performance: An Umbrella Review. Sports Med. 2023, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Martín, E.B.-S.; Thapa, R.K.; Ramirez-Campillo, R. A Systematic Review with Meta-Analysis on the Effects of Plyometric-Jump Training on the Physical Fitness of Combat Sport Athletes. Sports 2023, 11, 33. [Google Scholar] [CrossRef]
- Mmari, K.; Simon, C.; Verma, R. Gender-Transformative Interventions for Young Adolescents: What Have We Learned and Where Should We Go? J. Adolesc. Health 2024, 75, S62–S80. [Google Scholar] [CrossRef]
- Deng, N.; Soh, K.G.; Abdullah, B.B.; Huang, D.; Xu, F.; Bashir, M.; Zhang, D. Effects of plyometric training on health-related physical fitness in untrained participants: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 11272. [Google Scholar] [CrossRef]
- García-Baños, C.; Rubio-Arias, J.Á.; Martínez-Aranda, L.M.; Ramos-Campo, D.J. Secondary-school-based interventions to improve muscular strength in adolescents: A systematic review. Sustainability 2020, 12, 6814. [Google Scholar] [CrossRef]
- Morrissey, J.L.; Janz, K.F.; Letuchy, E.M.; Francis, S.L.; Levy, S.M. The effect of family and friend support on physical activity through adolescence: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 103. [Google Scholar] [CrossRef]
- Best, K.; Ball, K.; Zarnowiecki, D.; Stanley, R.; Dollman, J. In search of consistent predictors of children’s physical activity. Int. J. Environ. Res. Public Health 2017, 14, 1258. [Google Scholar] [CrossRef]
- Thompson, F.; Rongen, F.; Cowburn, I.; Till, K. The Impacts of Sports Schools on Holistic Athlete Development: A Mixed Methods Systematic Review. Sports Med. 2022, 52, 1879–1917. [Google Scholar] [CrossRef]
- Meignié, A.; Duclos, M.; Carling, C.; Orhant, E.; Provost, P.; Toussaint, J.F.; Antero, J. The Effects of Menstrual Cycle Phase on Elite Athlete Performance: A Critical and Systematic Review. Front. Physiol. 2021, 12, 654585. [Google Scholar] [CrossRef]
- Deng, N.; Soh, K.G.; Zaremohzzabieh, Z.; Abdullah, B.; Salleh, K.M.; Huang, D. Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 20, 482. [Google Scholar] [CrossRef] [PubMed]
- Cappa, D.; Morales, E.; Ramos, M.; Aquistapace, E.; Nodari, L.; del Amo, J.L.L.; Robino, L. Neuromuscular response of young athletes during plyometric and sprint exercises. Sustain. Sports Sci. J. 2024, 2, 198–210. [Google Scholar] [CrossRef]
- Boraczyński, M.; Magalhães, J.; Nowakowski, J.J.; Laskin, J.J. Short-Term Effects of Lower-Extremity Heavy Resistance versus High-Impact Plyometric Training on Neuromuscular Functional Performance of Professional Soccer Players. Sports 2023, 11, 193. [Google Scholar] [CrossRef]
- Kurt, C.; Canli, U.; Erdaş, S.E.; Poli, L.; Carvutto, R.; Cataldi, S.; Fischetti, F.; Greco, G. Effectiveness of Vertical versus Horizontal Plyometric Training on Stretch-Shortening Cycle Performance Enhancement in Adolescent Soccer Players. Healthcare 2023, 11, 1615. [Google Scholar] [CrossRef]
- Santana, E.E.; de Medeiros, M.F.; de Almeida Neto, P.F.; de Lima Rocha, M.; Dantas, P.M.S.; Cabral, B.G.D.A.T. Effect of plyometric and sprint training on repeated sprint and vertical jump capacities in volleyball players aged 11 to 14 Years: A longitudinal study. Res. Soc. Dev. 2024, 13, e8313244923. [Google Scholar] [CrossRef]
- Đurić, S.; Knezevic, O.M.; Sember, V.; Cuk, I.; Nedeljkovic, A.; Pajek, M.; Mirkov, D.M. Effects of Resistance Training With Constant, Inertial, and Combined Loads on Muscle Power and Strength Output. Front. Physiol. 2021, 12, 709263. [Google Scholar] [CrossRef]
- Hammami, M.; Zmijewski, P. Comparative analysis of standard and contrast elastic resistance band training effects on physical fitness in female adolescent handball players. Biol. Sport 2024, 41, 119–127. [Google Scholar] [CrossRef]
- Voermans, N.C.; Dittrich, A.T.; Liguori, S.; Panicucci, C.; Moretti, A.; Weber, D.R.; Ward, L.M.; de Groot, I.; Guglieri, M.; Wood, C.; et al. 274th ENMC international workshop: Recommendations for optimizing bone strength in neuromuscular disorders. Hoofddorp, The Netherlands, 19–21 January 2024. Neuromuscul. Disord. 2024, 43, 1–13. [Google Scholar] [CrossRef]
- Behm, D.G.; Granacher, U.; Warneke, K.; Aragão-Santos, J.C.; Da Silva-Grigoletto, M.E.; Konrad, A. Minimalist Training: Is Lower Dosage or Intensity Resistance Training Effective to Improve Physical Fitness? A Narrative Review. Sports Med. 2024, 54, 289–302. [Google Scholar] [CrossRef]
- Myers, A.M.; Beam, N.W.; Fakhoury, J.D. Resistance training for children and adolescents. Transl. Pediatr. 2017, 6, 137. [Google Scholar] [CrossRef]
- Shoepe, T.C.; LaBrie, J.W.; Mello, G.T.; Leggett, A.G.; Almstedt, H.C. Intensity of resistance training via self-reported history is critical in properly characterizing musculoskeletal health. BMC Musculoskelet. Disord. 2020, 21, 729. [Google Scholar] [CrossRef] [PubMed]
- Kralick, A.E.; Zemel, B.S. Evolutionary Perspectives on the Developing Skeleton and Implications for Lifelong Health. Front. Endocrinol. 2020, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Fisher, Z. Wellbeing, Whole Health and Societal Transformation: Theoretical Insights and Practical Applications. Glob. Adv. Health Med. 2022, 11, 21649561211073077. [Google Scholar] [CrossRef] [PubMed]
- Collins, H.; Booth, J.N.; Duncan, A.; Fawkner, S.; Niven, A. The Effect of Resistance Training Interventions on ‘The Self’ in Youth: A Systematic Review and Meta-analysis. Sports Med. 2019, 5, 29. [Google Scholar] [CrossRef]
- Vuong, J.L.; Heil, J.; Breuer, N.; Theodoropoulos, M.; Volk, N.; Edel, A.; Ferrauti, A. Training on Sand or Parquet: Impact of Pre-Season Training on Jumping, Sprinting, and Change of Direction Performance in Professional Basketball Players. Appl. Sci. 2023, 13, 8518. [Google Scholar] [CrossRef]
- Nakatani, M.; Takai, Y.; Kanehisa, H. Resistance training leading to repetition failure increases muscle strength and size, but not power-generation capacity in judo athletes. PLoS ONE 2024, 19, e0307841. [Google Scholar] [CrossRef]
- Chen, L.; Yan, R.; Xie, L.; Zhang, Z.; Zhang, W.; Wang, H. Maturation-specific enhancements in lower extremity explosive strength following plyometric training in adolescent soccer players: A systematic review and meta-analysis. Heliyon 2024, 10, e33063. [Google Scholar] [CrossRef]
- Fischetti, F.; Cataldi, S.; Greco, G. A combined plyometric and resistance training program improves fitness performance in 12 to 14-years-old boys. Sport Sci. Health 2019, 15, 615–621. [Google Scholar] [CrossRef]
- Permata Sari, A.; Rifki, M.S.; Alnedral, A.; Welis, W.; Kurniawan, R.; Putra, R.A.; Prasetyo, T.; Car, B.; Pavlovic, R.; Makadada, F.A.; et al. The Effect of Plyometric Training (Hurddle Jumps), Body Weight Training (Lunges) and Speed on Increasing Leg Muscle Explosive Power of Futsal Players: A Factorial Experimental Design Efecto del Entrenamiento Pliométrico (Salto de Vallas), el Entrenamiento con peso Corporal (Estocada) y la Velocidad en el Aumento de la Potencia Explosiva de los Músculos de las Piernas de los Jugadores de Fútbol sala: Un Diseño Experimental Factorial. 2024. Available online: https://recyt.fecyt.es/index.php/retos/index (accessed on 31 August 2024).
- Barrio, E.D.; Thapa, R.K.; Villanueva-Flores, F.; Garcia-Atutxa, I.; Santibañez-Gutierrez, A.; Fernández-Landa, J.; Ramirez-Campillo, R. Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature. Sports 2023, 11, 150. [Google Scholar] [CrossRef]
- Cabrejas, C.; Solana-Tramunt, M.; Morales, J.; Nieto, A.; Bofill, A.; Carballeira, E.; Pierantozzi, E. The Effects of an Eight-Week Integrated Functional Core and Plyometric Training Program on Young Rhythmic Gymnasts’ Explosive Strength. Int. J. Environ. Res. Public Health 2023, 20, 1041. [Google Scholar] [CrossRef]
- Huang, H.; Huang, W.-Y.; Wu, C.-E. The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes. Appl. Sci. 2023, 13, 3605. [Google Scholar] [CrossRef]
- Mcleod, J.C.; Currier, B.S.; Lowisz, C.V.; Phillips, S.M. The influence of resistance exercise training prescription variables on skeletal muscle mass, strength, and physical function in healthy adults: An umbrella review. J. Sport Health Sci. 2024, 13, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Hornsby, W.G.; Suarez, D.G.; Duca, M.; Pierce, K.C. Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. J. Funct. Morphol. Kinesiol. 2022, 7, 102. [Google Scholar] [CrossRef]
- Allégue, H.; Turki, O.; Oranchuk, D.J.; Khemiri, A.; Schwesig, R.; Chelly, M.S. The Effect of Combined Isometric and Plyometric Training versus Contrast Strength Training on Physical Performance in Male Junior Handball Players. Appl. Sci. 2023, 13, 9069. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, H.; Li, L.; Jia, M.; Li, D. Effects of diverse resistance training modalities on performance measures in athletes: A network meta-analysis. Front. Physiol. 2024, 15, 1302610. [Google Scholar] [CrossRef]
- Granacher, U.; Behm, D.G. Relevance and Effectiveness of Combined Resistance and Balance Training to Improve Balance and Muscular Fitness in Healthy Youth and Youth Athletes: A Scoping Review. Sports Med. 2023, 53, 349–370. [Google Scholar] [CrossRef]
- Orsso, C.E.; Colin-Ramirez, E.; Field, C.J.; Madsen, K.L.; Prado, C.M.; Haqq, A.M. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients 2020, 12, 2735. [Google Scholar] [CrossRef]
- Sanchez, B.N.; Volek, J.S.; Kraemer, W.J.; Saenz, C.; Maresh, C.M. Sex Differences in Energy Metabolism: A Female-Oriented Discussion. Sports Med. 2024, 54, 2033–2057. [Google Scholar] [CrossRef]
- O’Connor, J.; Penney, D. Informal sport and curriculum futures: An investigation of the knowledge, skills and understandings for participation and the possibilities for physical education. Eur. Phys. Educ. Rev. 2021, 27, 3–26. [Google Scholar] [CrossRef]
- Junge, N.; Jørgensen, T.B.; Nybo, L. Performance Implications of Force-Vector-Specific Resistance and Plyometric Training: A Systematic Review with Meta-Analysis. Sports Med. 2023, 53, 2447–2461. [Google Scholar] [CrossRef]
- Bahamondes-Avila, C.; Gutiérrez, J.D.L.; Bustos-Medina, L.; Gatica, C.C.; Hernández-Mosqueira, C.; De La Rosa, F.J.B.; Navarrete, L.A.S. Effects of strength training in Smith press with partial blood flow restriction on jump performance. J. Phys. Educ. Sport 2024, 24, 1048–1058. [Google Scholar] [CrossRef]
- Duffey, K.; Barbosa, A.; Whiting, S.; Mendes, R.; Yordi Aguirre, I.; Tcymbal, A.; Abu-Omar, K.; Gelius, P.; Breda, J. Barriers and Facilitators of Physical Activity Participation in Adolescent Girls: A Systematic Review of Systematic Reviews. Front. Public Health 2021, 9, 743935. [Google Scholar] [CrossRef] [PubMed]
- Kodete, C.S.; Thuraka, B.; Pasupuleti, V.; Malisetty, S. Hormonal Influences on Skeletal Muscle Function in Women across Life Stages: A Systematic Review. Muscles 2024, 3, 271–286. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Jopek, M.; Mroczek, D.; Matusiński, A.; Zając, A. Sprint performance following plyometric conditioning activity in elite sprinters. Balt. J. Health Phys. Act. 2024, 16, 7. [Google Scholar] [CrossRef]
- Gjinovci, B.; Idrizovic, K.; Uljevic, O.; Sekulic, D. Training Improves Sprinting, Jumping and Throwing Capacities of High Level Female Volleyball Players Better Than Skill-Based Conditioning. J. Sports Sci. Med. 2017, 16, 527. Available online: http://www.jssm.org (accessed on 31 August 2024).
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of Plyometric Training on Physical Fitness in Team Sport Athletes: A Systematic Review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Huang, Z.; Yang, Q.; Gao, C.; Ji, H.; Sun, J.; Li, D. Meta-Analysis of the Effects of Plyometric Training on Lower Limb Explosive Strength in Adolescent Athletes. Int. J. Environ. Res. Public Health 2023, 20, 1849. [Google Scholar] [CrossRef]
- Kryeziu, A.R.; Iseni, A.; Teodor, D.F.; Croitoru, H.; Badau, D. Effect of 12 Weeks of the Plyometric Training Program Model on Speed and Explosive Strength Abilities in Adolescents. Appl. Sci. 2023, 13, 2776. [Google Scholar] [CrossRef]
- Wang, Z. The Influence of Physical Education Courses in Achieving Talent Cultivation. J. Educ. Educ. Res. 2024, 7, 299–307. [Google Scholar] [CrossRef]
- Moran, J.; Liew, B.; Ramirez-Campillo, R.; Granacher, U.; Negra, Y.; Chaabene, H. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: A meta-analytical comparison. J. Sport Health Sci. 2023, 12, 236–245. [Google Scholar] [CrossRef]
- Makaruk, H.; Starzak, M.; Suchecki, B.; Czaplicki, M.; Stojiljković, N. Effects of Assisted and Resisted Plyometric Training Programs on Vertical Jump Performance in Adults: A Systematic Review and Meta-Analysis. J. Sports Sci. Med. 2020, 19, 347. [Google Scholar] [PubMed]
- Jlid, M.C.; Coquart, J.; Maffulli, N.; Paillard, T.; Bisciotti, G.N.; Chamari, K. Effects of in Season Multi-Directional Plyometric Training on Vertical Jump Performance, Change of Direction Speed and Dynamic Postural Control in U-21 Soccer Players. Front. Physiol. 2020, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, D.; Maričić, S.; Maksimović, N.; Bianco, A.; Sekulić, D.; Foretić, N.; Drid, P. Effects of Additional Plyometric Training on the Jump Performance of Elite Male Handball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 2475. [Google Scholar] [CrossRef] [PubMed]
- Jlid, M.C.; Racil, G.; Coquart, J.; Paillard, T.; Bisciotti, G.N.; Chamari, K. Multidirectional Plyometric Training: Very Efficient Way to Improve Vertical Jump Performance, Change of Direction Performance and Dynamic Postural Control in Young Soccer Players. Front. Physiol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Plyometric Training in Volleyball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef]
- Nakamura, M.; Ikezu, H.; Sato, S.; Yahata, K.; Kiyono, R.; Yoshida, R.; Takeuchi, K.; Nunes, J.P. Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men. Int. J. Environ. Res. Public Health 2021, 18, 3770. [Google Scholar] [CrossRef]
- Skopal, L.K.; Drinkwater, E.J.; Behm, D.G. Application of mobility training methods in sporting populations: A systematic review of performance adaptations. J. Sports Sci. 2024, 42, 46–60. [Google Scholar] [CrossRef]
- Bouguezzi, R.; Sammoud, S.; Markov, A.; Negra, Y.; Chaabene, H. Why Flexibility Deserves to Be Further Considered as a Standard Component of Physical Fitness: A Narrative Review of Existing Insights from Static Stretching Study Interventions. Youth 2023, 3, 146–156. [Google Scholar] [CrossRef]
Plyometrics (20 min, 2 Days Week−1) | |||||
---|---|---|---|---|---|
Weeks | Exercise | Sets × Repetitions | Distance/Height/Intensity | Rest Between Sets | Details/Focus |
1–2 | Squat Jumps | 3 × 8–10 reps | Bodyweight | 60 s | Emphasize maximal height and safe landing technique |
1–2 | Lateral Bounds | 3 × 8–10 reps (each side) | 1 m | 60 s | Focus on balance and lateral movement, controlled landings |
3–4 | Box Jumps | 4 × 8 reps | 20–25 cm box | 60 s | Gradually increase box height, maintain proper form |
3–4 | Depth Jumps | 3 × 6 reps | 20–25 cm drop height | 60 s | Minimize ground contact time, ensure quick rebound |
5–6 | Split Squat Jumps | 4 × 8–10 reps (total) | Bodyweight | 90 s | Maintain control, focus on explosive lift and landing |
5–6 | Lateral Bounds | 4 × 10 reps (each side) | 1.5 m | 90 s | Increase distance, focus on power and stability |
7–8 | Depth Jumps | 4 × 6 reps | 30 cm drop height | 90 s | Emphasize quick transition and explosive jump |
7–8 | Lateral Bounds with Hold | 4 × 8–10 reps (each side) | 1.5 m | 90 s | Hold landing for 2 s to enhance control and balance |
Characteristic | CT Group (n = 24) | RT Group (n = 23) | p-Value |
---|---|---|---|
Age (years) | 13.5 ± 0.9 | 13.6 ± 0.8 | 0.72 |
Height (cm) | 156.4 ± 7.2 | 157.1 ± 6.8 | 0.68 |
Body Mass (kg) | 50.8 ± 8.3 | 51.2 ± 7.9 | 0.84 |
Body Mass Index (BMI) | 20.8 ± 2.5 | 20.7 ± 2.6 | 0.91 |
Fat Mass (%) | 23.4 ± 4.8 | 23.1 ± 5.0 | 0.81 |
Lean Mass (kg) | 38.7 ± 5.1 | 39.0 ± 4.9 | 0.77 |
Fitness Parameter | Timepoint | CT Group (CT, n = 24) | RT Group (RT, n = 23) | Δ% CT | Δ% RT | p-Value |
---|---|---|---|---|---|---|
20 m Sprint Time (s) | Baseline | 3.85 ± 0.26 | 3.88 ± 0.28 | Significant time effect (p < 0.001) | ||
Post | 3.60 ± 0.25 a | 3.72 ± 0.28 | −6.5% | −4.1% | No significant group difference (p > 0.05; p = 0.15) | |
Squat Jump | ||||||
| Baseline | 27.0 ± 3.3 | 26.8 ± 3.5 | Significant time and interaction effects (p < 0.05) | ||
Post | 28.5 ± 3.2 ab | 27.1 ± 3.4 | +5.6% | +1.1% | No significant group difference (p > 0.05; p = 0.18) | |
| Baseline | 1800 ± 250 | 1750 ± 240 | Significant time and interaction effects (p < 0.05) | ||
Post | 1900 ± 260 a | 1800 ± 250 | +5.6% | +2.9% | No significant group difference (p > 0.05; p = 0.20) | |
| Baseline | 2.80 ± 0.15 | 2.75 ± 0.14 | Significant time effect (p < 0.01) | ||
Post | 2.90 ± 0.16 a | 2.80 ± 0.15 | +3.6% | +1.8% | No significant group difference (p > 0.05; p = 0.22) | |
| Baseline | 500 ± 35 | 495 ± 30 | Significant time effect (p < 0.01) | ||
Post | 525 ± 37 a | 510 ± 33 | +5.0% | +3.0% | No significant group difference (p > 0.05; p = 0.19) | |
Vertical Jump | ||||||
| Baseline | 33.0 ± 4.2 | 32.9 ± 4.1 | Significant time effect (p < 0.001) | ||
Post | 35.2 ± 4.1 ab | 33.7 ± 4.0 | +6.7% | +2.4% | No significant group difference (p > 0.05; p = 0.22) | |
| Baseline | 2200 ± 280 | 2150 ± 270 | Significant time effect (p < 0.001) | ||
Post | 2350 ± 290 a | 2250 ± 280 | +6.8% | +4.7% | No significant group difference (p > 0.05; p = 0.18) | |
| Baseline | 3.10 ± 0.18 | 3.08 ± 0.17 | Significant time effect (p < 0.01) | ||
Post | 3.25 ± 0.19 a | 3.15 ± 0.18 | +4.8% | +2.3% | No significant group difference (p > 0.05; p = 0.21) | |
| Baseline | 600 ± 40 | 590 ± 38 | Significant time effect (p < 0.01) | ||
Post | 630 ± 42 a | 610 ± 39 | +5.0% | +3.4% | No significant group difference (p > 0.05; p = 0.20) | |
Handgrip Strength (kg) | Baseline | 24.0 ± 3.9 | 23.8 ± 4.2 | Significant time effect (p < 0.01) | ||
Post | 25.8 ± 3.8 a | 24.9 ± 4.1 | +7.5% | +4.6% | No significant group difference (p > 0.05; p = 0.25) | |
Flexibility: Sit and Reach Test (cm) | Baseline | 24.5 ± 4.6 | 24.4 ± 4.8 | Significant time effect (p < 0.01) | ||
Post | 25.4 ± 4.5 | 24.8 ± 4.7 | +3.7% | +1.6% | No significant group difference (p > 0.05; p = 0.40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrušič, T. Plyometric and Resistance Training: A Dual Approach to Enhance Physical Fitness in 12–15-Year-Old Girls. Physiologia 2024, 4, 373-386. https://doi.org/10.3390/physiologia4040023
Petrušič T. Plyometric and Resistance Training: A Dual Approach to Enhance Physical Fitness in 12–15-Year-Old Girls. Physiologia. 2024; 4(4):373-386. https://doi.org/10.3390/physiologia4040023
Chicago/Turabian StylePetrušič, Tanja. 2024. "Plyometric and Resistance Training: A Dual Approach to Enhance Physical Fitness in 12–15-Year-Old Girls" Physiologia 4, no. 4: 373-386. https://doi.org/10.3390/physiologia4040023
APA StylePetrušič, T. (2024). Plyometric and Resistance Training: A Dual Approach to Enhance Physical Fitness in 12–15-Year-Old Girls. Physiologia, 4(4), 373-386. https://doi.org/10.3390/physiologia4040023