Heat Stress but Not Capsaicin Application Alleviates the Hypertensive Response to Isometric Exercise
Abstract
:1. Introduction
2. Results
2.1. Thermoregulatory Parameters
2.2. Cardiovascular Parameters
2.2.1. Resting Values
2.2.2. Exercise Values
3. Discussion
3.1. Cardiovascular Responses
3.1.1. Rest
3.1.2. Exercise
3.2. Thermoregulatory Responses
3.3. Limitations
4. Materials and Methods
4.1. Participants
4.2. Preliminary Trials
4.3. Study Design
4.4. Experimental Trials
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Menti, A.; Kalpourtzi, N.; Gavana, M.; Vantarakis, A.; Chlouverakis, G.; Hajichristodoulou, C.; Trypsianis, G.; Voulgari, P.V.; Alamanos, Y.; et al. Prevalence, awareness, treatment and control of hypertension in Greece: EMENO national epidemiological study. J. Hypertens. 2021, 39, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B. Framingham study insights into hypertensive risk of cardiovascular disease. Hypertens. Res. 1995, 18, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Tso, M.O.; Jampol, L.M. Pathophysiology of hypertensive retinopathy. Ophthalmology 1982, 89, 1132–1145. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.A.; Nunes, K.P. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am. J. Hypertens. 2021, 34, 134–142. [Google Scholar] [CrossRef]
- Dawson, A.N.; Walser, B.; Jafarzadeh, M.; Stebbins, C.L. Topical analgesics and blood pressure during static contraction in humans. Med. Sci. Sports Exerc. 2004, 36, 632–638. [Google Scholar] [CrossRef]
- Kawada, T.; Suzuki, T.; Takahashi, M.; Iwai, K. Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol. Appl. Pharmacol. 1984, 72, 449–456. [Google Scholar] [CrossRef]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control Release 2014, 196, 96–105. [Google Scholar] [CrossRef]
- Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J. Med. Assoc. Thai 2009, 92, 108–113. [Google Scholar]
- O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev. 2012, 64, 939–971. [Google Scholar] [CrossRef] [PubMed]
- Hammer, J.; Vogelsang, H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol. Motil. 2007, 19, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Botonis, P.G.; Miliotis, P.G.; Kounalakis, S.N.; Koskolou, M.D.; Geladas, N.D. Effects of capsaicin application on the skin during resting exposure to temperate and warm conditions. Scand. J. Med. Sci. Sports 2019, 29, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Chalacheva, P.; Khaleel, M.; Sunwoo, J.; Shah, P.; Detterich, J.A.; Kato, R.M.; Thuptimdang, W.; Meiselman, H.J.; Sposto, R.; Tsao, J.; et al. Biophysical markers of the peripheral vasoconstriction response to pain in sickle cell disease. PLoS ONE 2017, 12, e0178353. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M.; Fagius, J. Effect of noxious stimulation on sympathetic vasoconstrictor outflow to human muscles. J. Physiol. 1995, 489, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011, 107, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Luo, Z.; Ma, S.; Wong, W.T.; Ma, L.; Zhong, J.; He, H.; Zhao, Z.; Cao, T.; Yan, Z.; et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab. 2010, 12, 130–141. [Google Scholar] [CrossRef]
- Wong, B.J.; Fieger, S.M. Transient receptor potential vanilloid type-1 (TRPV-1) channels contribute to cutaneous thermal hyperaemia in humans. J. Physiol. 2010, 588, 4317–4326. [Google Scholar] [CrossRef]
- Stephens, D.P.; Charkoudian, N.; Benevento, J.M.; Johnson, J.M.; Saumet, J.L. The influence of topical capsaicin on the local thermal control of skin blood flow in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R894–R901. [Google Scholar] [CrossRef]
- Rowell, L.B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 1974, 54, 75–159. [Google Scholar] [CrossRef]
- Crandall, C.G.; Wilson, T.E. Human cardiovascular responses to passive heat stress. Compr. Physiol. 2015, 5, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Brunt, V.E.; Howard, M.J.; Francisco, M.A.; Ely, B.R.; Minson, C.T. Passive heat therapy improves endothelial function, arterial stiffness and blood pressure in sedentary humans. J. Physiol. 2016, 594, 5329–5342. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, P.; Di Giosia, P.; Petrarca, M.; Lattanzio, F.; Stamerra, C.A.; Ferri, C. Climate Changes and Human Health: A Review of the Effect of Environmental Stressors on Cardiovascular Diseases Across Epidemiology and Biological Mechanisms. Curr. Pharm. Des. 2017, 23, 3247–3261. [Google Scholar] [CrossRef] [PubMed]
- Low, D.A.; Keller, D.M.; Wingo, J.E.; Brothers, R.M.; Crandall, C.G. Sympathetic nerve activity and whole body heat stress in humans. J. Appl. Physiol. 2011, 111, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Rowell, L.B.; Brengelmann, G.L.; Murray, J.A. Cardiovascular responses to sustained high skin temperature in resting man. J. Appl. Physiol. 1969, 27, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Sharman, J.E. Exercise Hypertension. Pulse 2014, 1, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ha, J.W. Hypertensive response to exercise: Mechanisms and clinical implication. Clin. Hypertens. 2016, 22, 17. [Google Scholar] [CrossRef]
- Lorbeer, R.; Ittermann, T.; Volzke, H.; Glaser, S.; Ewert, R.; Felix, S.B.; Dorr, M. Assessing cutoff values for increased exercise blood pressure to predict incident hypertension in a general population. J. Hypertens. 2015, 33, 1386–1393. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Cherouveim, E.D.; Miliotis, P.G.; Koskolou, M.D.; Dipla, K.; Vrabas, I.S.; Geladas, N.D. The Effect of Skeletal Muscle Oxygenation on Hemodynamics, Cerebral Oxygenation and Activation, and Exercise Performance during Incremental Exercise to Exhaustion in Male Cyclists. Biology 2023, 12, 981. [Google Scholar] [CrossRef]
- Lima, E.G.; Spritzer, N.; Herkenhoff, F.L.; Bermudes, A.; Vasquez, E.C. Noninvasive ambulatory 24-hour blood pressure in patients with high normal blood pressure and exaggerated systolic pressure response to exercise. Hypertension 1995, 26, 1121–1124. [Google Scholar] [CrossRef]
- Jae, S.Y.; Franklin, B.A.; Choo, J.; Choi, Y.H.; Fernhall, B. Exaggerated Exercise Blood Pressure Response During Treadmill Testing as a Predictor of Future Hypertension in Men: A Longitudinal Study. Am. J. Hypertens. 2015, 28, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.P.; Polena, S.; Coplan, N.; Panagopoulos, G.; Dhingra, C.; Myers, J.; Froelicher, V. Prognostic significance of systolic blood pressure increases in men during exercise stress testing. Am. J. Cardiol. 2007, 100, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Seals, D.R. Influence of force on muscle and skin sympathetic nerve activity during sustained isometric contractions in humans. J. Physiol. 1993, 462, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Smolander, J.; Aminoff, T.; Korhonen, I.; Tervo, M.; Shen, N.; Korhonen, O.; Louhevaara, V. Heart rate and blood pressure responses to isometric exercise in young and older men. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 439–444. [Google Scholar] [CrossRef]
- Vianna, L.C.; Fernandes, I.A.; Barbosa, T.C.; Teixeira, A.L.; Nobrega, A.C.L. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans. J. Appl. Physiol. 2018, 125, 362–368. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Kaufman, M.P.; Iwamoto, G.A. The exercise pressor reflex: Its cardiovascular effects, afferent mechanisms, and central pathways. Annu. Rev. Physiol. 1983, 45, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.J.; Ragan, B.G.; Bell, G.W.; Ichiyama, R.M.; Iwamoto, G.A. Capsaicin-based analgesic balm decreases pressor responses evoked by muscle afferents. Med. Sci. Sports Exerc. 2004, 36, 444–450. [Google Scholar] [CrossRef]
- Fusco, B.M.; Giacovazzo, M. Peppers and pain. The promise of capsaicin. Drugs 1997, 53, 909–914. [Google Scholar] [CrossRef]
- Koletsos, N.; Dipla, K.; Triantafyllou, A.; Gkaliagkousi, E.; Sachpekidis, V.; Zafeiridis, A.; Douma, S. A brief submaximal isometric exercise test ‘unmasks’ systolic and diastolic masked hypertension. J. Hypertens. 2019, 37, 710–719. [Google Scholar] [CrossRef]
- Shibasaki, M.; Secher, N.H.; Johnson, J.M.; Crandall, C.G. Central command and the cutaneous vascular response to isometric exercise in heated humans. J. Physiol. 2005, 565, 667–673. [Google Scholar] [CrossRef]
- Joyner, M.J. Muscle chemoreflexes and exercise in humans. Clin. Auton. Res. 1992, 2, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Zsiboras, C.; Matics, R.; Hegyi, P.; Balasko, M.; Petervari, E.; Szabo, I.; Sarlos, P.; Miko, A.; Tenk, J.; Rostas, I.; et al. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Ludy, M.J.; Moore, G.E.; Mattes, R.D. The effects of capsaicin and capsiate on energy balance: Critical review and meta-analyses of studies in humans. Chem. Senses 2012, 37, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Shirani, F.; Foshati, S.; Tavassoly, M.; Clark, C.C.T.; Rouhani, M.H. The effect of red pepper/capsaicin on blood pressure and heart rate: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2021, 35, 6080–6088. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Memon, A.R.; Chen, S.; Ramirez-Campillo, R.; Barreto, G.; Haugen, M.E.; Schoenfeld, B.J. Effects of Capsaicin and Capsiate on Endurance Performance: A Meta-Analysis. Nutrients 2022, 14, 4531. [Google Scholar] [CrossRef] [PubMed]
- Mantysaari, M.J.; Antila, K.J.; Peltonen, T.E. Circulatory effects of anticipation in a light isometric handgrip test. Psychophysiology 1988, 25, 179–184. [Google Scholar] [CrossRef]
- Voets, T.; Droogmans, G.; Wissenbach, U.; Janssens, A.; Flockerzi, V.; Nilius, B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004, 430, 748–754. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Gifford, J.R.; Ives, S.J.; Park, S.Y.; Andtbacka, R.H.; Hyngstrom, J.R.; Mueller, M.T.; Treiman, G.S.; Ward, C.; Trinity, J.D.; Richardson, R.S. alpha1- and alpha2-adrenergic responsiveness in human skeletal muscle feed arteries: The role of TRPV ion channels in heat-induced sympatholysis. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1288–H1297. [Google Scholar] [CrossRef]
- Ives, S.J.; Park, S.Y.; Kwon, O.S.; Gifford, J.R.; Andtbacka, R.H.I.; Hyngstrom, J.R.; Richardson, R.S. TRPV(1) channels in human skeletal muscle feed arteries: Implications for vascular function. Exp. Physiol. 2017, 102, 1245–1258. [Google Scholar] [CrossRef]
- Joyner, M.J.; Charkoudian, N.; Wallin, B.G. A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Exp. Physiol. 2008, 93, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Crandall, C.G. Effect of thermal stress on cardiac function. Exerc. Sport Sci. Rev. 2011, 39, 12–17. [Google Scholar] [CrossRef]
- Pizzey, F.K.; Smith, E.C.; Ruediger, S.L.; Keating, S.E.; Askew, C.D.; Coombes, J.S.; Bailey, T.G. The effect of heat therapy on blood pressure and peripheral vascular function: A systematic review and meta-analysis. Exp. Physiol. 2021, 106, 1317–1334. [Google Scholar] [CrossRef]
- Caldwell, A.R.; Robinson, F.B.; Tucker, M.A.; Arcement, C.H.; Butts, C.L.; McDermott, B.P.; Ganio, M.S. Effect of passive heat stress and exercise in the heat on arterial stiffness. Eur. J. Appl. Physiol. 2017, 117, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Victor, R.G.; Secher, N.H.; Lyson, T.; Mitchell, J.H. Central command increases muscle sympathetic nerve activity during intense intermittent isometric exercise in humans. Circ. Res. 1995, 76, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Mitchell, J.H.; Garry, M.G. The mammalian exercise pressor reflex in health and disease. Exp. Physiol. 2006, 91, 89–102. [Google Scholar] [CrossRef]
- Vanhoutte, P.M. Adjustments in the peripheral circulation in chronic heart failure. Eur. Heart J. 1983, 4 (Suppl. A), 67–83. [Google Scholar] [CrossRef]
- Spranger, M.D.; Kaur, J.; Sala-Mercado, J.A.; Krishnan, A.C.; Abu-Hamdah, R.; Alvarez, A.; Machado, T.M.; Augustyniak, R.A.; O’Leary, D.S. Exaggerated coronary vasoconstriction limits muscle metaboreflex-induced increases in ventricular performance in hypertension. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H68–H79. [Google Scholar] [CrossRef]
- Julius, S. Transition from high cardiac output to elevated vascular resistance in hypertension. Am. Heart J. 1988, 116, 600–606. [Google Scholar] [CrossRef]
- Botonis, P.G.; Miliotis, P.G.; Kounalakis, S.N.; Koskolou, M.D.; Geladas, N.D. Thermoregulatory and cardiovasculareffects of capsaicin application on human skin during dynamic exercise to temperate and warm conditions. Physiol. Rep. 2019, 7, e14325. [Google Scholar] [CrossRef]
- Fujii, N.; Meade, R.D.; Alexander, L.M.; Akbari, P.; Foudil-Bey, I.; Louie, J.C.; Boulay, P.; Kenny, G.P. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. J. Appl. Physiol. 2016, 120, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Welch, G.; Foote, K.M.; Hansen, C.; Mack, G.W. Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment. J. Appl. Physiol. 2009, 106, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Tominaga, H.; Shibasaki, M.; Aoki, K.; Koga, S.; Nishiyasu, T. Modulation of the thermoregulatory sweating response to mild hyperthermia during activation of the muscle metaboreflex in humans. J. Physiol. 1999, 515, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Kondo, N.; Crandall, C.G. Evidence for metaboreceptor stimulation of sweating in normothermic and heat-stressed humans. J. Physiol. 2001, 534, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; David Patterson, S.; Jeffries, O. Inter-Day Reliability of Finapres ((R)) Cardiovascular Measurements During Rest and Exercise. Sports Med. Int. Open 2018, 2, E9–E15. [Google Scholar] [CrossRef]
- Guelen, I.; Westerhof, B.E.; van der Sar, G.L.; van Montfrans, G.A.; Kiemeneij, F.; Wesseling, K.H.; Bos, W.J. Validation of brachial artery pressure reconstruction from finger arterial pressure. J. Hypertens. 2008, 26, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Mlinar, T.; Jaki Mekjavic, P.; Royal, J.T.; Valencic, T.; Mekjavic, I.B. Intraocular pressure during handgrip exercise: The effect of posture and hypercapnia in young males. Physiol. Rep. 2021, 9, e15035. [Google Scholar] [CrossRef]
- Shinohara, T.; Tsuchida, N.; Seki, K.; Otani, T.; Yamane, T.; Ishihara, Y.; Usuda, C. Can blood pressure be measured during exercise with an automated sphygmomanometer based on an oscillometric method? J. Phys. Ther. Sci. 2017, 29, 1006–1009. [Google Scholar] [CrossRef]
- Miyai, N.; Arita, M.; Miyashita, K.; Morioka, I.; Shiraishi, T.; Nishio, I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension 2002, 39, 761–766. [Google Scholar] [CrossRef]
- Schultz, M.G.; Otahal, P.; Cleland, V.J.; Blizzard, L.; Marwick, T.H.; Sharman, J.E. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: A systematic review and meta-analysis. Am. J. Hypertens. 2013, 26, 357–366. [Google Scholar] [CrossRef]
- Kayrak, M.; Bacaksiz, A.; Vatankulu, M.A.; Ayhan, S.S.; Kaya, Z.; Ari, H.; Sonmez, O.; Gok, H. Exaggerated blood pressure response to exercise—A new portent of masked hypertension. Clin. Exp. Hypertens. 2010, 32, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.F.; Sung, B.H.; Pincomb, G.A.; Lovallo, W.R. Exaggerated pressure response to exercise in men at risk for systemic hypertension. Am. J. Cardiol. 1990, 66, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Allison, T.G.; Cordeiro, M.A.; Miller, T.D.; Daida, H.; Squires, R.W.; Gau, G.T. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am. J. Cardiol. 1999, 83, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013, 31, 1281–1357. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.H. Abnormal cardiovascular response to exercise in hypertension: Contribution of neural factors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R851–R863. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Casadei, R.; Groppelli, A.; Di Rienzo, M.; Mancia, G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989, 13, 647–655. [Google Scholar] [CrossRef]
- Richard, N.A.; Hodges, L.; Koehle, M.S. Elevated peak systolic blood pressure in endurance-trained athletes: Physiology or pathology? Scand. J. Med. Sci. Sports 2021, 31, 956–966. [Google Scholar] [CrossRef]
- Molineux, D.; Steptoe, A. Exaggerated blood pressure responses to submaximal exercise in normotensive adolescents with a family history of hypertension. J. Hypertens. 1988, 6, 361–365. [Google Scholar] [CrossRef]
- Burton, A.C. The Application of the Theory of Heat Flow to the Study of Energy Metabolism: Five Figures. J. Nutr. 1934, 7, 497–533. [Google Scholar] [CrossRef]
- Keramidas, M.E.; Geladas, N.D.; Mekjavic, I.B.; Kounalakis, S.N. Forearm-finger skin temperature gradient as an index of cutaneous perfusion during steady-state exercise. Clin. Physiol. Funct. Imaging 2013, 33, 400–404. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Zhang, H.; Arens, E.; Filingeri, D.; Jin, L.; Ghahramani, A.; Chen, W.; He, Y.; Si, B. High-density thermal sensitivity maps of the human body. Build. Environ. 2020, 167, 106435. [Google Scholar] [CrossRef]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [CrossRef] [PubMed]
HRE Group | CA | PL | Main Effects | Temperature X Patch Interaction | |||
---|---|---|---|---|---|---|---|
HT | TN | HT | TN | Temperature | Patch | ||
Systolic Pressure (mmHg) | 131 ± 15 | 136 ± 18 | 114 ± 13 | 137 ± 18 | 0.001 | 0.21 | 0.024 |
Diastolic Pressure (mmHg) | 80 ± 11 | 78 ± 10 | 69 ± 10 | 77 ± 11 | 0.059 | 0.58 | 0.025 |
Mean Arterial Pressure (mmHg) | 96 ± 8 | 94 ± 10 | 86 ± 6 | 100 ± 10 | 0.05 | 0.69 | 0.008 |
Total Peripheral Resistance (mmHg·s·mL−1) | 0.72 ± 0.11 | 0.95 ± 0.26 | 0.70 ± 0.09 | 0.89 ± 0.19 | 0.088 | 0.545 | 0.591 |
Heart Rate (bpm) | 63 ± 23 | 58 ± 20 | 66 ± 23 | 57 ± 22 | 0.006 | 0.516 | 0.435 |
Cardiac Output (L·min−1) | 6.89 ± 1.24 | 6.87 ± 1.17 | 5.98 ± 1.07 | 6.01 ± 1.23 | 0.17 | 0.36 | 0.15 |
VO2 (mL O2· kg−1· min−1) | 4.45 ± 0.69 | 4.00 ± 0.47 | 3.92 ± 0.39 | 4.07 ± 0.39 | 0.36 | 0.72 | 0.048 |
CON group | CA | PL | Main Effect of Group | ||||
HT | TN | HT | TN | ||||
Systolic Pressure (mmHg) | 122 ± 13 | 132 ± 16 | 119 ± 11 | 135 ± 13 | 0.42 | ||
Diastolic Pressure (mmHg) | 70 ± 6 | 75 ± 7 | 70 ± 4 | 81 ± 6 | 0.386 | ||
Mean Arterial Pressure (mmHg) | 88 ± 8 | 96 ± 10 | 85 ± 13 | 99 ± 7 | 0.828 | ||
Total Peripheral Resistance (mmHg·s·mL−1) | 0.91 ± 0.17 | 0.91 ± 0.36 | 0.90 ± 0.14 | 0.98 ± 0.18 | 0.172 | ||
Heart Rate (bpm) | 75 ± 12 | 65 ± 11 | 72 ± 8 | 68 ± 6 | 0.077 | ||
Cardiac Output (L·min−1) | 7.49 ± 0.87 | 6.35 ± 1.04 | 7.42 ± 1.03 | 6.85 ± 1.21 | 0.20 | ||
VO2 (mL O2· kg−1· min−1) | 4.05 ± 0.76 | 4.06 ± 0.68 | 4.05 ± 0.36 | 4.40 ± 0.41 | 0.93 |
HRE Group | CA | PL | Main Effects | Temperature X Patch Interaction | |||
---|---|---|---|---|---|---|---|
HT | TN | HT | TN | Temperature | Patch | ||
Systolic Pressure (mmHg) | 171 ± 11 | 178 ± 5 | 161 ± 11 | 187 ± 6 | <0.001 | 0.125 | 0.031 |
Diastolic Pressure (mmHg) | 102 ± 13 | 103 ± 8 | 92 ± 13 | 102 ± 13 | 0.007 | 0.089 | 0.27 |
Mean Arterial Pressure (mmHg) | 114 ± 15 | 121 ± 18 | 113 ± 12 | 125 ± 11 | 0.003 | 0.023 | 0.295 |
Total Peripheral Resistance (mmHg·s·mL−1) | 0.92 ± 0.15 | 1.10 ± 0.29 | 0.78 ± 0.20 | 1.03 ± 0.30 | 0.017 | 0.3 | 0.764 |
Heart Rate (bpm) | 89 ± 21 | 81 ± 18 | 92 ± 17 | 84 ± 10 | 0.001 | 0.92 | 0.074 |
Cardiac Output (L·min−1) | 2.36 ± 1.95 | 1.27 ± 1.46 | 3.30 ± 2.84 | 2.04 ± 1.79 | <0.001 | 0.349 | 0.40 |
VO2 (mL O2· kg−1· min−1) | 5.10 ± 1.23 | 5.03 ± 0.94 | 4.57 ± 0.58 | 5.44 ± 0.40 | 0.909 | 0.445 | 0.046 |
End-exercise rating of perceived exertion (a.u.) | 16 ± 3 | 16 ± 3 | 15 ± 2 | 16 ± 2 | 0.907 | 0.498 | 0.863 |
CON group | CA | PL | Main effect of group | ||||
HT | TN | HT | TN | ||||
Systolic Pressure (mmHg) | 156 ± 20 | 165 ± 24 | 151 ± 15 | 169 ± 19 | 0.100 | ||
Diastolic Pressure (mmHg) | 90 ± 13 | 96 ± 14 | 89 ± 11 | 101 ± 7 | 0.505 | ||
Mean Arterial Pressure (mmHg) | 126 ± 16 | 133 ± 9 | 115 ± 14 | 131 ± 19 | 0.657 | ||
Total Peripheral Resistance (mmHg·s·mL−1) | 0.75 ± 0.18 | 1.11 ± 0.38 | 0.75 ± 0.13 | 1.07 ± 0.30 | 0.133 | ||
Heart Rate (bpm) | 85 ± 14 | 72 ± 11 | 80 ± 10 | 72 ± 4 | 0.039 | ||
Cardiac Output (L·min−1) | 1.83 ± 1.88 | 0.36 ± 0.92 | 1.72 ± 1.48 | 0.36 ± 0.48 | 0.103 | ||
VO2 (mL O2· kg−1· min−1) | 5.11 ± 1.01 | 4.34 ± 0.54 | 4.51 ± 0.52 | 4.21 ± 0.90 | 0.127 | ||
End-exercise rating of perceived exertion (a.u.) | 16 ± 3 | 15 ± 3 | 16 ± 2 | 15 ± 3 | 0.473 |
Group | HRE, n = 8 | CON, n = 9 | p-Value |
---|---|---|---|
Age (years) | 20 ± 1 | 25 ± 2 | <0.001 |
Height (cm) | 174 ± 8 | 181 ± 8 | 0.043 |
Body mass (kg) | 71.6 ± 7.5 | 83.8 ± 7.6 | 0.003 |
Body mass index (kg·m−2) | 25.3 ± 1.0 | 23.6 ± 1.7 | 0.053 |
Baseline SBP (mmHg) | 130 ± 10 | 128 ± 12 | 0.73 |
Baseline DBP (mmHg) | 73 ± 8 | 74 ± 6 | 0.72 |
End-dynamic SBP (mmHg) | 234 ± 14 | 209 ± 8 | 0.002 |
End-isometric SBP (mmHg) | 187 ± 6 | 165 ± 16 | 0.026 |
VO2peak (mL·kg−1·min−1) | 46.4 ± 5.8 | 43.3 ± 9.1 | 0.43 |
Wpeak (W) | 292 ± 57 | 317 ± 51 | 0.36 |
Maximal voluntary contraction (kg) | 49.3 ± 8.9 | 51.3 ± 10.8 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotiridis, A.; Makris, A.; Koskolou, M.D.; Geladas, N.D. Heat Stress but Not Capsaicin Application Alleviates the Hypertensive Response to Isometric Exercise. Physiologia 2024, 4, 64-80. https://doi.org/10.3390/physiologia4010004
Sotiridis A, Makris A, Koskolou MD, Geladas ND. Heat Stress but Not Capsaicin Application Alleviates the Hypertensive Response to Isometric Exercise. Physiologia. 2024; 4(1):64-80. https://doi.org/10.3390/physiologia4010004
Chicago/Turabian StyleSotiridis, Alexandros, Anastasios Makris, Maria D. Koskolou, and Nickos D. Geladas. 2024. "Heat Stress but Not Capsaicin Application Alleviates the Hypertensive Response to Isometric Exercise" Physiologia 4, no. 1: 64-80. https://doi.org/10.3390/physiologia4010004
APA StyleSotiridis, A., Makris, A., Koskolou, M. D., & Geladas, N. D. (2024). Heat Stress but Not Capsaicin Application Alleviates the Hypertensive Response to Isometric Exercise. Physiologia, 4(1), 64-80. https://doi.org/10.3390/physiologia4010004