The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of Sprint Running: A Review. Sport. Med. 1992, 13, 376–392. [Google Scholar] [CrossRef]
- Delecluse, C.; Van Coppenolle, H.; Willems, E.; Van Leemputte, M.; Diels, R.; Goris, M. Influence of High-Resistance and High-Velocity Training on Sprint Performance. Med. Sci. Sport. Exerc. 1995, 27, 1203–1209. [Google Scholar] [CrossRef]
- Hicks, D.S.; Schuster, J.G.; Samozino, P.; Morin, J.-B. Improving Mechanical Effectiveness During Sprint Acceleration: Practical Recommendations and Guidelines. Strength Cond. J. 2020, 42, 45–62. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors Modulating Post-Activation Potentiation and Its Effect on Performance of Subsequent Explosive Activities. Sport. Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-Activation Potentiation: Underlying Physiology and Implications for Motor Performance. Sport. Med. 2005, 35, 585–595. [Google Scholar] [CrossRef]
- Chatzopoulos, D.E.; Michailidis, C.J.; Giannakos, A.K.; Alexiou, K.C.; Patikas, D.A.; Antonopoulos, C.B.; Kotzamanidis, C.M. Postactivation Potentiation Effects after Heavy Resistance Exercise on Running Speed. J. Strength Cond. Res. 2007, 21, 1278–1281. [Google Scholar] [CrossRef]
- Zisi, M.; Stavridis, I.; Agilara, G.-O.; Economou, T.; Paradisis, G. The Acute Effects of Heavy Sled Towing on Acceleration Performance and Sprint Mechanical and Kinematic Characteristics. Sports 2022, 10, 77. [Google Scholar] [CrossRef]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Middleton, M.K.; Bunce, P.J.; Yang, G.Z. The Acute Potentiating Effects of Back Squats on Athlete Performance. J. Strength Cond. Res. 2011, 25, 3319–3325. [Google Scholar] [CrossRef]
- Turner, A.P.; Bellhouse, S.; Kilduff, L.P.; Russell, M. Postactivation Potentiation of Sprint Acceleration Performance Using Plyometric Exercise. J. Strength Cond. Res. 2015, 29, 343–350. [Google Scholar] [CrossRef]
- Chu, D. Jumping into Plyometrics; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Asmussen, E.; Bonde-Petersen, F. Storage of Elastic Energy in Skeletal Muscles in Man. Acta Physiol. Scand. 1974, 91, 385–392. [Google Scholar] [CrossRef]
- Byrne, P.J.; Moody, J.A.; Cooper, S.M.; Callanan, D.; Kinsella, S. Potentiating Response to Drop-Jump Protocols on Sprint Acceleration: Drop-Jump Volume and Intrarepetition Recovery Duration. J. Strength Cond. Res. 2020, 34, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.J.; Kenny, J.; O’ Rourke, B. Acute Potentiating Effect of Depth Jumps on Sprint Performance. J. Strength Cond. Res. 2014, 28, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Vanderka, M.; Krčmár, M.; Longová, K.; Walker, S. Acute Effects of Loaded Half-Squat Jumps on Sprint Running Speed in Track and Field Athletes and Soccer Players. J. Strength Cond. Res. 2016, 30, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Young, W. Plyometrics: Sprint Bounding and the Sprint Bound Index. Natl. Strength Cond. Assoc. J. 1992, 14, 18–21. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.V. EMG, Force, and Power Analysis of Sprint-Specific Strength Exercises. J. Appl. Biomech. 1994, 10, 1–13. [Google Scholar] [CrossRef]
- Morin, J.B.; Slawinski, J.; Dorel, S.; de Villareal, E.S.; Couturier, A.; Samozino, P.; Brughelli, M.; Rabita, G. Acceleration Capability in Elite Sprinters and Ground Impulse: Push More, Brake Less? J. Biomech. 2015, 48, 3149–3154. [Google Scholar] [CrossRef]
- Salo, A.I.T.; Bezodis, I.N.; Batterham, A.M.; Kerwin, D.G. Elite Sprinting: Are Athletes Individually Step-Frequency or Step-Length Reliant? Med. Sci. Sport. Exerc. 2011, 43, 1055–1062. [Google Scholar] [CrossRef]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Interaction of Step Length and Step Rate during Sprint Running. Med. Sci. Sport. Exerc. 2004, 36, 261–271. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Takai, Y.; Kanehisa, H. Acute Effects of Different Conditioning Activities on Running Performance of Sprinters. Springerplus 2016, 5, 1203. [Google Scholar] [CrossRef]
- Kümmel, J.; Bergmann, J.; Prieske, O.; Kramer, A.; Granacher, U.; Gruber, M. Effects of Conditioning Hops on Drop Jump and Sprint Performance: A Randomized Crossover Pilot Study in Elite Athletes. BMC Sport. Sci. Med. Rehabil. 2016, 8, 1. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sport. Med. 2016, 46, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Hansen, K.; Kawamori, N.; Mcnair, P. Effects of Weighted Vests and Sled Towing on Sprint Kinematics. Sport. Biomech. 2008, 7, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint Performance and Mechanical Outputs Computed with an IPhone App: Comparison with Existing Reference Methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of Transition during Human Accelerated Sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef]
- Economou, T.; Stavridis, I.; Zisi, M.; Fragkoulis, E.; Olanemi-Agilara, G.; Paradisis, G. Sprint Mechanical and Kinematic Characteristics of National Female Track and Field Champions and Lower-Level Competitors. J. Phys. Educ. Sport 2021, 21, 3227–3235. [Google Scholar] [CrossRef]
- Stavridis, I.; Economou, T.; Walker, J.; Bissas, A.; Tsopanidou, A.; Paradisis, G. Sprint Mechanical Characteristics of Sub-Elite and Recreational Sprinters. J. Phys. Educ. Sport 2022, 22, 1126–1133. [Google Scholar] [CrossRef]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Till, K.A.; Cooke, C. The Effects of Postactivation Potentiation on Sprint and Jump Performance of Male Academy Soccer Players. J. Strength Cond. Res. 2009, 23, 1960–1967. [Google Scholar] [CrossRef]
- Tomlinson, K.A.; Hansen, K.; Helzer, D.; Lewis, Z.H.; Leyva, W.D.; McCauley, M.; Pritchard, W.; Silvestri, E.; Quila, M.; Yi, M.; et al. The Effects of Loaded Plyometric Exercise during Warm-Up on Subsequent Sprint Performance in Collegiate Track Athletes: A Randomized Trial. Sports 2020, 8, 101. [Google Scholar] [CrossRef]
- Abade, E.; Sampaio, J.; Gonçalves, B.; Baptista, J.; Alves, A.; Viana, J. Effects of Different Re-Warm up Activities in Football Players’ Performance. PLoS ONE 2017, 12, e0180152. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.C.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-Analysis of Postactivation Potentiation and Power: Effects of Conditioning Activity, Volume, Gender, Rest Periods, and Training Status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, J.E.; Godaux, E. Ballistic Contractions in Man: Characteristic Recruitment Pattern of Single Motor Units of the Tibialis Anterior Muscle. J. Physiol. 1977, 264, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Tubman, L.A.; MacIntosh, B.R.; Maki, W.A. Myosin Light Chain Phosphorylation and Posttetanic Potentiation in Fatigued Skeletal Muscle. Pflug. Arch. 1996, 431, 882–887. [Google Scholar] [CrossRef]
- Rassier, D.E.; Macintosh, B.R. Coexistence of Potentiation and Fatigue in Skeletal Muscle. Braz. J. Med. Biol. Res. 2000, 33, 499–508. [Google Scholar] [CrossRef] [PubMed]
CON | ALB | SLB | ||
---|---|---|---|---|
5 m | Pre- | 1.41 ± 0.07 | 1.42 ± 0.08 | 1.40 ± 0.08 |
Post- | 1.40 ± 0.08 | 1.40 ± 0.09 | 139 ± 0.08 | |
p, ES | 0.362, 0.25 | 0.014, 0.76 | 0.056, 0.56 | |
(95% CI) | (−0.29–0.78) | (0.15–1.35) | (−0.02–1.12) | |
10 m | Pre- | 2.20 ± 0.09 | 2.20 ± 0.11 | 2.19 ± 0.11 |
Post- | 2.19 ± 0.10 | 2.18 ± 0.12 | 2.18 ± 0.10 | |
p, ES | 0.697, 0.11 | 0.041, 0.61 | 0.147, 0.41 | |
(95% CI) | (−0.42–0.63) | (0.02–1.17) | (−0.14–0.95) | |
15 m | Pre- | 2.89 ± 0.13 | 2.90 ± 0.14 | 2.89 ± 0.13 |
Post- | 2.89 ± 0.13 | 2.88 ± 0.15 | 2.88 ± 0.13 | |
p, ES | 0.766, 0.08 | 0.122, 0.44 | 0.334, 0.27 | |
(95% CI) | (−0.45–0.60) | (−0.12–0.98) | (−0.27–0.80) | |
20 m | Pre- | 3.56 ± 0.17 | 3.57 ± 0.17 | 3.56 ± 0.16 |
Post- | 3.57 ± 0.17 | 3.55 ± 0.19 | 3.56 ± 0.16 | |
p, ES | 0.197, 0.36 | 0.177, 0.38 | 0.748, 0.09 | |
(95% CI) | (−0.19–0.90) | (−0.17–0.92) | (−0.44–0.61) | |
25 m | Pre- | 4.21 ± 0.21 | 4.22 ± 0.21 | 4.22 ± 0.20 |
Post- | 4.23 ± 0.20 | 4.20 ± 0.22 | 4.22 ± 0.20 | |
p, ES | 0.069, 0.53 | 0.159, 0.40 | 0.680, 0.11 | |
(95% CI) | (−0.04–1.08) | (−0.15–0.94) | (−0.64–0.42) | |
30 m | Pre- | 4.86 ± 0.25 | 4.86 ± 0.25 | 4.86 ± 0.23 |
Post- | 4.87 ± 0.25 | 4.84 ± 0.26 | 4.87 ± 0.23 | |
p, ES | 0.061, 0.55 | 0.118, 0.45 | 0.264, 0.31 | |
(95% CI) | (−0.03 –1.10) | (−0.11–0.99) | (−0.84–0.23) |
CON Condition | Velocity (m/s) | Step Length (m) | Step Frequency (Hz) | Contact Time (s) | Flight Time (s) | |
---|---|---|---|---|---|---|
0–5 m | Pre- | 3.55 ± 0.17 | 1.09 ± 0.09 | 3.30 ± 0.35 | 0.163 ± 0.013 | 0.079 ± 0.017 |
Post- | 3.58 ± 0.20 | 1.08 ± 0.09 | 3.35 ± 0.38 | 0.168 ± 0.010 | 0.077 ± 0.016 | |
p, ES | 0.310, 0.28 | 0.503, 0.18 | 0.238, 0.33 | 0.117, 0.44 | 0.351, 0.26 | |
(95% CI) | (−0.26–0.81) | (−0.35–0.71) | (−0.21–0.86) | (−0.99–0.11) | (−0.28–0.79) | |
5–10 m | Pre- | 6.38 ± 0.35 | 1.45 ± 0.11 | 4.42 ± 0.33 | 0.134 ± 0.008 | 0.099 ± 0.015 |
Post- | 6.33 ± 0.34 | 1.46 ± 0.10 | 4.35 ± 0.28 | 0.136 ± 0.008 | 0.097 ± 0.013 | |
p, ES | 0.063, 0.54 | 0.151, 0.41 | 0.062, 0.70 | 0.109, 0.46 | 0.216, 0.35 | |
(95% CI) | (−1.10–0.03) | (−0.95–0.15) | (−0.10–1.27) | (−0.10–1.00) | (−0.20–0.88) | |
10–15 m | Pre- | 7.22 ± 0.45 | 1.62 ± 0.09 | 4.47 ± 0.27 | 0.125 ± 0.008 | 0.104 ± 0.012 |
Post- | 7.16 ± 0.41 | 1.63 ± 0.09 | 4.41 ± 0.29 | 0.127 ± 0.009 | 0.103 ± 0.013 | |
p, ES | 0.150, 0.41 | 0.431, 0.22 | 0.156, 0.40 | 0.062, 0.57 | 0.835, 0.06 | |
(95% CI) | (−0.95–0.15) | (−0.31–0.74) | (−0.15–0.94) | (−0.00–1.13) | (−0.47–0.58) | |
15–20 m | Pre- | 7.52 ± 0.52 | 1.71 ± 0.11 | 4.39 ± 0.31 | 0.123 ± 0.007 | 0.107 ± 0.013 |
Post- | 7.45 ± 0.47 | 1.72 ± 0.11 | 4.35 ± 0.27 | 0.124 ± 0.008 | 0.107 ± 0.011 | |
p, ES | 0.084, 0.50 | 0.827, 0.06 | 0.124, 0.44 | 0.057, 0.56 | 0.892, 0.04 | |
(95% CI) | (−1.05–0.07) | (−0.47–0.58) | (−0.12–0.98) | (−0.02–1.11) | (−0.49–0.56) | |
20–25 m | Pre- | 7.69 ± 0.57 | 1.77 ± 0.10 | 4.35 ± 0.31 | 0.121 ± 0.008 | 0.110 ± 0.012 |
Post- | 7.63 ± 0.54 | 1.76 ± 0.10 | 4.33 ± 0.27 | 0.123 ± 0.008 | 0.112 ± 0.010 | |
p, ES | 0.073, 0.52 | 0.478, 0.20 | 0.597, 0.15 | 0.072, 0.52 | 0.362, 0.25 | |
(95% CI) | (−1.07–0.05) | (−0.72–0.34) | (−0.39–0.67) | (−0.05–1.07) | (−0.29–0.78) | |
25–30 m | Pre- | 7.80 ± 0.60 | 1.82 ± 0.10 | 4.29 ± 0.27 | 0.119 ± 0.007 | 0.117 ± 0.010 |
Post- | 7.75 ± 0.59 | 1.82 ± 0.09 | 4.27 ± 0.27 | 0.120 ± 0.009 | 0.116 ± 0.008 | |
p, ES | 0.258, 0.32 | 0.723, 0.10 | 0.561, 0.16 | 0.113, 0.45 | 0.502, 0.18 | |
(95% CI) | (−0.80–0.21) | (−0.62–0.43) | (−0.37–0.68) | (−0.11–1.00) | (−0.71–0.35) |
ALB Condition | Velocity (m/s) | Step Length (m) | Step Frequency (Hz) | Contact Time (s) | Flight Time (s) | |
---|---|---|---|---|---|---|
0–5 m | Pre- | 3.53 ± 0.21 | 1.08 ± 0.09 | 3.30 ± 0.36 | 0.163 ± 0.009 | 0.080 ± 0.013 |
Post- | 3.60 ± 0.24 | 1.08 ± 0.08 | 3.36 ± 0.32 | 0.165 ± 0.010 | 0.078 ± 0.014 | |
p, ES | 0.017, 0.73 | 0.815, 0.06 | 0.028, 0.66 | 0.176, 0.38 | 0.587, 0.15 | |
(95% CI) | (−0.13–1.31) | (−0.46–0.59) | (0.07–1.23) | (−0.17–0.92) | (−0.38–0.67) | |
5–10 m | Pre- | 6.40 ± 0.35 | 1.46 ± 0.10 | 4.38 ± 0.29 | 0.136 ± 0.009 | 0.097 ± 0.014 |
Post- | 6.39 ± 0.35 | 1.46 ± 0.11 | 4.39 ± 0.29 | 0.136 ± 0.009 | 0.096 ± 0.012 | |
p, ES | 0.758, 0.08 | 0.676, 0.11 | 0.737, 0.09 | 0.774, 0.08 | 0.572, 0.16 | |
(95% CI) | (−0.44–0.61) | (−0.41–0.64) | (−0.62–0.44) | (−0.45–0.60) | (−0.38–0.68) | |
10–15 m | Pre- | 7.21 ± 0.40 | 1.62 ± 0.11 | 4.47 ± 0.31 | 0.127 ± 0.009 | 0.103 ± 0.012 |
Post- | 7.18 ± 0.41 | 1.62 ± 0.11 | 4.45 ± 0.27 | 0.127 ± 0.008 | 0.105 ± 0.012 | |
p, ES | 0.432, 0.22 | 0.912, 0.03 | 0.670, 0.12 | 0.593, 0.15 | 0.155, 0.40 | |
(95% CI) | (−0.32–0.74) | (−0.49–0.50) | (−0.41–0.64) | (−0.38–0.67) | (−0.15–0.94) | |
15–20 m | Pre- | 7.51 ± 0.45 | 1.73 ± 0.10 | 4.35 ± 0.28 | 0.125 ± 0.009 | 0.107 ± 0.011 |
Post- | 7.50 ± 0.47 | 1.71 ± 0.12 | 4.41 ± 0.32 | 0.123 ± 0.008 | 0.109 ± 0.011 | |
p, ES | 0.926, 0.03 | 0.126, 0.43 | 0.104, 0.47 | 0.117, 0.45 | 0.331, 0.27 | |
(95% CI) | (−0.50–0.55) | (−0.12–0.98) | (−1.01–0.09) | (−0.11–0.99) | (−0.27–0.80) | |
20–25 m | Pre- | 7.68 ± 0.51 | 1.77 ± 0.11 | 4.35 ± 0.30 | 0.123 ± 0.008 | 0.110 ± 0.011 |
Post- | 7.71 ± 0.52 | 1.77 ± 0.11 | 4.35 ± 0.31 | 0.121 ± 0.008 | 0.111 ± 0.011 | |
p, ES | 0.417, 0.22 | 0.698, 0.11 | 0.824, 0.06 | 0.145, 0.41 | 0.153, 0.41 | |
(95% CI) | (−0.31–0.75) | (−0.63–0.42) | (−0.58–0.47) | (−0.14–0.95) | (−0.15–0.95) | |
25–30 m | Pre- | 7.81 ± 0.56 | 1.83 ± 0.08 | 4.26 ± 0.27 | 0.121 ± 0.009 | 0.116 ± 0.008 |
Post- | 7.86 ± 0.59 | 1.82 ± 0.11 | 4.32 ± 0.29 | 0.120 ± 0.008 | 0.117 ± 0.010 | |
p, ES | 0.177, 0.38 | 0.579, 0.15 | 0.108, 0.46 | 0.252, 0.32 | 0.558, 0.16 | |
(95% CI) | (−0.17–0.92) | (−0.38–0.68) | (−1.01–0.10) | (−0.22–0.85) | (−0.37–0.69) |
SLB Condition | Velocity (m/s) | Step Length (m) | Step Frequency (Hz) | Contact Time (s) | Flight Time (s) | |
---|---|---|---|---|---|---|
0–5 m | Pre- | 3.58 ± 0.23 | 1.07 ± 0.09 | 3.36 ± 0.35 | 0.165 ± 0.011 | 0.076 ± 0.013 |
Post- | 3.61 ± 0.22 | 1.07 ± 0.08 | 3.40 ± 0.34 | 0.168 ± 0.010 | 0.073 ± 0.013 | |
p, ES | 0.066, 0.53 | 0.376, 0.25 | 0.068, 0.53 | 0.420, 0.22 | 0.060, 0.55 | |
(95% CI) | (−0.04–1.09) | (−0.29–0.77) | (−0.04–1.09) | (−0.31–0.75) | (−0.02–1.11) | |
5–10 m | Pre- | 6.35 ± 0.25 | 1.45 ± 0.09 | 4.40 ± 0.22 | 0.133 ± 0.006 | 0.097 ± 0.010 |
Post- | 6.33 ± 0.30 | 1.43 ± 0.10 | 4.42 ± 0.26 | 0.136 ± 0.008 | 0.094 ± 0.012 | |
p, ES | 0.479, 0.20 | 0.309, 0.28 | 0.453, 0.21 | 0.078, 0.51 | 0.069, 0.53 | |
(95% CI) | (−0.34–0.72) | (−0.26–0.81) | (−0.33–0.73) | (−0.06–1.06) | (−0.04–1.08) | |
10–15 m | Pre- | 7.18 ± 0.36 | 1.62 ± 0.09 | 4.43 ± 0.24 | 0.125 ± 0.006 | 0.105 ± 0.008 |
Post- | 7.16 ± 0.38 | 1.60 ± 0.11 | 4.48 ± 0.30 | 0.128 ± 0.008 | 0.102 ± 0.013 | |
p, ES | 0.123, 0.44 | 0.150, 0.41 | 0.219, 0.35 | 0.062, 0.55 | 0.058, 0.56 | |
(95% CI) | (−0.12–0.98) | (−0.15–0.95) | (−0.20–0.88) | (−0.03–1.10) | (−0.02–1.11) | |
15–20 m | Pre- | 7.48 ± 0.40 | 1.71 ± 0.09 | 4.39 ± 0.21 | 0.122 ± 0.006 | 0.107 ± 0.008 |
Post- | 7.44 ±0.41 | 1.69 ± 0.10 | 4.41 ± 0.28 | 0.123 ± 0.008 | 0.105 ± 0.112 | |
p, ES | 0.057, 0.56 | 0.112, 0.46 | 0.505, 0.18 | 0.306, 0.29 | 0.233, 0.33 | |
(95% CI) | (−0.02–1.12) | (−0.10–1.00) | (−0.35–0.71) | (−0.26–0.82) | (−0.21–0.87) | |
20–25 m | Pre- | 7.65 ± 0.43 | 1.76 ± 0.09 | 4.35 ± 0.22 | 0.120 ± 0.007 | 0.112 ± 0.007 |
Post- | 7.59 ± 0.42 | 1.74 ± 0.11 | 4.37 ± 0.28 | 0.121 ± 0.007 | 0.111 ± 0.010 | |
p, ES | 0.074, 0.52 | 0.175, 0.38 | 0.787, 0.07 | 0.534, 0.17 | 0.501, 0.19 | |
(95% CI) | (−0.05–1.07) | (−0.17–0.92) | (−0.45–0.60) | (−0.36–0.70) | (−0.35–0.71) | |
25–30 m | Pre- | 7.76 ± 0.46 | 1.80 ± 0.10 | 4.32 ± 0.20 | 0.119 ± 0.007 | 0.115 ± 0.008 |
Post- | 7.68 ± 0.44 | 1.78 ± 0.09 | 4.31 ± 0.27 | 0.119 ± 0.007 | 0.115 ± 0.011 | |
p, ES | 0.076, 0.52 | 0.178, 0.38 | 0.770, 0.08 | 0.682, 0.11 | 0.830, 0.06 | |
(95% CI) | (−0.05–1.07) | (−0.17–0.92) | (−0.45–0.60) | (−0.42–0.64) | (−0.58–0.47) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisi, M.; Stavridis, I.; Bogdanis, G.; Terzis, G.; Paradisis, G. The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics. Physiologia 2023, 3, 295-304. https://doi.org/10.3390/physiologia3020021
Zisi M, Stavridis I, Bogdanis G, Terzis G, Paradisis G. The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics. Physiologia. 2023; 3(2):295-304. https://doi.org/10.3390/physiologia3020021
Chicago/Turabian StyleZisi, Maria, Ioannis Stavridis, Gregory Bogdanis, Gerasimos Terzis, and Giorgos Paradisis. 2023. "The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics" Physiologia 3, no. 2: 295-304. https://doi.org/10.3390/physiologia3020021
APA StyleZisi, M., Stavridis, I., Bogdanis, G., Terzis, G., & Paradisis, G. (2023). The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics. Physiologia, 3(2), 295-304. https://doi.org/10.3390/physiologia3020021