Comparison of Ergogenic Effects of Caffeine and Nitrate Supplementation on Speed, Power and Repeated Sprint Performance of Soccer Players
Abstract
:1. Introduction
2. Material and Methods
2.1. Design
2.2. Subjects
2.3. Anthropometric Measurements
2.4. Speed Testing (10 m and 30 m)
2.5. RSA Test (Repeated Sprint Ability Test)
2.6. Vertical Jump Testing
2.7. Illinois Agility Test
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sport Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Burgess, D.J.; Naughton, G.; Norton, K.I. Profile of movement demands of national soccer players in Australia. J. Sci. Med. Sport 2006, 4, 334–341. [Google Scholar] [CrossRef]
- Koncic, M.Z.; Tomczyk, M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets 2013, 14, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.L.; Mohr, M.; Fulford, J.; Jackman, S.R.; Ermidis, G.; Krustrup, P.; Mileva, K.N. Improved exercise tolerance with caffeine is associated with modulation of both peripheral and central neural processes in human participants. Front. Nutr. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriet, L.L.; MacLean, D.A.; Dyck, D.J.; Hultman, E.; Cederblad, G.; Graham, T.E. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am. J. Phys. 1992, 262, E891–E898. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Apostolidis, A.; Mougios, V.; Smilios, I.; Frangous, M.; Hadjicharalambous, M. Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. J. Int. Soc. Sports Nutr. 2020, 17, 31. [Google Scholar] [CrossRef]
- Polito, M.D.; Souza, D.B.; Casonatto, J. Acute effect of caffeine consumption on isotonic muscular strength and endurance: A systematic review and metaanalysis. Sci. Sports 2016, 31, 119–128. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Van Dijk, J.W.; Maase, K.; Ballak, S.B.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Repeated-sprint performance and plasma responses following beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes. Eur. J. Sport Sci. 2018, 18, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Bailey, S.J.; Vanhatalo, A. Dietary nitrate and O2 consumption during exercise. Med. Sport Sci. 2012, 59, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Chaouch, M.; Boissière, J.; Munyaneza, D.; Gamelin, F.X.; Cuvelier, G.; Berthoin, S.; Aucouturier, J. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J. Am. Coll. Nutr. 2019, 38, 729–738. [Google Scholar] [CrossRef]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1965, 4, 239–280. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Jordan, J.B.; Korgaokar, A.; Farley, R.S.; Coons, J.M.; Caputo, J.L. Caffeine supplementation and reactive agility in elite youth soccer players. Pediatr. Exerc. Sci. 2014, 26, 168–176. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of Caffeinated Gum on a Battery of Soccer-Specific Tests in Trained University-Standard Male Soccer Players. Int. J. Sport Nutr. Exer. Met. 2018, 28, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, M.; Noon, M.; Myers, T.; Clarke, N. Low Doses of Caffeine: Enhancement of Physical Performance in Elite Adolescent Male Soccer Players. Int. J. Sports Physiol. Perf. 2018, 14, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade-Souza, V.A.; Bertuzzi, R.; de Araujo, G.G.; Bishop, D.; Lima-Silva, A.E. Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training sessions on soccer performance. Appl. Physiol. Nutr. Met. 2015, 40, 457–463. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz-Fernández, V.E.; Muñoz, G.; Fernández-Elías, V.E.; Ortega, J.F.; Hamouti, N.; Barbero, J.C.; Muñoz-Guerra, J. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 2012, 7, e31380. [Google Scholar] [CrossRef]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Gómez-Parra, A.; Moreno-Pérez, V.; Courel-Ibáñez, J. Does Acute Beetroot Juice Supplementation Improve Neuromuscular Performance and Match Activity in Young Basketball Players? A Randomized, Placebo-Controlled Study. Nutrients 2020, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- López-Samanes, Á.; Pérez-López, A.; Moreno-Pérez, V.; Nakamura, F.Y.; Acebes-Sánchez, J.; Quintana-Milla, I.; Sánchez-Oliver, A.J.; Moreno-Pérez, D.; Fernández-Elías, V.E.; Domínguez, R. Effects of Beetroot Juice Ingestion on Physical Performance in Highly Competitive Tennis Players. Nutrients 2020, 12, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolidis, A.; Mougios, V.; Smilios, I.; Rodosthenous, J.; Hadjicharalampous, M. Caffeine Supplementation: Ergogenic in Both High and Low Caffeine Responders. Int. J. Sports Physiol. Perf. 2018, 14, 650–665. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Hoogervorst, D.; Peelen, H.B.; de Niet, M.; Verdijk, L.B.; van Loon, L.J.C.; van Dijk, J.W. The impact of beetroot juice supplementation on muscular endurance, maximal strength and countermovement jump performance. Eur. J. Sport Sci. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Carr, A.; Dawson, B.; Schneiker, K.; Goodman, C.; Lay, B. Effect of caffeine supplementation on repeated sprint running performance. J. Sports Med. Phys. Fit. 2008, 48, 472. [Google Scholar]
- Gant, N.; Ali, A.; Foskett, A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int. J. Sport Nutr. Exer. Met. 2010, 20, 191–197. [Google Scholar] [CrossRef]
- Wylie, L.J.; Zevallos, J.O.; Isidore, T.; Nyman, L.; Vanhatalo, A.; Bailey, S.J.; Jones, A.M. Dose dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. Nitric Oxide 2016, 57, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, C.; Vanhatalo, A.; Jell, H.; Fulford, J.; Carter, J.; Nyman, L.; Bailey, S.J.; Jones, A.M. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide 2016, 61, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolsky, M.A. Effect of caffeine on the neuromuscular system—Potential as an ergogenic aid. Appl. Physiol. Nutr. Met. 2008, 33, 1284–1289. [Google Scholar] [CrossRef]
- Laurent, D.; Schneider, K.E.; Prusaczyk, W.K.; Franklin, C.; Vogel, S.M.; Krssak, M.; Petersen, K.F.; Goforth, H.W.; Shulman, G.I. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J. Clin. Endoc. Met. 2000, 85, 2170–2175. [Google Scholar] [CrossRef]
- Neyroud, D.; Cheng, A.J.; Donnelly, C.; Bourdillon, N.; Gassner, A.L.; Geiser, L.; Rudaz, S.; Kayser, B.; Westerblad, H.; Place, N. Toxic doses of caffeine are needed to increase skeletal muscle contractility. Am. J. Physiol. Cell Physiol. 2019, 316, C246–C251. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, G.; Gailly, P. Effects of nitric oxide on the contraction of skeletal muscle. Cell. Mol. Life Sci. 1959, 55, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Eghbali, E. Possible Effects of Beetroot Supplementation on Physical Performance Through Metabolic, Neuroendocrine, and Antioxidant Mechanisms: A Narrative Review of the Literature. Front. Nutr. 2021, 8, 660150. [Google Scholar] [CrossRef] [PubMed]
- Haider, G.; Folland, J.P. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med. Sci. Sports Exerc. 2014, 46, 2234–2243. [Google Scholar] [CrossRef]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sport Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef]
Mean ± SD a | |
---|---|
Age (years) | 21.3 ± 0.9 |
Height (cm) | 176.1 ± 3.8 |
Weight (kg) | 73.49 ± 4.44 |
Body fat % | 12.68 ± 3.09 |
Body mass index (kg/cm2) | 23.65 ± 1.54 |
Training age (years) | 14.08 ± 2.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampelas, D.; Antonopoulos, K.; Michailidis, Y.; Mitrotasios, M.; Mandroukas, A.; Metaxas, T. Comparison of Ergogenic Effects of Caffeine and Nitrate Supplementation on Speed, Power and Repeated Sprint Performance of Soccer Players. Physiologia 2021, 1, 3-11. https://doi.org/10.3390/physiologia1010002
Karampelas D, Antonopoulos K, Michailidis Y, Mitrotasios M, Mandroukas A, Metaxas T. Comparison of Ergogenic Effects of Caffeine and Nitrate Supplementation on Speed, Power and Repeated Sprint Performance of Soccer Players. Physiologia. 2021; 1(1):3-11. https://doi.org/10.3390/physiologia1010002
Chicago/Turabian StyleKarampelas, Dimitris, Konstantinos Antonopoulos, Yiannis Michailidis, Michalis Mitrotasios, Athanasios Mandroukas, and Thomas Metaxas. 2021. "Comparison of Ergogenic Effects of Caffeine and Nitrate Supplementation on Speed, Power and Repeated Sprint Performance of Soccer Players" Physiologia 1, no. 1: 3-11. https://doi.org/10.3390/physiologia1010002
APA StyleKarampelas, D., Antonopoulos, K., Michailidis, Y., Mitrotasios, M., Mandroukas, A., & Metaxas, T. (2021). Comparison of Ergogenic Effects of Caffeine and Nitrate Supplementation on Speed, Power and Repeated Sprint Performance of Soccer Players. Physiologia, 1(1), 3-11. https://doi.org/10.3390/physiologia1010002