Lactation in Primates: Understanding the Physiology of Lactation from an Evolutionary Perspective
Abstract
:1. Introduction
2. Behavioral Characteristics of Primates during Lactation
2.1. Learning and Cooperative Breeding
2.2. Parental Investment and Child’s Growth
3. Life-History Traits and Breastfeeding
3.1. The Interbirth Interval
3.2. The Effect of Multiparity
3.3. Pre- and Post-Weaning Growth
4. Characteristics of the Macro- and Micro-Constituents of Primate Milk
4.1. Fats
4.2. Carbohydrates and Oligosaccharides
4.3. Proteins
4.4. The Milk Microbiome
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zivkovic, A.M.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Human Milk Glycobiome and Its Impact on the Infant Gastrointestinal Microbiota. Proc. Natl. Acad. Sci. USA 2011, 108, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Dubernat, L.; Marousez, L.; Desseyn, J.-L.; Gouyer, V.; Hermann, E.; Gottrand, F.; Ley, D.; Lesage, J. Les oligosaccharides du lait maternel: Des rôles majeurs pour le développement de l’enfant et sa santé future. Med. Sci. 2023, 39, 869–875. [Google Scholar] [CrossRef]
- Hinde, K.; Milligan, L.A. Primate Milk: Proximate Mechanisms and Ultimate Perspectives. Evol. Anthropol. 2011, 20, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Van Noordwijk, M.A.; Kuzawa, C.W.; Van Schaik, C.P. The Evolution of the Patterning of Human Lactation: A Comparative Perspective. Evol. Anthropol. 2013, 22, 202–212. [Google Scholar] [CrossRef]
- Tsutaya, T.; Mizushima, N. Evolutionary biological perspectives on current social issues of breastfeeding and weaning. Am. J. Biol. Anthropol. 2023, 181, 81–93. [Google Scholar] [CrossRef]
- Hrdy, S.B. Evolutionary Context of Human Development. In Attachment and Bonding: A New Synthesis; The MIT Press: Cambridge, MA, USA, 2006; pp. 9–32. [Google Scholar]
- Martin, R.D. The Evolution of Human Reproduction: A Primatological Perspective. Am. J. Phys. Anthropol. 2007, 134, 59–84. [Google Scholar] [CrossRef] [PubMed]
- Portmann, A. Die Tragzeiten der Primaten und Die Dauer der Schwangerschaft Beim Menschen: Ein Problem der Vergleichenden Biologie. Rev. Suisse Zool. 1941, 48, 511–518. [Google Scholar]
- Washburn, S.L. Tools and Human Evolution. Sci. Am. 1960, 203, 63–75. [Google Scholar] [CrossRef]
- Abitbol, M.M. The Shapes of the Female Pelvis. Contributing Factors. J. Reprod. Med. 1996, 41, 242–250. [Google Scholar]
- Frémondière, P.; Thollon, L.; Marchal, F. Pelvic and neonatal size correlations in light of evolutionary hypotheses. Am. J. Hum. Biol. 2022, 34, e23619. [Google Scholar] [CrossRef]
- DeSilva, J.M.; Lesnik, J.J. Brain Size at Birth throughout Human Evolution: A New Method for Estimating Neonatal Brain Size in Hominins. J. Hum. Evol. 2008, 55, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Frémondière, P.; Thollon, L.; Marchal, F.; Fornai, C.; Webb, N.M.; Haeusler, M. Dynamic Finite-Element Simulations Reveal Early Origin of Complex Human Birth Pattern. Commun. Biol. 2022, 5, 377. [Google Scholar] [CrossRef]
- Frémondière, P.; Haeusler, M.; Thollon, L.; Webb, N.M.; Marchal, F. Obstetrical Constraints and the Origin of Extended Postnatal Brain Maturation in Hominin Evolution. Biology 2024, 13, 398. [Google Scholar] [CrossRef] [PubMed]
- Blomquist, G.E.; Hinde, K.; Milligan Newmark, L.A. Diet Predicts Milk Composition in Primates. bioRxiv 2017, 197004. [Google Scholar] [CrossRef]
- Oftedal, O.T. Use of Maternal Reserves as a Lactation Strategy in Large Mammals. Proc. Nutr. Soc. 2000, 59, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Abello, M.T.; Colell, M. Analysis of Factors That Affect Maternal Behaviour and Breeding Success in Great Apes in Captivity. Int. Zoo. Yearb. 2006, 40, 323–340. [Google Scholar] [CrossRef]
- Chalmeau, R.; Gallo, A. La Transmission Sociale Chez Les Primates. Annee Psychol. 1993, 93, 427–439. [Google Scholar] [CrossRef]
- Neville, M.C.; Anderson, S.M.; McManaman, J.L.; Badger, T.M.; Bunik, M.; Contractor, N.; Crume, T.; Dabelea, D.; Donovan, S.M.; Forman, N.; et al. Lactation and Neonatal Nutrition: Defining and Refining the Critical Questions. J. Mammary Gland. Biol. Neoplasia 2012, 17, 167–188. [Google Scholar] [CrossRef]
- Volk, A.A. Human Breastfeeding Is Not Automatic: Why That’s so and What It Means for Human Evolution. J. Soc. Evol. Cult. Psychol. 2009, 3, 305–314. [Google Scholar] [CrossRef]
- Rosen, I.M.; Krueger, M.V.; Carney, L.M.; Graham, J.A. Prenatal breastfeeding education and breastfeeding outcomes. MCN Am. J. Matern. Child. Nurs. 2008, 33, 315–319. [Google Scholar] [CrossRef]
- Çaylan, N.; Kiliç, M.; Yalçin, S.; Tezel, B.; Kara, F. Baby-friendly hospitals in Turkey: Evaluation of adherence to the Ten Steps to Successful Breastfeeding. East. Mediterr. Health J. 2022, 628, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Budd, A.; Smith, L.G. On the Birth and Upbringing of the Female Chimpanzee “Jacqueline” (Born 28/11/37 in the Zoological Gardens, London). Proc. Zool. Soc. Lond. 1943, A113, 1–20. [Google Scholar] [CrossRef]
- Wyatt, J.M.; Vevees, G.M. 13. On the Birth of a Chimpanzee Recently Born in the Society’s Gardens. Proc. Zool. Soc. Lond. 1935, 105, 195–197. [Google Scholar] [CrossRef]
- Schaller, G.E. Population density, Structure, and Behavior. In The mountain gorilla: Ecology and behavior; University Chicago Press: Oxford, UK, 1963; pp. 92–149. [Google Scholar]
- Gunther, M. Instinct and the Nursing Couple. Lancet 1955, 268, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Marrisson, B. Woman Teaches Gorilla Art of Nursing a Baby. The Blade, 13 November 1987. [Google Scholar]
- Gurdjian, C. A Female Orangutan Learns to Feed Her Baby by Watching Her Keeper Breastfeed. Géo, 3 April 2023. [Google Scholar]
- Tilden, C.D.; Oftedal, O.T. Milk Composition Reflects Pattern of Material Care in Prosimian Primates. Am. J. Primatol. 1997, 41, 195–211. [Google Scholar] [CrossRef]
- Martin, R.D. Human Brain Evolution in an Ecological Context. In Proceedings of the 52nd James Arthur Lecture on the Evolution of the Human Brain, American Museum of Natural History, New York, NY, USA, 27 April 1982. [Google Scholar]
- Oftedal, O.T. Milk Composition, Milk Yield, and Energy Output at Peak Lactation: A Comparative Review. In Symposia of the Zoological Society of London; National Zool. Park, Smithsonian Inst.: Washington, DC, USA, 1984. [Google Scholar]
- Dufour, D.L.; Sauther, M.L. Comparative and Evolutionary Dimensions of the Energetics of Human Pregnancy and Lactation. Am. J. Hum. Biol. 2002, 14, 584–602. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Lee, P.C.; Rosetta, L. Dominance and Reproductive Rates in Captive Female Olive Baboons, Papio anubis. Am. J. Phys. Anthropol. 2006, 131, 64–72. [Google Scholar] [CrossRef]
- Milligan, L.A.; Bazinet, R.P. Evolutionary Modifications of Human Milk Composition: Evidence from Long-Chain Polyunsaturated Fatty Acid Composition of Anthropoid Milks. J. Hum. Evol. 2008, 55, 1086–1095. [Google Scholar] [CrossRef]
- Garcia, M.; Power, M.L.; Moyes, K.M. Immunoglobulin A and Nutrients in Milk from Great Apes throughout Lactation. Am. J. Primatol. 2017, 79, e22614. [Google Scholar] [CrossRef]
- Hinde, K.; Capitanio, J.P. Lactational Programming? Mother’s Milk Energy Predicts Infant Behavior and Temperament in Rhesus Macaques (Macaca mulatta). Am. J. Primatol. 2010, 72, 522–529. [Google Scholar] [CrossRef]
- Cosnefroy, Q.; Berillon, G.; Gilissen, E.; Brige, P.; Chaumoître, K.; Lamberton, F.; Marchal, F. New insights into patterns of integration in the femur and pelvis among catarrhines. Am. J. Biol. Anthropol. 2024, 184, e24931. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.D. Positional Behaviour of Olive Baboons (Papio anubis) and Its Relationship to Maintenance and Social Activities. Primates 1977, 18, 59–116. [Google Scholar] [CrossRef]
- VandeBerg, J.L.; Williams-Blangero, S.; Tardif, S.D. (Eds.) The Baboon in Biomedical Research; Springer: New York, NY, USA, 2009; ISBN 978-0-387-75990-6. [Google Scholar]
- Thompson, M.E.; Muller, M.N.; Wrangham, R.W. The Energetics of Lactation and the Return to Fecundity in Wild Chimpanzees. Behav. Ecol. 2012, 23, 1234–1241. [Google Scholar] [CrossRef]
- Bădescu, I.; Watts, D.P.; Curteanu, C.; Desruelle, K.J.; Sellen, D.W. Effects of Infant Age and Sex, and Maternal Parity on the Interaction of Lactation with Infant Feeding Development in Chimpanzees. PLoS ONE 2022, 17, e0272139. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Mis, N.F.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
- World Health Organization (WHO). 55th World Health Assembly. Infant and Young Child 983 Nutrition. World Health Organization, 2002 (WHA55.25). 984. Available online: http://apps.who.int/gb/archive/pdf_files/WHA55/ewha5525.pdf (accessed on 18 September 2024).
- World Health Organization. WHO Guideline for Complementary Feeding of Infants and Young Children 6–23 Months of Age; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Bogin, B. Evolutionary Perspective on Human Growth. Annu. Rev. Anthropol. 1999, 28, 109–153. [Google Scholar] [CrossRef]
- Ellison, P.T. Energetics and Reproductive Effort. American J. Hum. Biol. 2003, 15, 342–351. [Google Scholar] [CrossRef]
- Pontzer, H.; McGrosky, A. Balancing growth, reproduction, maintenance, and activity in evolved energy economies. Curr. Biol. 2022, 32, R709–R719. [Google Scholar] [CrossRef]
- Touitou, S.; Heistermann, M.; Schülke, O.; Ostner, J. The effect of reproductive state on activity budget, feeding behavior, and urinary C-peptide levels in wild female Assamese macaques. Behav. Ecol. Sociobiol. 2021, 75, 128. [Google Scholar] [CrossRef]
- Gesquiere, L.R.; Altmann, J.; Archie, E.A.; Alberts, S.C. Interbirth Intervals in Wild Baboons: Environmental Predictors and Hormonal Correlates. Am. J. Phys. Anthropol. 2018, 166, 107–126. [Google Scholar] [CrossRef]
- Bocquet-Appel, J.-P.; Bar-Yosef, O. The Neolithic Demographic Transition and Its Consequences; Springer: New York, NY, USA, 2008; ISBN 978-1-4020-8538-3. [Google Scholar]
- Hinde, K.; Power, M.L.; Oftedal, L.T. Rhesus macaque milk: Magnitude, sources, and consequences of individual variation over lactation. Am. J. Phys. Anthropol. 2009, 138, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; Skibiel, A.L.; Foster, A.B.; Del Rosso, L.; Mendoza, S.P.; Capitanio, J.P. Cortisol in Mother’s Milk across Lactation Reflects Maternal Life History and Predicts Infant Temperament. Behav. Ecol. 2015, 26, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, V.; Melgaard, D.; Jensen, K.L.; Eidhammer, A.; Westmark, S.; Kragholm, K.H.; Gommesen, D. Primiparous women differ from multiparous women after early discharge regarding breastfeeding, anxiety, and insecurity: A prospective cohort study. Eur. J. Midwifery 2022, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, M.; Chiasson, S.; Lauzière, J. Biologie de L’allaitement: Le Sein, Le Lait, Le Geste: Le Sein—Le Lait—Le Geste, 1st ed.; Presses de l’Université du Québec: Québec, QC, Canada, 2006; ISBN 978-2-7605-1395-2. [Google Scholar]
- Smith, T.M.; Austin, C.; Hinde, K.; Vogel, E.R.; Arora, M. Cyclical Nursing Patterns in Wild Orangutans. Sci. Adv. 2017, 3, e1601517. [Google Scholar] [CrossRef]
- Austin, C.; Smith, T.M.; Bradman, A.; Hinde, K.; Joannes-Boyau, R.; Bishop, D.; Hare, D.J.; Doble, P.; Eskenazi, B.; Arora, M. Barium Distributions in Teeth Reveal Early-Life Dietary Transitions in Primates. Nature 2013, 498, 216–219. [Google Scholar] [CrossRef]
- Tackoen, M. Le lait maternel: Composition nutritionnelle et propriétés fonctionnelles. Rev. Med. Brux. 2012, 33, 309–317. [Google Scholar]
- Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.; et al. Colostrum and mature human milk of women from London, Moscow, and Verona: Determinants of immune composition. Nutrients 2016, 8, 695. [Google Scholar] [CrossRef]
- Hassiotou, F.; Geddes, D. Anatomy of the human mammary gland: Current status of knowledge. Clin. Anat. 2013, 26, 29–48. [Google Scholar] [CrossRef]
- Mitina, A.; Mazin, P.; Vanyushkina, A.; Anikanov, N.; Mair, W.; Guo, S.; Khaitovich, P. Lipidome Analysis of Milk Composition in Humans, Monkeys, Bovids, and Pigs. BMC Evol. Biol. 2020, 20, 70. [Google Scholar] [CrossRef]
- Mitanchez, D. Ontogenesis of glucose regulation in neonate and consequences in neonatal management. Arch. Pediatr. 2008, 15, 64–74. [Google Scholar] [CrossRef]
- Durham, S.D.; Wei, Z.; Lemay, D.G.; Lange, M.C.; Barile, D. Creation of a Milk Oligosaccharide Database, MilkOligoDB, Reveals Common Structural Motifs and Extensive Diversity across Mammals. Sci. Rep. 2023, 13, 10345. [Google Scholar] [CrossRef] [PubMed]
- Marcobal, A.; Sonnenburg, J.L. Human Milk Oligosaccharide Consumption by Intestinal Microbiota. Clin. Microbiol. Infect. 2012, 18, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Urashima, T.; Asakuma, S.; Leo, F.; Fukuda, K.; Messer, M.; Oftedal, O.T. The Predominance of Type I Oligosaccharides Is a Feature Specific to Human Breast Milk. Adv. Nutr. 2012, 3, 473S–482S. [Google Scholar] [CrossRef]
- McManaman, J.L.; Neville, M.C. Mammary Physiology and Milk Secretion. Adv. Drug Deliv. Rev. 2003, 55, 629–641. [Google Scholar] [CrossRef]
- Mosca, F.; Giannì, M.L. Human Milk: Composition and Health Benefits. Pediatr. Med. Chir. 2017, 39, 155. [Google Scholar] [CrossRef]
- Bell, A.; Severi, E.; Owen, C.D.; Latousakis, D.; Juge, N. Biochemical and structural basis of sialic acid utilization by gut microbes. J. Biol. Chem. 2023, 299, 102989. [Google Scholar]
- Jantscher-Krenn, E.; Zherebtsov, M.; Nissan, C.; Goth, K.; Guner, Y.S.; Naidu, N.; Choudhury, B.; Grishin, A.V.; Ford, H.R.; Bode, L. The Human Milk Oligosaccharide Disialyllacto-N-Tetraose Prevents Necrotising Enterocolitis in Neonatal Rats. Gut 2012, 61, 1417–1425. [Google Scholar] [CrossRef]
- Hill, C.J.; Lynch, D.B.; Murphy, K.; Ulaszewska, M.; Jeffery, I.B.; O’Shea, C.A.; Watkins, C.; Dempsey, E.; Mattivi, F.; Tuohy, K.; et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 2017, 5, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.; Wu, S.; Kim, J.; An, H.J.; Hinde, K.; Power, M.L.; Gagneux, P.; German, J.B.; Lebrilla, C.B. Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates. J. Proteome Res. 2011, 10, 1548–1557. [Google Scholar] [CrossRef]
- Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: A developmental perspective. J. Nutr. Biochem. 2017, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McClellan, H.L.; Miller, S.J.; Hartmann, P.E. Evolution of Lactation: Nutrition v. Protection with Special Reference to Five Mammalian Species. Nutr. Res. Rev. 2008, 21, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Quercia, S.; Aceti, A.; Beghetti, I.; Rampelli, S.; Turroni, S.; Faldella, G.; Candela, M.; Brigidi, P.; Corvaglia, L. The Bacterial Ecosystem of Mother’s Milk and Infant’s Mouth and Gut. Front. Microbiol. 2017, 8, 1214. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, O.; Iverson, S.J. Comparative Analysis of Nonhuman Milks. In Handbook of Milk Composition; Elsevier: Amsterdam, The Netherlands, 1995; pp. 749–788. [Google Scholar]
- Muletz-Wolz, C.R.; Kurata, N.P.; Himschoot, E.A.; Wenker, E.S.; Quinn, E.A.; Hinde, K.; Power, M.L.; Fleischer, R.C. Diversity and Temporal Dynamics of Primate Milk Microbiomes. Am. J. Primatol. 2019, 81, e22994. [Google Scholar] [CrossRef]
- Skibiel, A.L.; Downing, L.M.; Orr, T.J.; Hood, W.R. The Evolution of the Nutrient Composition of Mammalian Milks. J. Anim. Ecol. 2013, 82, 1254–1264. [Google Scholar] [CrossRef]
- Joannes-Boyau, R.; Adams, J.W.; Austin, C.; Arora, M.; Moffat, I.; Herries, A.I.; Tonge, M.P.; Benazzi, S.; Evans, A.R.; Kullmer, O.; et al. Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress. Nature 2019, 572, 112–115. [Google Scholar] [CrossRef]
Type of Mothering | Energy Density of Milk | Proportion of Macro-Constituents | Infant’s Growth | Species of the Old World |
---|---|---|---|---|
Cohesive | Dilute | Carbohydrates > Fats | Slow | Cercopithecoides (baboons) Great apes (modern humans, chimpanzees, gorillas, orangutans |
Decoupled | Concentrate | Fats > Carbohydrates | Fast | Prosimian |
Old World Monkeys | Ratio of Type I/II Core Structure | Type of Linked Fucose Units | N-Glycolneuraminic Acid Neu 5GC | Oligosacharrides/Lactose Ratio |
---|---|---|---|---|
Bonobo | II > I | 2′-FL 3-FL | present | 1/4 to 1/5 |
Chimpanzee | II > I | present | 1/4 to 1/5 | |
Gorilla | II > I | 2′-FL | present | |
Orangutan | II > I | present | 1 to 0.8 | |
Modern human | I > II | 2′-FL 3′-FL | absent | 1/3 to 1/12 |
Hamadryas baboon | II > I | 3-FL | absent | |
Rhesus macaque | II > I | 3-FL | present |
Primates | Colostrum | Mature Milk |
---|---|---|
Modern man | 600–750 | 120–130 |
Gorilla | 67.9 | - |
Orangutan | - | 29.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassler, M.P.; Fabre, A.; Moulin, V.; Faccin, L.; Gullstrand, J.; Cermolacce, A.; Frémondière, P. Lactation in Primates: Understanding the Physiology of Lactation from an Evolutionary Perspective. Humans 2024, 4, 298-309. https://doi.org/10.3390/humans4040019
Hassler MP, Fabre A, Moulin V, Faccin L, Gullstrand J, Cermolacce A, Frémondière P. Lactation in Primates: Understanding the Physiology of Lactation from an Evolutionary Perspective. Humans. 2024; 4(4):298-309. https://doi.org/10.3390/humans4040019
Chicago/Turabian StyleHassler, Michelle Pascale, Alexandre Fabre, Valérie Moulin, Lucie Faccin, Julie Gullstrand, Alexia Cermolacce, and Pierre Frémondière. 2024. "Lactation in Primates: Understanding the Physiology of Lactation from an Evolutionary Perspective" Humans 4, no. 4: 298-309. https://doi.org/10.3390/humans4040019
APA StyleHassler, M. P., Fabre, A., Moulin, V., Faccin, L., Gullstrand, J., Cermolacce, A., & Frémondière, P. (2024). Lactation in Primates: Understanding the Physiology of Lactation from an Evolutionary Perspective. Humans, 4(4), 298-309. https://doi.org/10.3390/humans4040019