The Relationship of the Lower Ribcage with Liver and Gut Size: Implications for Paleoanthropology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Ribcage Measurements
- The ribcage flare angle is defined as the angle between landmarks 5, 1, and 9. It is meant to represent the degree to which the ribcage “flares” at the bottom. Larger angles indicate a more flared lower ribcage;
- The rib angle is defined as the angle between landmarks 2, 3, and 5 (right of rib 10). It is meant to represent the amount of space within the rib and the “openness” of the rib curvature;
- The maximum ribcage breadth at rib 10 is defined as the distance between landmarks 4 and 8, which are the lateral-most points on the right and left of rib 10.
2.3. Organ Volume Measurements
2.4. Statistical Analyses
- The ribcage flare angle;
- The rib angle;
- The maximum ribcage breadth.
3. Results
4. Discussion
4.1. Organ–Skeleton Relationships Are Complicated
4.2. Implications for Paleoanthropology and Human Evolution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiello, L.C.; Wheeler, P. The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution. Curr. Anthropol. 1995, 36, 199–221. [Google Scholar] [CrossRef]
- Ben-Dor, M.; Gopher, A.; Barkai, R. Neandertals’ Large Lower Thorax May Represent Adaptation to High Protein Diet. Am. J. Phys. Anthropol. 2016, 160, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P. The Trunk of the Australopithecines. In Origine(s) de la Bipédie Chez Les Hominidés; Presses du CNRS: Paris, France, 1991; pp. 225–234. [Google Scholar]
- Williams, S.A.; García-Martínez, D.; Bastir, M.; Meyer, M.R.; Nalla, S.; Hawks, J.; Schmid, P.; Churchill, S.E.; Berger, L.R. The Vertebrae and Ribs of Homo Naledi. J. Hum. Evol. 2017, 104, 136–154. [Google Scholar] [CrossRef]
- Wrangham, R. Control of Fire in the Paleolithic: Evaluating the Cooking Hypothesis. Curr. Anthropol. 2017, 58, S303–S313. [Google Scholar] [CrossRef]
- Bramble, D.M.; Lieberman, D.E. Endurance Running and the Evolution of Homo. Nature 2004, 432, 345–352. [Google Scholar] [CrossRef]
- Milton, K. A Hypothesis to Explain the Role of Meat-Eating in Human Evolution. Evol. Anthropol. Issues News Rev. 1999, 8, 11–21. [Google Scholar] [CrossRef]
- Wrangham, R.; Jones, J.H.; Laden, G.; Pilbeam, D.; Conklin-Brittain, N.; Brace, C.L.; Bunn, H.T.; Roura, E.C.; Hawkes, K.; O’Connell, J. The Raw and the Stolen: Cooking and the Ecology of Human Origins. Curr. Anthropol. 1999, 40, 567–594. [Google Scholar] [CrossRef]
- Schultz, A. Vertebral Column and Thorax. In Primatologia, Handbuch der Primatenkunde; Schultz, A., Starck, D., Eds.; Karger Medical and Scientific Publishers: Basel, Switzerland, 1961; Volume 4, pp. 1–66. [Google Scholar]
- Gómez-Olivencia, A.; Barash, A.; García-Martínez, D.; Arlegi, M.; Kramer, P.; Bastir, M.; Been, E. 3D Virtual Reconstruction of the Kebara 2 Neandertal Thorax. Nat. Commun. 2018, 9, 4387. [Google Scholar] [CrossRef]
- Franciscus, R.G.; Churchill, S.E. The Costal Skeleton of Shanidar 3 and a Reappraisal of Neandertal Thoracic Morphology. J. Hum. Evol. 2002, 42, 303–356. [Google Scholar] [CrossRef]
- Weinstein, K.J. Thoracic Morphology in Near Eastern Neandertals and Early Modern Humans Compared with Recent Modern Humans from High and Low Altitudes. J. Hum. Evol. 2008, 54, 287–295. [Google Scholar] [CrossRef]
- Shaw, B.I.; Burdine, L.J.; Braun, H.J.; Ascher, N.L.; Roberts, J.P. A Formula to Calculate Standard Liver Volume Using Thoracoabdominal Circumference. Transplant. Direct 2017, 3, e225. [Google Scholar] [CrossRef] [PubMed]
- Latimer, B.M.; Lovejoy, C.O.; Spurlock, L.; Haile-Selassie, Y. The Thoracic Cage of KSD-VP-1/1. In The Postcranial Anatomy of Australopithecus Afarensis: New Insights from KSD-VP-1/1; Haile-Selassie, Y., Su, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 143–153. [Google Scholar]
- Jellema, L.M.; Latimer, B.; Walker, A. The Rib Cage. In The Nariokotome Homo Erectus Skeleton; Walker, A., Leakey, R.E., Eds.; Harvard University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Bastir, M.; García-Martínez, D.; Torres-Tamayo, N.; Palancar, C.A.; Beyer, B.; Barash, A.; Villa, C.; Sanchis-Gimeno, J.A.; Riesco-López, A.; Nalla, S.; et al. Rib Cage Anatomy in Homo Erectus Suggests a Recent Evolutionary Origin of Modern Human Body Shape. Nat. Ecol. Evol. 2020, 4, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Milton, K. Primate Diets and Gut Morphology: Implications for Hominid Evolution. In Food and Evolution: Toward a Theory of Human Food Habits; Harris, M., Ross, E.B., Eds.; Temple University Press: Philadephia, PA, USA, 1987; pp. 93–115. [Google Scholar]
- Snodgrass, J.J.; Leonard, W.R.; Robertson, M.L. The Energetics of Encephalization in Early Hominids. In The Evolution of Hominin Diets; Hublin, J.-J., Richards, M.P., Eds.; Vertebrate Paleobiology and Paleoanthropology; Springer: Dordrecht, The Netherlands, 2009; pp. 15–29. ISBN 978-1-4020-9698-3. [Google Scholar]
- Bastir, M.; García-Martínez, D.; Williams, S.A.; Recheis, W.; Torres-Sánchez, I.; García Río, F.; Oishi, M.; Ogihara, N. 3D Geometric Morphometrics of Thorax Variation and Allometry in Hominoidea. J. Hum. Evol. 2017, 113, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.K. The Thoracic Shape of Hominoids. Anat. Res. Int. 2014, 2014, 324850. [Google Scholar] [CrossRef] [PubMed]
- Kagaya, M.; Ogihara, N.; Nakatsukasa, M. Morphological Study of the Anthropoid Thoracic Cage: Scaling of Thoracic Width and an Analysis of Rib Curvature. Primates 2008, 49, 89–99. [Google Scholar] [CrossRef]
- Schmid, P.; Churchill, S.E.; Nalla, S.; Weissen, E.; Carlson, K.J.; de Ruiter, D.J.; Berger, L.R. Mosaic Morphology in the Thorax of Australopithecus Sediba. Science 2013, 340, 1234598. [Google Scholar] [CrossRef] [PubMed]
- Bastir, M.; García Martínez, D.; Recheis, W.; Barash, A.; Coquerelle, M.; Rios, L.; Peña-Melián, Á.; García Río, F.; O’Higgins, P. Differential Growth and Development of the Upper and Lower Human Thorax. PLoS ONE 2013, 8, e75128. [Google Scholar] [CrossRef]
- García-Martínez, D.; Bastir, M.; Gómez-Olivencia, A.; Maureille, B.; Golovanova, L.; Doronichev, V.; Akazawa, T.; Kondo, O.; Ishida, H.; Gascho, D.; et al. Early Development of the Neanderthal Ribcage Reveals a Different Body Shape at Birth Compared to Modern Humans. Sci. Adv. 2020, 6, eabb4377. [Google Scholar] [CrossRef]
- García-Martínez, D.; Recheis, W.; Bastir, M. Ontogeny of 3D Rib Curvature and Its Importance for the Understanding of Human Thorax Development. Am. J. Phys. Anthropol. 2016, 159, 423–431. [Google Scholar] [CrossRef]
- Torres-Tamayo, N.; García-Martínez, D.; Lois Zlolniski, S.; Torres-Sánchez, I.; García-Río, F.; Bastir, M. 3D Analysis of Sexual Dimorphism in Size, Shape and Breathing Kinematics of Human Lungs. J. Anat. 2018, 232, 227–237. [Google Scholar] [CrossRef]
- Ward, C.; Peacock, S.; Winkler, Z.; Maddux, S. Covariation among Elements of the Bony Torso in Anthropoid Primates. FASEB J. 2015, 29, 701.1. [Google Scholar] [CrossRef]
- Ward, C.V.; Maddux, S.D.; Middleton, E.R. Three-Dimensional Anatomy of the Anthropoid Bony Pelvis. Am. J. Phys. Anthropol. 2018, 166, 3–25. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, D.; Torres-Tamayo, N.; Torres-Sanchez, I.; García-Río, F.; Bastir, M. Morphological and Functional Implications of Sexual Dimorphism in the Human Skeletal Thorax. Am. J. Phys. Anthropol. 2016, 161, 467–477. [Google Scholar] [CrossRef]
- Uy, J.; Hawks, J.; VanSickle, C. Sexual Dimorphism of the Relationship between the Gut and Pelvis in Humans. Am. J. Phys. Anthropol. 2020, 173, 130–140. [Google Scholar] [CrossRef]
- Boyle, E.K.; Almécija, S. Iliac Flare Is Related to Body Mass and Gut Size in Apes, but Not in Monkeys. Am. J. Phys. Anthropol. 2018, 165, 34–35. [Google Scholar]
- Bellemare, F.; Fuamba, T.; Bourgeault, A. Sexual Dimorphism of Human Ribs. Respir. Physiol. Neurobiol. 2006, 150, 233–239. [Google Scholar] [CrossRef]
- García-Martínez, D.; Bastir, M.; Torres-Tamayo, N.; O’Higgins, P.; Torres-Sánchez, I.; García-Río, F.; Heuzé, Y. Three-dimensional Analysis of Sexual Dimorphism in Ribcage Kinematics of Modern Humans. Am. J. Phys. Anthropol. 2019, 169, 348–355. [Google Scholar] [CrossRef]
- Gondolesi, G.; Ramisch, D.; Padin, J.; Almau, H.; Sandi, M.; Schelotto, P.B.; Fernandez, A.; Rumbo, C.; Solar, H. What Is the Normal Small Bowel Length in Humans? First Donor-Based Cohort Analysis. Am. J. Transplant. 2012, 12, S49–S54. [Google Scholar] [CrossRef] [PubMed]
- Hounnou, G.; Destrieux, C.; Desme, J.; Bertrand, P.; Velut, S. Anatomical Study of the Length of the Human Intestine. Surg. Radiol. Anat. 2002, 24, 290–294. [Google Scholar]
- Hosseinpour, M.; Behdad, A. Evaluation of Small Bowel Measurement in Alive Patients. Surg. Radiol. Anat. 2008, 30, 653–655. [Google Scholar] [CrossRef]
- Khashab, M.; Pickhardt, P.; Kim, D.; Rex, D. Colorectal Anatomy in Adults at Computed Tomography Colonography: Normal Distribution and the Effect of Age, Sex, and Body Mass Index. Endoscopy 2009, 41, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- López-Rey, J.M.; D’Angelo Del Campo, M.D.; Seldes, V.; García-Martínez, D.; Bastir, M. Eco-geographic and Sexual Variation of the Ribcage in Homo Sapiens. Evol. Anthropol. 2024, e22040. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Zhou, R.; Orkin, B.A.; Williams, J.M.; Serici, A.; Poirier, J.; El-Bermani, W.; Bohn, R.; Kowal-Vern, A. In Vivo Small Bowel Length Is Longer than in Formalin-Fixed Cadavers. Int. J. Surg. Res. Pract. 2020, 7, 1410107. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Fulenwider, T.; Nordlinger, B.; Barlow, R.; Sones, P.; Kutner, M. Accurate Measurement of Liver, Kidney, and Spleen Volume and Mass by Computerized Axial Tomography. Ann. Intern. Med. 1979, 90, 185–187. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Uy, J.; Laudicina, N.M. Assessing the Role of the Pelvic Canal in Supporting the Gut in Humans. PLoS ONE 2021, 16, e0258341. [Google Scholar] [CrossRef]
- Muggli, D.; Müller, M.A.; Karlo, C.; Fornaro, J.; Marincek, B.; Frauenfelder, T. A Simple Method to Approximate Liver Size on Cross-Sectional Images Using Living Liver Models. Clin. Radiol. 2009, 64, 682–689. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Revelle, W. Package ‘Psych’. Compr. R Arch. Netw. 2015, 337, 161–165. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Kabacoff, R. R in Action: Data Analysis and Graphics with R and Tidyverse; Manning: Shelter Island, NY, USA, 2022; ISBN 1-61729-605-8. [Google Scholar]
- Adams, D.; Collyer, M.; Kaliontzopoulou, A.; Baken, E. Geomorph: Software for Geometric Morphometric Analyses; R Package Version 4.0.8; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Baken, E.; Collyer, M.; Kaliontzopoulou, A.; Adams, D. Geomorph v4.0 and gmShiny: Enhanced Analytics and a New Graphical Interface for a Comprehensive Morphometric Experience. Methods Ecol. Evol. 2021, 12, 2355–2363. [Google Scholar] [CrossRef]
- Gower, J.C. Generalized Procrustes Analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Corti, M. Use of Two-Block Partial Least-Squares to Study Covariation in Shape. Syst. Biol. 2000, 49, 740–753. [Google Scholar] [CrossRef]
- Torres-Tamayo, N.; García-Martínez, D.; Nalla, S.; Barash, A.; Williams, S.A.; Blanco-Pérez, E.; Mata Escolano, F.; Sanchis-Gimeno, J.A.; Bastir, M. The Torso Integration Hypothesis Revisited in Homo Sapiens: Contributions to the Understanding of Hominin Body Shape Evolution. Am. J. Phys. Anthropol. 2018, 167, 777–790. [Google Scholar] [CrossRef]
- Middleton, E.R.; Winkler, Z.J.; Hammond, A.S.; Plavcan, J.M.; Ward, C.V. Determinants of Iliac Blade Orientation in Anthropoid Primates. Anat. Rec. 2017, 300, 810–827. [Google Scholar] [CrossRef]
- Gilroy, R.J.; Mangura, B.T.; Lavietes, M.H. Rib Cage and Abdominal Volume Displacements during Breathing in Pregnancy1–3. Am. Rev. Respir. Dis. 1988, 137, 668–672. [Google Scholar] [CrossRef]
- LoMauro, A.; Aliverti, A. Respiratory Physiology of Pregnancy: Physiology Masterclass. Breathe 2015, 11, 297–301. [Google Scholar] [CrossRef]
Landmarks | Description |
---|---|
1 | Anterior–superior most point on the T10 vertebral body |
2 | Anterior-most point on the head of rib 10 on the right side |
3 | Most superior point of the rib angle on the posterior side of rib 10 on the right side |
4 | Lateral-most point on the shaft of rib 10 on the right side |
5 | Medial-most point on the sternal end of rib 10 on the right side |
6–9 | Repeat of landmarks 2–5, but on the left side |
Measurement | Female (N = 31) | Male (N = 30) |
---|---|---|
Liver Volume (cm3) | 1559 ± 394 | 1604 ± 392 |
Gut Volume (cm3) | 4367 ± 905 | 5742 ± 1525 |
Ribcage Flare Angle | 113° ± 10 | 123° ± 11 |
Rib Angle | 93° ± 5 | 91° ± 5 |
Max Breadth (cm) | 26 ± 2 | 29 ± 2 |
Regression Models | r2 (p-Value) Female Sample | r2 (p-Value) Male Sample |
---|---|---|
Liver ~ Ribcage Flare + Wt | 0.03 (ns) | 0.04 (ns) |
Liver ~ Rib Angle + Wt | 0.01 (ns) | 0.03 (ns) |
Liver ~ Ribcage Breadth * Wt | −0.02 (ns) | 0.06 (ns) |
Liver ~ Rib 10 Shape | 0.44 (ns) | 0.24 (ns) |
Gut ~ Ribcage Flare + Wt | 0.24 * (p < 0.01) | 0.54 * (p < 0.01) |
Gut ~ Rib Angle + Wt | 0.15 (p = 0.04) | 0.55 * (p < 0.01) |
Gut ~ Ribcage Breadth * Wt | 0.38 * (p < 0.01) | 0.53 * (p < 0.01) |
Gut ~ Rib 10 Shape | 0.61 (ns) | 0.20 (ns) |
Regression Models * | Female Sample | Male Sample |
---|---|---|
Gut ~ Ribcage Flare | 48% rib < 52% weight | 10% rib < 90% weight |
Gut ~ Rib Angle | 3% rib < 97% weight | 1% rib < 99% weight |
Gut ~ Ribcage Breadth | 65% rib > 35% weight | 16% rib < 84% weight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uy, J.; Beresnevičiūtė, G.; Nguyen, V. The Relationship of the Lower Ribcage with Liver and Gut Size: Implications for Paleoanthropology. Humans 2024, 4, 310-320. https://doi.org/10.3390/humans4040020
Uy J, Beresnevičiūtė G, Nguyen V. The Relationship of the Lower Ribcage with Liver and Gut Size: Implications for Paleoanthropology. Humans. 2024; 4(4):310-320. https://doi.org/10.3390/humans4040020
Chicago/Turabian StyleUy, Jeanelle, Gabrielė Beresnevičiūtė, and Vyvy Nguyen. 2024. "The Relationship of the Lower Ribcage with Liver and Gut Size: Implications for Paleoanthropology" Humans 4, no. 4: 310-320. https://doi.org/10.3390/humans4040020
APA StyleUy, J., Beresnevičiūtė, G., & Nguyen, V. (2024). The Relationship of the Lower Ribcage with Liver and Gut Size: Implications for Paleoanthropology. Humans, 4(4), 310-320. https://doi.org/10.3390/humans4040020