Native Algal Consortia as a Bioremediation Tool for Polluted Freshwater Ecosystems: A Case Study from the Yamuna River
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Quantification of Emerging Organic Pollutants
2.2. Collection of Water Sample
2.3. Analysis of Physiochemical Factor
2.4. Analysis of Heavy Metals
2.5. LC-MS/MS Analysis
2.6. Preparation of Algal Consortia
2.7. Phycoremediation Analysis
2.8. Statistical Analysis
3. Results
3.1. Heavy Metals Analysis
3.2. Analysis of Pollutants Before and After Phycoremediation
3.3. Phycoremediation
3.4. LC-MS Analysis of Water Sample for Pollutants
3.5. Statical Analysis
4. Discussion
4.1. Removal of Inorganic Pollutants
4.2. Organic Load Removal
4.2.1. Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)
4.2.2. Salinity, Conductivity, and TDS
4.3. pH Modulation
4.4. Heavy Metal in Water and Its Removal
4.5. Pollutants and Their Impacts on Human and Aquatic Organism of Yamuna River
4.6. Principal Component Analysis (PCA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strokal, M.; Bai, Z.; Franssen, W.; Hofstra, N.; Koelmans, A.A.; Ludwig, F.; Ma, L.; van Puijenbroek, P.; Spanier, J.E.; Vermeulen, L.C. Urbanization: An increasing source of multiple pollutants to rivers in the 21st century. npj Urban Sustain. 2021, 1, 24. [Google Scholar] [CrossRef]
 - Tariq, A.; Mushtaq, A. Untreated wastewater reasons and causes: A review of most affected areas and cities. Int. J. Chem. Biochem. Sci. 2023, 23, 121–143. [Google Scholar]
 - Jan, I.; Ahmad, T.; Wani, M.S.; Dar, S.A.; Wani, N.A.; Malik, N.A.; Tantary, Y.R. Threats and consequences of untreated wastewater on freshwater environments. In Microbial Consortium and Biotransformation for Pollution Decontamination; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–26. [Google Scholar]
 - Baggio, G.; Qadir, M.; Smakhtin, V. Freshwater availability status across countries for human and ecosystem needs. Sci. Total Environ. 2021, 792, 148230. [Google Scholar] [CrossRef]
 - Kumar, D.; Agrawal, S.; Sahoo, D. Environmental contamination by heavy metals and assessing the impact of inhabitant microalgae in bioremediation: A case study of urban water of Yamuna River, India. Urban Water J. 2024, 21, 308–322. [Google Scholar] [CrossRef]
 - Parihar, K.; Sankhla, M.S.; Kumar, R. Water Quality Status of Yamuna River and its Toxic Effects on Humans. SSRN Electron. J. 2019, 3491675. [Google Scholar] [CrossRef]
 - Misra, A.K. A river about to die: Yamuna. J. Water Resour. Prot. 2010, 2, 489–500. [Google Scholar] [CrossRef]
 - Sharma, D.; Kansal, A. Current condition of the Yamuna River: An overview of flow, pollution load, and human use. In Yamuna River: A Confluence of Waters, a Crisis of Need; Indiana University: Bloomington, IN, USA, 2011. [Google Scholar]
 - Yadav, A.; Khandegar, V. Dataset on assessment of River Yamuna, Delhi, India using indexing approach. Data Brief 2019, 22, 1–10. [Google Scholar] [CrossRef]
 - Arif, Z.; Sethy, N.K.; Swati; Mishra, P.K.; Verma, B. Grossly polluting industries and their effect on water resources in India. In Pollutants and Water Management: Resources, Strategies and Scarcity; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 47–65. [Google Scholar]
 - Upadhyay, R.; Dasgupta, N.; Hasan, A.; Upadhyay, S. Managing water quality of River Yamuna in NCR Delhi. Phys. Chem. Earth Parts A/B/C 2011, 36, 372–378. [Google Scholar] [CrossRef]
 - Kumar, D.; Agrawal, S.; Sahoo, D. Assessment of the intrinsic bioremediation capacity of a complexly contaminated Yamuna River of India: A algae-specific approach. Int. J. Phytoremediation 2023, 25, 1844–1858. [Google Scholar] [CrossRef]
 - Patel, P.P.; Mondal, S.; Ghosh, K.G. Some respite for India’s dirtiest river? Examining the Yamuna’s water quality at Delhi during the COVID-19 lockdown period. Sci. Total Environ. 2020, 744, 140851. [Google Scholar] [CrossRef]
 - Koop, S.H.; van Leeuwen, C.J. The challenges of water, waste and climate change in cities. Environ. Dev. Sustain. 2017, 19, 385–418. [Google Scholar] [CrossRef]
 - Sharma, P.; Meher, P.K.; Kumar, A.; Gautam, Y.P.; Mishra, K.P. Changes in water quality index of Ganges river at different locations in Allahabad. Sustain. Water Qual. Ecol. 2014, 3, 67–76. [Google Scholar] [CrossRef]
 - Budi, H.S.; Catalan Opulencia, M.J.; Afra, A.; Abdelbasset, W.K.; Abdullaev, D.; Majdi, A.; Taherian, M.; Ekrami, H.A.; Mohammadi, M.J. Source, toxicity and carcinogenic health risk assessment of heavy metals. Rev. Environ. Health 2024, 39, 77–90. [Google Scholar] [CrossRef]
 - Emmanuel, E.; Balthazard-Accou, K.; Joseph, O. Impact of UrbanWastewater on Biodiversity of Aquatic Ecosystems. In Environmental Management, Sustainable Development and Human Health; CRC Press: Boca Raton, FL, USA, 2008; pp. 415–438. [Google Scholar]
 - Haberman, D. River of Love in An Age of Pollution: The Yamuna River of Northern India; University of California Press: Oakland, CA, USA, 2023. [Google Scholar]
 - Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnology 2023, 13, 100205. [Google Scholar] [CrossRef]
 - Huang, X.-C.; Wei, S.-L.; Yao, S.; Lin, Y.-T.; Ma, J.-K. Rapid and Sensitive Determination of Fluoroquinolones in Tilapia Using a Cost-Effective UPLC-MS/MS Method Based on Dummy Molecularly Imprinted Polymers. Talanta Open 2025, 11, 100474. [Google Scholar] [CrossRef]
 - Bellinger, E.G.; Sigee, D.C. Freshwater Algae: Identification, Enumeration and Use as Bioindicators; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
 - Sahoo, D.; Seckbach, J. The Algae World; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
 - Hena, S.; Fatimah, S.; Tabassum, S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour. Ind. 2015, 10, 1–14. [Google Scholar] [CrossRef]
 - Kumar, P.; Prajapati, S.K.; Malik, A.; Vijay, V.K. Cultivation of native algal consortium in semi-continuous pilot scale raceway pond for greywater treatment coupled with potential methane production. J. Environ. Chem. Eng. 2017, 5, 5581–5587. [Google Scholar] [CrossRef]
 - Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Incharoensakdi, A.; Kamaraj, B.; Cornejo, P. Scenedesmus sp. strain SD07 cultivation in municipal wastewater for pollutant removal and production of lipid and exopolysaccharides. Environ. Res. 2023, 218, 115051. [Google Scholar] [CrossRef]
 - Mollamohammada, S.; Aly Hassan, A.; Dahab, M. Nitrate removal from groundwater using immobilized heterotrophic algae. Water, Air, Soil. Pollut. 2020, 231, 26. [Google Scholar] [CrossRef]
 - Amini, M.; Khoei, Z.A.; Erfanifar, E. Nitrate (NO3−) and phosphate (PO43−) removal from aqueous solutions by microalgae Dunaliella salina. Biocatal. Agric. Biotechnol. 2019, 19, 101097. [Google Scholar] [CrossRef]
 - Sasi, P.K.C.; Viswanathan, A.; Mechery, J.; Thomas, D.; Jacob, J.P.; Paulose, S.V. Phycoremediation of paper and pulp mill effluent using planktochlorella nurekis and Chlamydomonas reinhardtii–a comparative study. J. Environ. Treat. Tech. 2020, 8, 809–817. [Google Scholar]
 - Pham, T.-L.; Bui, M.H. Removal of nutrients from fertilizer plant wastewater using Scenedesmus sp.: Formation of bioflocculation and enhancement of removal efficiency. J. Chem. 2020, 2020, 8094272. [Google Scholar] [CrossRef]
 - Usha, M.; Chandra, T.S.; Sarada, R.; Chauhan, V. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresour. Technol. 2016, 214, 856–860. [Google Scholar] [CrossRef]
 - Mohammadi, M.; Mowla, D.; Esmaeilzadeh, F.; Ghasemi, Y. Enhancement of sulfate removal from the power plant wastewater using cultivation of indigenous microalgae: Stage-wise operation. J. Environ. Chem. Eng. 2019, 7, 102870. [Google Scholar] [CrossRef]
 - Mohammadi, M.; Mowla, D.; Esmaeilzadeh, F.; Ghasemi, Y. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. J. Environ. Chem. Eng. 2018, 6, 2812–2820. [Google Scholar] [CrossRef]
 - Hu, X.; Meneses, Y.E.; Stratton, J.; Wang, B. Acclimation of consortium of micro-algae help removal of organic pollutants from meat processing wastewater. J. Clean. Prod. 2019, 214, 95–102. [Google Scholar] [CrossRef]
 - Oberholster, P.J.; Steyn, M.; Botha, A.-M. A comparative study of improvement of phycoremediation using a consortium of microalgae in municipal wastewater treatment pond systems as an alternative solution to Africa’s sanitation challenges. Processes 2021, 9, 1677. [Google Scholar] [CrossRef]
 - Batista, A.P.; Ambrosano, L.; Graça, S.; Sousa, C.; Marques, P.A.; Ribeiro, B.; Botrel, E.P.; Neto, P.C.; Gouveia, L. Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresour. Technol. 2015, 184, 230–235. [Google Scholar] [CrossRef]
 - Naaz, F.; Bhattacharya, A.; Pant, K.K.; Malik, A. Investigations on energy efficiency of biomethane/biocrude production from pilot scale wastewater grown algal biomass. Appl. Energy 2019, 254, 113656. [Google Scholar] [CrossRef]
 - Riaño, B.; Molinuevo, B.; García-González, M. Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour. Technol. 2011, 102, 10829–10833. [Google Scholar] [CrossRef]
 - Zhu, L.; Wang, Z.; Shu, Q.; Takala, J.; Hiltunen, E.; Feng, P.; Yuan, Z. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013, 47, 4294–4302. [Google Scholar] [CrossRef]
 - Zepernick, B.N.; Gann, E.R.; Martin, R.M.; Pound, H.L.; Krausfeldt, L.E.; Chaffin, J.D.; Wilhelm, S.W. Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Front. Microbiol. 2021, 12, 598736. [Google Scholar] [CrossRef]
 - Lessmann, H.; Uter, W.; Schnuch, A.; Geier, J. Skin sensitizing properties of the ethanolamines mono-, di-, and triethanolamine. Data analysis of a multicentre surveillance network (IVDK*) and review of the literature. Contact Dermat. 2009, 60, 243–255. [Google Scholar] [CrossRef]
 - Bubnov, Y.N.; Gurskii, M.; Erdyakov, S.Y. Bicyclic Systems with Ring Junction (Bridgehead) Boron atoms. In Comprehensive Heterocyclic Chemistry III; Elsevier: Amsterdam, The Netherlands, 2008; Volume 12, pp. 573–633. [Google Scholar]
 - Berdanier, C.D. Drugs Used in Treatment or Management of Human Diseases. In Handbook of Nutrition and Food; CRC Press: Boca Raton, FL, USA, 2007; pp. 1241–1254. [Google Scholar]
 - Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
 - Dökmeci, A.H. Environmental impacts of heavy metals and their bioremediation. In Heavy Metals-Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2020. [Google Scholar]
 - Barik, D.; Rakhi Mol, K.; Anand, G.; Nandamol, P.; Das, D.; Porel, M. Environmental pollutants such as endocrine disruptors/pesticides/reactive dyes and inorganic toxic compounds metals, radionuclides, and metalloids and their impact on the ecosystem. In Biotechnology for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2025; pp. 391–442. [Google Scholar]
 - El-Adl, K.; El-Helby, A.-G.A.; Sakr, H.; Elwan, A. [1, 2, 4] Triazolo [4, 3-a] quinoxaline and [1, 2, 4] triazolo [4, 3-a] quinoxaline-1-thiol-derived DNA intercalators: Design, synthesis, molecular docking, in silico ADMET profiles and anti-proliferative evaluations. New J. Chem. 2021, 45, 881–897. [Google Scholar] [CrossRef]
 - Boraei, A.T.; Sarhan, A.A.; Yousuf, S.; Barakat, A. Synthesis of a new series of nitrogen/sulfur heterocycles by linking four rings: Indole; 1, 2, 4-triazole; pyridazine; and quinoxaline. Molecules 2020, 25, 450. [Google Scholar] [CrossRef]
 - Gonsalves, M.D.; Colizza, K.; Smith, J.L.; Oxley, J.C. In vitro and in vivo studies of triacetone triperoxide (TATP) metabolism in humans. Forensic Toxicol. 2021, 39, 59–72. [Google Scholar] [CrossRef]
 - Sarma, U.; Hoque, M.E.; Thekkangil, A.; Venkatarayappa, N.; Rajagopal, S. Microalgae in removing heavy metals from wastewater–An advanced green technology for urban wastewater treatment. J. Hazard. Mater. Adv. 2024, 15, 100444. [Google Scholar] [CrossRef]
 - Shahi Khalaf Ansar, B.; Kavusi, E.; Dehghanian, Z.; Pandey, J.; Asgari Lajayer, B.; Price, G.W.; Astatkie, T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environ. Sci. Pollut. Res. 2023, 30, 116538–116566. [Google Scholar] [CrossRef] [PubMed]
 


| Heavy Metals | WHO/CPCB Limits in Drinking Water mg/L | Yamuna Water mg/L  | 
|---|---|---|
| Al | 0.2 | 1.554 ± 0.02 | 
| Cr | 0.05 | 0.124 ± 0.004 | 
| Co | 5 | 0.012 ± 0.005 | 
| Ni | 0.07 | 0.695 ± 0.001 | 
| Zn | 3 | 3.397 ± 0.03 | 
| Mo | 0.07 | 14.875 ± 0.65 | 
| Cd | 0.003 | 0.05 ± 0.001 | 
| Pb | 0.01 | 0.047 ± 0.002 | 
| As | 0.01 | 0.147 ± 0.001 | 
| Parameter | Initial Value | Conc. After Treatment with Consortium 1 | Conc. After Treatment with Consortium 2 | % Removal by Consortium 1 | % Removal by Consortium 2 | 
|---|---|---|---|---|---|
| Nitrate mg/L | 175.59 | 7.0052 | 13.04 | 96.016 | 92.57 | 
| Phosphate mg/L | 58.3415 | 2.39 | 3.46 | 95.9 | 94.05 | 
| Sulphate mg/L | 1316.68 | 112.39 | 161.25 | 91.458 | 87.76 | 
| Chloride mg/L | 1790.735 | 350.06 | 396.62 | 80.44 | 77.89 | 
| BOD mg/L | 18.08 | 2.5305 | 3.79 | 85.98 | 79.05 | 
| COD mg/L | 336 | 28.83 | 45.911 | 91.43 | 86.34 | 
| Salinity PSU | 0.6915 | 0.117 | 0.14 | 83.016 | 79.8 | 
| Conductivity µS/cm | 1445.5 | 277.19 | 382.12 | 80.79 | 73.56 | 
| TDS mg/L | 737.65 | 128.7 | 147.12 | 82.58 | 80.05 | 
| pH Increased | 6.93 | 8.90 | 8.58 | 28.44 | 23.76 | 
| Element mg/L  | Initial Conc. | Conc. After Treatment with Consortium 1 | Conc. After Treatment with Consortium 2 | % Removal by Consortium 1 | % Removal by Consortium 2 | 
|---|---|---|---|---|---|
| Al | 1.554 | 0.1831 | 0.4382 | 88.214 | 71.764 | 
| Cr | 0.124 | 0.017 | 0.0509 | 86.302 | 58.96 | 
| Co | 0.012 | 0.0014 | 0.0032 | 88.56 | 73.456 | 
| Ni | 0.695 | 0.15 | 0.208 | 78.9 | 70.08 | 
| Zn | 3.397 | 0.66 | 1.3626 | 80.56 | 59.91 | 
| Mo | 14.87 | 3.12 | 3.5231 | 79.0162 | 76.3 | 
| Cd | 0.05 | 0.011 | 0.0155 | 78.03 | 69.04 | 
| Pb | 0.047 | 0.0061 | 0.0109 | 87.07 | 76.789 | 
| As | 0.147 | 0.0249 | 0.041 | 83.056 | 72.098 | 
| S. No. | Compound Name | Pollutant Group | RT Time | Major Adverse Effects on Humans | 
|---|---|---|---|---|
| 1 | 2-Chloro-7-methoxyquinoline-3-carbonitrile | Industrial chemical/heterocyclic compound | 11.272 | Respiratory/skin irritant, potential cytotoxicity | 
| 2 | N-propyl-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]cyclopropanamine | Organoboron compound | 10.113/10.32 | Skin/eye irritation, possible neurotoxicity | 
| 3 | 2-Amino-4-chloro-1,3-oxazole-5-carbonitrile | Halogenated heterocyclic | 0.806 | Irritant, potential mutagenicity | 
| 4 | 2-Oxaziridinesulfonic acid | Reactive oxidizing agent | 0.798 | Skin/respiratory corrosion, irritation | 
| 5 | 2,2-Dinitro-1-propanol | Nitro compound | −0.16 | Toxic, systemic effects, marrow toxicity | 
| 6 | Triethylamine | Industrial solvent | 15.182 | Respiratory irritation, pulmonary edema risk | 
| 7 | Ethephon | Pesticide | 1.89/1.47 | Neurotoxicity, cholinesterase inhibition | 
| 8 | 2,6-Di-tert-butyl-1,4-benzoquinone | Quinone antioxidant | 0.493 | Skin sensitizer, oxidative stress inducer | 
| 9 | Germanecarbonitrile | Organometallic | 11.357 | Neurological toxicity, irritant | 
| 10 | 1-mercapto[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one | Heterocyclic sulfur compound | 17.41 | Sensitizer, irritant, possible mutagen | 
| 11 | Guaiacolsulfonate | Phenolic compound | 11.077 | Skin/eye irritant, allergic reactions | 
| 12 | Bromoacetic Acid-d3 | Halogenated acid | 10.725/17.644/0.018 | Corrosive, irritant | 
| 13 | Tetracyanoethylene | Cyanide donor | 0.808 | Toxic, respiratory distress | 
| 14 | Boron sulfide | Inorganic boron compound | 0.024 | Respiratory irritant, nephrotoxicity | 
| 15 | Tridecylamine | Long-chain amine | 10.816/11.069 | Skin/respiratory irritant | 
| 16 | 2,3,4,5,6-Heptapentaenenitrile | Nitrile compound | 0.802 | Cyanide release potential, toxic | 
| 17 | 3-[hydroxy(oxido)phosphoranyl]pyruvic acid | Organophosphorus | 3.753 | Toxicity related to organophosphates | 
| 18 | 3-phenyl-2-(4H-1,2,4-triazol-4-ylimino)-1,3-thiazolan-4-one | Heterocyclic sulfur/nitrogen | 17.411 | Irritant, possible mutagenic | 
| 19 | N-Caprylyldiethanolamine | Surfactant | 3.644 | Skin irritation, allergen potential | 
| 20 | 2,2,6,6-Tetramethyl-4-piperidyl Methacrylate | Monomer/industrial | 10.476 | Respiratory sensitizer, skin irritant | 
| 21 | 3-Chloro-4-nitro-1,2-oxazole | Halogenated nitroheterocycle | 0.804 | Mutagenic potential, irritant | 
| 22 | dihydroxyethyl lauramine oxide | Surfactant | 5.307 | Skin/eye irritant | 
| 23 | β-Ionone | Terpenoid | 1.266 | Mild irritant, allergen | 
| 24 | (Nitroimino)dimethanol | Nitro compound | 0.805 | Potential systemic toxicity | 
| 25 | N,N-Dibutylethanolamine | Amine compound | 3.659 | Skin and respiratory irritation | 
| 26 | 2-(hydroxymethyl)-2-(octylamino)propane-1,3-diol | Surfactant | 3.724 | Irritant, allergen | 
| 27 | Triphenylphosphine oxide | Organophosphorus compound | 5.199 | Irritant, potential toxicity | 
| 28 | 1,9-Pyrazoloanthrone | Polycyclic aromatic | 0.829 | Possible carcinogen, irritant | 
| 29 | Embelin | Natural product | 6.24 | Generally low toxicity; skin sensitization possible | 
| 30 | 2-(2-(Nonylphenoxy)ethoxy)ethyl oleate | Surfactant/ester | 17.818 | Irritant, allergen | 
| 31 | Phenylethyl alcohol | Aromatic alcohol | 2.387 | Mild irritant, allergen | 
| 32 | DL-Tyrosine | Amino acid | 17.647 | Low toxicity | 
| 33 | N,N-Dimethyldecylamine N-oxide | Surfactant | 4.349 | Skin and eye irritant | 
| 34 | Quinuclidinol | Heterocyclic amine | 3.275 | Irritant | 
| 35 | 2-(Octylsulfanyl)naphthalene | Polycyclic aromatic sulfur | 11.258 | Toxic, irritant | 
| 36 | 2-Sulfamoylacetamide | Sulfonamide derivative | 0.795 | Allergic reactions possible | 
| 37 | P-methyl-N-(3-nitrophenyl)phosphonamidic acid | Organophosphorus | 11.352 | Neurotoxicity risk | 
| 38 | 2-(Phosphonooxy)-2,3-butadienoic acid | Organophosphorus | 10.707 | Irritant, possible toxicity | 
| 39 | Dichloro(methyl)phenylstannane | Organotin compound | 11.068 | Neurotoxicity, irritant | 
| 40 | Laurolactam | Lactam | 10.435 | Respiratory sensitizer | 
| 41 | 2-(2-Aminoethoxy)ethyl hydrogen sulfate | Sulfate salt | 0.821 | Irritant | 
| 42 | Cinnamaldehyde | Aromatic aldehyde | 0.816 | Skin sensitizer, irritant | 
| 43 | Adipamide | Amide | 1.88 | Low toxicity | 
| 44 | Decyl gallate | Antioxidant ester | 5.268 | Mild irritant | 
| 45 | 4-Heptyloxyphenol | Phenolic ether | 5.702 | Irritant, corrosive | 
| 46 | 5-(Chloromethyl)-3-(methoxymethyl)-1,2,4-oxadiazole | Halogenated heterocycle | 0.805 | Toxic, irritant | 
| 47 | PEG n5 | Polyethylene glycol | 2.73 | Low toxicity, allergen risk | 
| 48 | 1,3-Dichloro-2,4-difluorobenzene | Halogenated aromatic | 0.02 | Toxic, irritant | 
| 49 | Pyridoxal | Vitamin B6 derivative | 1.456 | Low toxicity | 
| 50 | Tris(cyano-kappaC)indium | Organometallic | 1.109 | potential metal toxicity | 
| 51 | DL-Carnitine | Nutrient | 0.951 | Low toxicity | 
| 52 | 2-Chloro-2-fluorocyclopropanecarboxylic acid | Halogenated acid | 17.61 | Irritant, toxic | 
| 53 | Dimethylarsinous fluoride | Arsenic compound | 0.808 | Highly toxic, carcinogenic | 
| 54 | 11-Aminoundecanoic acid | Amino acid derivative | 5.169 | Low toxicity | 
| 55 | 1,1,3,3-Tetramethylguanidine | Strong base | 2.396 | Corrosive, irritant | 
| 56 | Precocene II | Natural product | 7.567 | Possible endocrine disruptor | 
| 57 | Bicine | Buffering agent | 0.976 | Low toxicity | 
| 58 | Valpromide | Pharmaceutical | 4.597 | Hepatotoxicity risk | 
| 59 | 6-tert-Butyl-4-methylcoumarin | Coumarin derivative | 3.736 | Liver toxicity risk; anticoagulant mimic | 
| 60 | 2-Pyrimidinyl phosphonic acid | Organophosphorus | 0.78 | Possible irritant | 
| 61 | Capric diethanolamide | Surfactant | 4.504 | Skin/eye irritant | 
| 62 | 2,3-Dimethyl-benzothiazol-3-ium | Aromatic heterocycle | 0.789 | Toxicity unknown; possible irritant | 
| 63 | Methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate | Ester/amine | 8.532 | Mild irritant | 
| 64 | Mizoribine | Immunosuppressant drug | 1.647 | Bone marrow suppression | 
| 65 | Disilylstrontium | Organometallic | 0.801 | Unknown toxicity; metal toxicity risk | 
| 66 | Trimethyl phosphate | Organophosphorus solvent | 2.87 | Neurotoxic, irritant | 
| 67 | N-Dodecyl-N′-isopropyl-6-methyl-1,3,5-triazine-2,4-diamine | Herbicide | 10.362 | Toxic, irritant | 
| 68 | 2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethoxy]ethanol | Nitroimidazole | 1.05 | Carcinogenic potential | 
| 69 | Crimidine | Rodenticide | 0.801 | Neurotoxic, lethal | 
| 70 | Triacetone triperoxide | Explosive | 2.532 | Highly toxic, explosive hazard | 
| 71 | Dabigatran | Anticoagulant drug | 5.978 | Bleeding risk | 
| 72 | Cyclandelate | Vasodilator drug | 7.566 | Hypotension risk | 
| 73 | Butyl isothiocyanate | Isothiocyanate | 0.98 | Irritant, possible carcinogen | 
| 74 | Gabapentin | Neurological drug | 2.834 | CNS depression | 
| 75 | Diethanolamine | Industrial chemical | 0.909 | cancer potential, irritant | 
| 76 | Ethionamide | Antibiotic | 2.578 | Hepatotoxicity, neuropathy | 
| 77 | Gliclazide | Antidiabetic drug | 2.433 | Hypoglycemia | 
| 78 | Methyldopa | Antihypertensive drug | 4.349 | Hepatotoxicity, hemolytic anemia | 
| 79 | Phenylephrine | Decongestant | 3.044 | Hypertension risk | 
| 80 | Enalapril | Antihypertensive | 3.651 | Kidney dysfunction risk | 
| 81 | Labetalol | Antihypertensive | 5.685 | Hypotension, fatigue | 
| 82 | Isoxsuprine | Vasodilator | 2.27 | Tachycardia, hypotension | 
| 83 | Ethambutol | Antibiotic | 2.27 | Optic neuropathy | 
| 84 | Allopurinol | Antigout drug | Hypersensitivity reactions | |
| 85 | Ranitidine | Histamine antagonist | 10.362 | Potential carcinogen (NDMA contamination) | 
| 86 | Pentafluorostyrene | Fluorinated monomer | 5.39 | Eye/respiratory irritant; polymer precursor with possible endocrine activity. | 
| 87 | SB-408,124 | Pharmaceutical/Drug | 4.78 | Endocrine disruption or CNS effects | 
| 88 | Phosphorodiamidimidic azide. | High-energy azide/phosphorus compound | 3.14 | Strong irritant; azides can affect nervous system and blood pressure | 
| 89 | Praseodymium silicide (PrSi2) | Rare-earth silicide | 1.08 | Bradycardia, respiratory issues | 
| 90 | 4-tert-Octylphenol monoethoxylate | Alkylphenol ethoxylate surfactant | 5.76 | Endocrine disruption; aquatic toxicity | 
| 91 | N-(2,2,2-Trichloro-1-hydroxyethyl)-2-furamide | Chlorinated amide | 2.37 | Potential carcinogen/endocrine disruptor. | 
| 92 | 6-Methyl-N-(5-methyl-1,3,4-thiadiazol-2-yl)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide | Research chemical | 4.89 | liver enzyme interactions. | 
| 93 | γ-Acetylenic GABA | Experimental amino acid | 2.35 | ABA analogs affect nervous system | 
| 94 | Phentermine | Appetite suppressant | 4.475 | Cardiovascular risk | 
| 95 | Ibufenac | NSAID (pharmaceutical) | 5.05 | GI irritation, kidney/liver effects with chronic use. | 
| 96 | Diphenhydramine | Antihistamine | 8.258 | CNS depression | 
| 97 | Hydroxyzine | Antihistamine | 15.112 | Sedation, dry mouth | 
| 98 | (E)-Dacarbazine | Antineoplastic (alkylating agent) | 2.825 | Carcinogenic; nausea, bone marrow suppression | 
| 99 | Dichloro(methyl)phenylstannane | Organotin Compound | 11.068 | Neurotoxic, endocrine disruptor; toxic to immune and reproductive systems | 
| 100 | Di(2 cyanoethyl)amine | Nitrile amine | 2.466 | Neurological effects | 
| Source of Variation | SS | df | MS | F | p-Value | F Crit | 
|---|---|---|---|---|---|---|
| Between Groups | 7389.907 | 18 | 410.5504 | 6.888154 | 5.57 × 10−5 | 2.182263 | 
| Within Groups | 1132.445 | 19 | 59.60239 | |||
| Total | 8522.352 | 37 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Agrawal, S.; Sahoo, S.; Sahoo, D. Native Algal Consortia as a Bioremediation Tool for Polluted Freshwater Ecosystems: A Case Study from the Yamuna River. Phycology 2025, 5, 70. https://doi.org/10.3390/phycology5040070
Kumar D, Agrawal S, Sahoo S, Sahoo D. Native Algal Consortia as a Bioremediation Tool for Polluted Freshwater Ecosystems: A Case Study from the Yamuna River. Phycology. 2025; 5(4):70. https://doi.org/10.3390/phycology5040070
Chicago/Turabian StyleKumar, Dharmendra, Shivankar Agrawal, Sanjukta Sahoo, and Dinabandhu Sahoo. 2025. "Native Algal Consortia as a Bioremediation Tool for Polluted Freshwater Ecosystems: A Case Study from the Yamuna River" Phycology 5, no. 4: 70. https://doi.org/10.3390/phycology5040070
APA StyleKumar, D., Agrawal, S., Sahoo, S., & Sahoo, D. (2025). Native Algal Consortia as a Bioremediation Tool for Polluted Freshwater Ecosystems: A Case Study from the Yamuna River. Phycology, 5(4), 70. https://doi.org/10.3390/phycology5040070
        
