Microencapsulation of Carotenoid-Enriched Plant-Based Oils by Spray-Drying Using Alternative Vegan Wall Materials: A Strategy to Improve Stability and Antioxidant Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spray Drying
2.3. Scanning Electron Microscope (SEM)
2.4. Dynamic Light Scattering (DLS)
2.5. Determination of Antioxidant Activity (DPPH Method)
2.6. Characterization of Oils by GC-MS
2.7. Statistical Analysis
3. Results
3.1. Composition of the Starting Oil
3.2. Antioxidant Activity
3.3. Encapsulation Efficiency (EE)
3.4. Morphology of Microcapsules
3.4.1. Scanning Electron Microscopy (SEM)
3.4.2. Dynamic Light Scattering (DLS)
3.5. Characterization of the Microencapsulated Oil
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
P | Pectin |
PP | Pea protein |
I | Inuline |
MCS | Corn starch |
SEM | Scanning electron microscopy |
DLS | Dynamic light scattering |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
GC-MS | Gas chromatography- mass spectrometry |
EE | Encapsulation efficiency |
DHA | Docosahexaenoic acid |
IC | Inhibitory concentration |
SFA | Saturated fatty acid |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acid |
References
- Vicentini, A.; Liberatore, L.; Mastrocola, D. Functional Foods: Trends and Development of the Global Market. Ital. J. Food Sci. 2016, 28, 338–351. [Google Scholar]
- Yahia, E.M.; de Jesús Ornelas-Paz, J.; Emanuelli, T.; Jacob-Lopes, E.; Zepka, L.Q.; Cervantes-Paz, B. Chemistry, Stability, and Biological Actions of Carotenoids. In Fruit and Vegetable Phytochemicals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 285–346. [Google Scholar]
- Bogacz-Radomska, L.; Harasym, J. β-Carotene—Properties and production methods. Food Qual. Saf. 2018, 2, 69–74. [Google Scholar] [CrossRef]
- Castejón, N.; Luna, P.; Señoráns, F.J. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: Effect on polyunsaturated fatty acid composition. LWT 2021, 148, 111789. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Compre-hensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocoll. 2017, 69, 369–381. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Avendaño-Godoy, J.; Santos, J.; Lozano-Castellón, J.; Mardones, C.; von Baer, D.; Luengo, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Gómez-Gaete, C. Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants 2021, 10, 1130. [Google Scholar] [CrossRef]
- Gu, B.; Linehan, B.; Tseng, Y.C. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions. Int. J. Pharm. 2015, 491, 208–217. [Google Scholar] [CrossRef]
- Parra Huertas, R.A. Food microencapsulation: A review. Rev. Fac. Nac. Agron. Medellín 2010, 63, 5669–5684. [Google Scholar]
- Alexe, P.; Dima, C. Microencapsulation in food products. AgroLife Sci. J. 2014, 3, 9–14. [Google Scholar]
- Ameri, M.; Maa, Y.F. Spray Drying of Biopharmaceuticals: Stability and Process Considerations. Dry. Technol. 2006, 24, 763–768. [Google Scholar] [CrossRef]
- Ghnimi, S.; Budilarto, E.; Kamal-Eldin, A. The New Paradigm for Lipid Oxidation and Insights to Microencapsula-tion of Omega-3 Fatty Acids. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Masum, A.K.M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Influence of drying temperatures and storage pa-rameters on the physicochemical properties of spray-dried infant milk formula powders. Int. Dairy J. 2020, 105, 104696. [Google Scholar] [CrossRef]
- Furuta, T.; Neoh, T.L. Microencapsulation of food bioactive components by spray drying: A review. Dry Technol. 2021, 39, 1800–1831. [Google Scholar] [CrossRef]
- Muhoza, B.; Qi, B.; Harindintwali, J.D.; Farag Koko, M.Y.; Zhang, S.; Li, Y. Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll. 2022, 124, 107239. [Google Scholar] [CrossRef]
- Macías-Cortés, E.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E.; Moreno-Jiménez, M.R.; Medina-Torres, L.; González-Laredo, R.F. Microencapsulation of phenolic compounds: Technologies and novel polymers. Rev. Mex. Ing. Quím. 2019, 19, 491–521. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Peighambardoust, S.H.; Sarabandi, K.; Jafari, S.M. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem. 2021, 359, 129965. [Google Scholar] [CrossRef]
- Samborska, K.; Boostani, S.; Geranpour, M.; Hosseini, H.; Dima, C.; Khoshnoudi-Nia, S.; Rostamabadi, H.; Falsafi, S.R.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci. Technol. 2021, 108, 297–325. [Google Scholar] [CrossRef]
- Hennebelle, M.; Villeneuve, P.; Durand, E.; Lecomte, J.; Van Duynhoven, J.; Meynier, A.; Yesiltas, B.; Jacobsen, C.; Berton-Carabin, C. Lipid oxidation in emulsions: New insights from the past two decades. Prog. Lipid Res. 2024, 94, 101275. [Google Scholar] [CrossRef]
- Sahin, D.; Tas, E.; Altindag, U.H. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express. 2018, 8, 7. [Google Scholar] [CrossRef]
- Metz, J.G.; Kuner, J.; Rosenzweig, B.; Lippmeier, J.C.; Roessler, P.; Zirkle, R. Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: Release of the products as free fatty acids. Plant Physiol. Biochem. 2009, 47, 472–478. [Google Scholar] [CrossRef]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef]
- Zhou, W.; Apkarian, R.P.; Wang, Z.L.; Joy, D. Fundamentals of Scanning Electron Microscopy (SEM). In Scanning Microscopy for Nanotechnology; Zhou, W., Wang, Z.L., Eds.; Springer: New York, NY, USA, 2006; pp. 4–40. [Google Scholar]
- Vernon-Parry, K.D. Scanning electron microscopy: An introduction. III-Vs Rev. 2000, 13, 40–44. [Google Scholar] [CrossRef]
- Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanoparticle Res. 2008, 10, 89–96. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Xia, S.; Wang, K.; Wan, L.; Li, A.; Hu, Q.; Zhang, C. Production, Characterization, and Antioxidant Activity of Fucoxanthin from the Marine Diatom Odontella aurita. Mar. Drugs 2013, 11, 2667–2681. [Google Scholar] [CrossRef]
- Raghav, N.; Vashisth, C.; Mor, N.; Arya, P.; Sharma, M.R.; Kaur, R.; Bhatti, S.P.; Kennedy, J.F. Recent advances in cellulose, pectin, carragee-nan and alginate-based oral drug delivery systems. Int. J. Biol. Macromol. 2023, 244, 125357. [Google Scholar] [CrossRef]
- Habtegebriel, H.; Tazart, Z.; Farrugia, C.; Gatt, R.; Valdramidis, V. Storage stability and antioxidant activity of astaxanthin and beta-carotene as affected by the architecture of O/W emulsions of milk proteins. LTW 2024, 209, 116733. [Google Scholar] [CrossRef]
- Gunstone, F. Vegetable Oils in Food Technology: Composition, Properties and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2011; 378p. [Google Scholar]
- Nakonechna, K.; Ilko, V.; Berčíková, M.; Vietoris, V.; Panovská, Z.; Doležal, M. Nutritional, Utility, and Sensory Quality and Safety of Sunflower Oil on the Central European Market. Agriculture 2024, 14, 536. [Google Scholar] [CrossRef]
- Zhao, T.; He, X.; Yan, X.; Xi, H.; Li, Y.; Yang, X. Recent advances in the extraction, synthesis, biological activities, and stabilisation strategies for β-carotene: A review. Int. J. Food Sci. Technol. 2024, 59, 2136–2147. [Google Scholar] [CrossRef]
- Aditi Bhardwaj, R.; Yadav, A.; Swapnil, P.; Meena, M. Characterization of microalgal β-carotene and astaxanthin: Exploring their health-promoting properties under the effect of salinity and light intensity. Biotechnol. Biofuels Bioprod. 2025, 18, 18. [Google Scholar]
- Neylan, K.A.; Johnson, R.B.; Barrows, F.T.; Marancik, D.P.; Hamilton, S.L.; Gardner, L.D. Evaluating a microalga (Schizochytrium sp.) as an alternative to fish oil in fish-free feeds for sablefish (Anoplopoma fimbria). Aquaculture 2024, 578, 740000. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; McClements, D.J.; Xie, B.; Zheng, R.; Deng, Q.; Chen, Y. Carotenoids encapsulated in natural flaxseed oil body: Different colloidal interfaces induce their behavior and stability disparity. Food Hydrocoll. 2024, 156, 110311. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Cui, B.; Wang, M.; Fu, H.; Wang, Y. Carotenoid-enriched oil preparation and stability analysis during storage: Influence of oils’ chain length and fatty acid saturation. LWT 2021, 151, 112163. [Google Scholar] [CrossRef]
- Capela, P.; Hay, T.K.C.; Shah, N.P. Effect of homogenisation on bead size and survival of encapsulated probiotic bacteria. Food Res. Int. 2007, 40, 1261–1269. [Google Scholar] [CrossRef]
- Villena, M.M.; Hernández, M.M.; Lara, V.G.; Martínez, M.R. Técnicas de microencapsulación: Una propuesta para microencapsular probióticos. Ars. Pharm. 2009, 50, 43–50. [Google Scholar]
- Ma, D.; Yang, B.; Zhao, J.; Yuan, D.; Li, Q. Advances in protein-based microcapsules and their applications: A review. Int. J. Biol. Macromol. 2024, 263, 129742. [Google Scholar] [CrossRef]
- Alonso-Allende, J.; Milagro, F.I.; Aranaz, P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024, 16, 2935. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut 2019, 68, 1430–1438. [Google Scholar]
- Rodriguez, J.; Neyrinck, A.M.; Van Kerckhoven, M.; Gianfrancesco, M.A.; Renguet, E.; Bertrand, L.; Cani, P.D.; Lanthier, N.; Cnop, M.; Paquot, N.; et al. Physical activity enhances the improvement of body mass index and metabolism by inulin: A multicenter randomized placebo-controlled trial performed in obese individuals. BMC Med. 2022, 20, 110. [Google Scholar] [CrossRef]
- Talukdar, J.R.; Cooper, M.A.; Lyutvyn, L.; Zeraatkar, D.; Ali, R.; Bierbrier, R.; Janes, S.; Ha, V.; Darling, P.B.; Sievenpiper, J.L.; et al. Effects of inulin-type fructans supplementation on cardiovascular disease risk factors: A protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2022, 6, e058875. [Google Scholar] [CrossRef]
- Yu, Y.; He, J.; Fu, H.; Mi, Y.; Wu, H.; Gao, Y.; Li, M. Inulin Modulates Gut Microbiota and Increases Short-Chain Fatty Acids Levels to Inhibit Colon Tumorigenesis in Rat Models: A Systematic Review and Meta-Analysis. J. Food Sci. 2025, 90, e70250. [Google Scholar] [CrossRef]
- Alencar JCGde Pinto GTda, S.; Cerqueira e Silva, K.F.; Santos, J.M.S.; Hubinger, M.D.; Bicas, J.L.; Maróstica Júnior, M.R.; Petkowicz, C.L.d.O.; Paulino, B.N. Pectin and pectic oligosaccharides (POS): Recent advances for extraction, production, and its prebiotic potential. Trends Food Sci. Technol. 2025, 155, 104808. [Google Scholar] [CrossRef]
- Santos Donadio, J.L.; Paulo Fabi, J. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct. 2024, 15, 6825–6846. [Google Scholar] [CrossRef] [PubMed]
- Rodsuwan, U.; Thumthanaruk, B.; Vatanyoopaisarn, S.; Thisayakorn, K.; Zhong, Q.; Panjawattanangkul, S.; Rungsardthong, V. Microencapsulation of gamma oryzanol using inulin as wall material by spray drying: Optimization of formulation and characterization of microcapsules. J. Food Sci. Technol. 2024, 61, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | Relative Content (%) |
---|---|
14:0 | 7.28 ± 0.17 d |
16:0 | 23.85 ± 0.36 b |
18:0 | 0.48 ± 0.01 f |
18:1 n-9 | 1.70 ± 0.11 e |
18:2 n-6 | 0.49 ± 0.06 f |
20:4 n-6 | 0.95 ± 0.01 f |
20:5 n-3 (EPA) | 0.94 ± 0.02 f |
22:5 (DPA n-6) | 17.36 ± 0.20 c |
22:5 (DPA n-3) | 0.50 ± 0.03 f |
22:6 n-3 (DHA) | 45.10 ± 0.41 a |
SFA | 31.75 ± 0.61 |
MUFA | 1.70 ± 0.11 |
PUFA | 65.20 ± 0.71 |
Omega-3 | 46.45 ± 0.54 |
Omega-6 | 18.75 ± 0.17 |
1:5 | 5:1 | 1:1 | |
---|---|---|---|
P:I | 59.2 ± 1.3 b | 38.9 ± 2.0 c | 67.3 ± 0.8 a |
PP:I | 13.6 ± 0.7 d | 10.1 ± 1.9 d | 6.1 ± 1.5 e |
PP:MCS | 5.2 ± 0.8 f | 7.0 ± 1.5 f | 4.8 ± 0.8 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez, M.; Berzal, G.; García-García, P.; Señoráns, F.J. Microencapsulation of Carotenoid-Enriched Plant-Based Oils by Spray-Drying Using Alternative Vegan Wall Materials: A Strategy to Improve Stability and Antioxidant Activity. Phycology 2025, 5, 51. https://doi.org/10.3390/phycology5040051
Díez M, Berzal G, García-García P, Señoráns FJ. Microencapsulation of Carotenoid-Enriched Plant-Based Oils by Spray-Drying Using Alternative Vegan Wall Materials: A Strategy to Improve Stability and Antioxidant Activity. Phycology. 2025; 5(4):51. https://doi.org/10.3390/phycology5040051
Chicago/Turabian StyleDíez, Marta, Gonzalo Berzal, Paz García-García, and Francisco J. Señoráns. 2025. "Microencapsulation of Carotenoid-Enriched Plant-Based Oils by Spray-Drying Using Alternative Vegan Wall Materials: A Strategy to Improve Stability and Antioxidant Activity" Phycology 5, no. 4: 51. https://doi.org/10.3390/phycology5040051
APA StyleDíez, M., Berzal, G., García-García, P., & Señoráns, F. J. (2025). Microencapsulation of Carotenoid-Enriched Plant-Based Oils by Spray-Drying Using Alternative Vegan Wall Materials: A Strategy to Improve Stability and Antioxidant Activity. Phycology, 5(4), 51. https://doi.org/10.3390/phycology5040051