Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance
Abstract
1. Introduction
- Synthesize existing knowledge on the temporal and spatial dynamics of phytoplankton–zooplankton trophic coupling, including responses to eutrophication, climate variability, and invasive species.
- Identify dominant thematic trends, methodological approaches, and functional knowledge gaps within the literature.
- Evaluate the degree to which phytoplankton–mesozooplankton interactions are incorporated into ecosystem-based monitoring frameworks and marine policy implementation, with particular emphasis on functional indicators and model-based assessments relevant to MSFD descriptors.
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Metadata Extraction and Standardization
2.4. Chronological Analysis of Publication Output
2.5. Thematic Classification
- Plankton Community Structure: studies analyzing species composition, biomass, abundance, or ecological roles.
- Bloom Dynamics and Seasonality: investigations into bloom events, phenology, and seasonal patterns.
- Modeling and Scenario Analysis: works employing simulations, projections, or conceptual models.
- Ecosystem Assessment: research contributing to ecosystem health indicators, ecological status, or environmental policy frameworks.
2.6. Keyword Co-Occurrence and Cluster Analysis
2.7. Temporal Trend Analysis
2.8. Analytical Framework and Method Typology
2.9. Data Analysis
3. Results
3.1. Temporal Trends in Research Output
3.2. Thematic Distribution of Studies
3.3. Keyword Co-Occurrence Patterns
3.4. Methodological Integration and Gaps in Research Design
3.5. Advancements in Plankton Research Methodologies
4. Discussion
4.1. Reconstructing Planktonic Trophic Coupling in the Black Sea for MSFD-Relevant Ecosystem Assessment
- Adopt cross-cutting ecological indicators that integrate multiple MSFD descriptors by linking plankton community structure and function with biodiversity status (Descriptor 1), food web integrity (Descriptor 4), eutrophication processes (Descriptor 5), and benthic habitat condition (Descriptor 6). Such integrative metrics can offer holistic insights into ecosystem dynamics and anthropogenic pressures.
- Incorporate functional plankton traits—including grazing efficiency, trophic redundancy, size structure, and community-level metabolic activity—into regional monitoring frameworks and national MSFD reporting. These indicators can improve the detection of subtle ecosystem shifts and resilience thresholds.
- Broaden the application of predictive and exploratory tools, such as nutrient–phytoplankton–zooplankton–detritus (NPZD) models, fuzzy cognitive mapping (FCM), and satellite-derived plankton proxies, to simulate ecosystem responses under various environmental and management scenarios. These tools can aid in evaluating the effectiveness of policy measures and anticipating cumulative impacts across descriptors.
- Foster regional standardization and data interoperability by aligning plankton monitoring protocols and sharing practices through established governance mechanisms, including the Black Sea Commission (BSC), the EMBLAS initiative, and Horizon Europe missions.
4.2. Advancing Plankton-Based Assessments Through Cross-Regional Comparisons and Functional Integration
- Standardization of monitoring protocols and taxonomic resolution, especially for zooplankton and microplankton groups.
- Routine inclusion of functional traits and trophic indicators—such as grazing rates, metabolic balance, and size-based metrics—to capture ecosystem functioning beyond biomass.
- Adoption of integrative modeling tools, combining physical, chemical, and biological processes to assess ecosystem responses under different management and climate scenarios.
- Expansion of transboundary collaboration and data sharing, leveraging platforms such as the BSC, EMBLAS, and SeaDataNet for regional harmonization and open science.
- Capacity-building for emerging methodologies, including molecular (eDNA), remote sensing, and artificial intelligence tools to extract ecological signals from complex data streams.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MSFD | Marine Strategy Framework Directive |
GES | Good Environmental Status |
NPZD | Nutrient–phytoplankton–zooplankton–detritus |
FCM | Fuzzy cognitive maps |
BSC | Black Sea Commission |
EMBLAS | Environmental Monitoring in the Black Sea |
HELCOM | Helsinki Commission |
CPR | Continuous Plankton Recorder |
mTL | Mean trophic level |
MISIS | MSFD Guiding Improvements in the Black Sea Integrated Monitoring System |
ANEMONE | Assessing the vulnerability of the Black Sea marine ecosystem to human pressures |
UNEP/MAP (IMAP) | United Nations Environment Programme/Mediterranean Action Plan (Integrated Monitoring and Assessment Programme) |
References
- Irigoien, X.; Huisman, J.; Harris, R.P. Global Biodiversity Patterns of Marine Phytoplankton and Zooplankton. Nature 2004, 429, 863–867. [Google Scholar] [CrossRef]
- Tilman, D.; Kilham, S.S.; Kilham, P. Phytoplankton Community Ecology: The Role of Limiting Nutrients. Annu. Rev. Ecol. Syst. 2003, 13, 349–372. [Google Scholar] [CrossRef]
- Berthold, M.; Karsten, U.; von Weber, M.; Bachor, A.; Schumann, R. Phytoplankton Can Bypass Nutrient Reductions in Eutrophic Coastal Water Bodies. Ambio 2018, 47, 146–158. [Google Scholar] [CrossRef]
- Bisinicu, E.; Harcota, G.E. Baseline Assessment of Black Sea Food Web Integrity Using a Zooplankton-Based Approach Under the Marine Strategy Framework Directive. J. Mar. Sci. Eng. 2025, 13, 713. [Google Scholar] [CrossRef]
- Bișinicu, E.; Boicenco, L.; Pantea, E.; Timofte, F.; Lazăr, L.; Vlas, O. Qualitative Model of the Causal Interactions between Phytoplankton, Zooplankton, and Environmental Factors in the Romanian Black Sea. Phycology 2024, 4, 168–189. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. The Key Role of Zooplankton in Ecosystem Services: A Perspective of Interaction between Zooplankton and Fish Recruitment. Ecol. Indic. 2021, 129, 107867. [Google Scholar] [CrossRef]
- Lv, Y.; Pei, Y.; Gao, S.; Li, C. Harvesting of a Phytoplankton-Zooplankton Model. Nonlinear Anal. Real World Appl. 2010, 11, 3608–3619. [Google Scholar] [CrossRef]
- Giraldo, C.; Cresson, P.; MacKenzie, K.; Fontaine, V.; Loots, C.; Delegrange, A.; Lefebvre, S. Insights into Planktonic Food-Web Dynamics through the Lens of Size and Season. Sci. Rep. 2024, 14, 1684. [Google Scholar] [CrossRef]
- Legendre, L.; Rassoulzadegan, F. Plankton and Nutrient Dynamics in Marine Waters. Ophelia 1995, 41, 153–172. [Google Scholar] [CrossRef]
- Benedetti, F.; Vogt, M.; Elizondo, U.H.; Righetti, D.; Zimmermann, N.E.; Gruber, N. Major Restructuring of Marine Plankton Assemblages under Global Warming. Nat. Commun. 2021, 12, 5226. [Google Scholar] [CrossRef]
- Murphy, G.E.P.; Romanuk, T.N.; Worm, B. Cascading Effects of Climate Change on Plankton Community Structure. Ecol. Evol. 2020, 10, 2170–2181. [Google Scholar] [CrossRef]
- Ibarbalz, F.M.; Henry, N.; Brandão, M.C.; Martini, S.; Busseni, G.; Byrne, H.; Coelho, L.P.; Endo, H.; Gasol, J.M.; Gregory, A.C.; et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 2019, 179, 1084–1097.e21. [Google Scholar] [CrossRef]
- Oviatt, C.A. Effects of Different Mixing Schedules on Phytoplankton. Zooplankton and Nutrients in Marine Microcosms. Mar. Ecol. Prog. Ser. 1981, 4, 57–67. [Google Scholar] [CrossRef]
- D’Alelio, D.; Russo, L.; Del Gaizo, G.; Caputi, L. Plankton under Pressure: How Water Conditions Alter the Phytoplankton–Zooplankton Link in Coastal Lagoons. Water 2022, 14, 974. [Google Scholar] [CrossRef]
- Moschonas, G.; Gowen, R.J.; Paterson, R.F.; Mitchell, E.; Stewart, B.M.; McNeill, S.; Glibert, P.M.; Davidson, K. Nitrogen Dynamics and Phytoplankton Community Structure: The Role of Organic Nutrients. Biogeochemistry 2017, 134, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Mikaelyan, A.S.; Zatsepin, A.G.; Chasovnikov, V.K. Long-Term Changes in Nutrient Supply of Phytoplankton Growth in the Black Sea. J. Mar. Syst. 2013, 117–118, 53–64. [Google Scholar] [CrossRef]
- Moncheva, S.; Gotsis-Skretas, O.; Pagou, K.; Krastev, A. Phytoplankton Blooms in Black Sea and Mediterranean Coastal Ecosystems Subjected to Anthropogenic Eutrophication: Similarities and Differences. Estuar. Coast. Shelf Sci. 2001, 53, 281–295. [Google Scholar] [CrossRef]
- Litchman, E.; Ohman, M.D.; Kiørboe, T. Trait-Based Approaches to Zooplankton Communities. J. Plankton Res. 2013, 35, 473–484. [Google Scholar] [CrossRef]
- Mitra, A.; Flynn, K.J. Promotion of Harmful Algal Blooms by Zooplankton Predatory Activity. Biol. Lett. 2006, 2, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ding, D.; Gu, T.; Jiang, T.; Qu, K.; Sun, J.; Cui, Z. Different Responses of Phytoplankton and Zooplankton Communities to Current Changing Coastal Environments. Environ. Res. 2022, 215, 114426. [Google Scholar] [CrossRef]
- Vigouroux, G.; Destouni, G.; Jönsson, A.; Cvetkovic, V. A Scalable Dynamic Characterisation Approach for Water Quality Management in Semi-Enclosed Seas and Archipelagos. Mar. Pollut. Bull. 2019, 139, 311–327. [Google Scholar] [CrossRef]
- Goodsir, F.; Bloomfield, H.J.; Judd, A.D.; Kral, F.; Robinson, L.A.; Knights, A.M. A Spatially Resolved Pressure-Based Approach to Evaluate Combined Effects of Human Activities and Management in Marine Ecosystems. ICES J. Mar. Sci. 2015, 72, 2245–2256. [Google Scholar] [CrossRef]
- Borja, A.; Elliott, M.; Teixeira, H.; Stelzenmüller, V.; Katsanevakis, S.; Coll, M.; Galparsoro, I.; Fraschetti, S.; Papadopoulou, N.; Lynam, C.; et al. Addressing the Cumulative Impacts of Multiple Human Pressures in Marine Systems, for the Sustainable Use of the Seas. Front. Ocean. Sustain. 2024, 1, 1308125. [Google Scholar] [CrossRef]
- Bisinicu, E.; Lazǎr, L. Assessing the Black Sea Mesozooplankton Community Following the Nova Kakhovka Dam Breach. J. Mar. Sci. Eng. 2025, 13, 67. [Google Scholar] [CrossRef]
- Lazar, L.; Boicenco, L.; Pantea, E.; Timofte, F.; Vlas, O.; Bișinicu, E. Modeling Dynamic Processes in the Black Sea Pelagic Habitat—Causal Connections between Abiotic and Biotic Factors in Two Climate Change Scenarios. Sustainability 2024, 16, 1849. [Google Scholar] [CrossRef]
- Lazar, L.; Vlas, O.; Pantea, E.; Boicenco, L.; Marin, O.; Abaza, V.; Filimon, A.; Bisinicu, E. Black Sea Eutrophication Comparative Analysis of Intensity between Coastal and Offshore Waters. Sustainability 2024, 16, 5146. [Google Scholar] [CrossRef]
- Daskalov, G.M.; Boicenco, L.; Grishin, A.N.; Lazar, L.; Mihneva, V.; Shlyakhov, V.A.; Zengin, M. Architecture of Collapse: Regime Shift and Recovery in an Hierarchically Structured Marine Ecosystem. Glob. Change Biol. 2017, 23, 1486–1498. [Google Scholar] [CrossRef]
- Bisinicu, E.; Abaza, V.; Boicenco, L.; Adrian, F.; Harcota, G.-E.; Marin, O.; Oros, A.; Pantea, E.; Spinu, A.; Timofte, F.; et al. Spatial Cumulative Assessment of Impact Risk-Implementing Ecosystem-Based Management for Enhanced Sustainability and Biodiversity in the Black Sea. Sustainability 2024, 16, 4449. [Google Scholar] [CrossRef]
- Ristea, E.; Bisinicu, E.; Lavric, V.; Parvulescu, O.C.; Lazar, L. A Long-Term Perspective of Seasonal Shifts in Nutrient Dynamics and Eutrophication in the Romanian Black Sea Coast. Sustainability 2025, 17, 1090. [Google Scholar] [CrossRef]
- Zaitsev, Y.P.; Alexandrov, B.G.; Berlinsky, N.A.; Zenetos, A. Seas around Europe: The Black Sea: An Oxygen-Poor Sea. In Europe’s Biodiversity: Biogeographical Regions and Seas; European Environment Agency: Copenhagen, Denmark, 2002. [Google Scholar]
- Sorokin, Y.I. The Black Sea: Ecology and Oceanography. Biology of Inland Waters; Backhuys Publishers: Leiden, The Netherlands, 2002. [Google Scholar]
- Bișinicu, E.; Lazăr, L.; Timofte, F. Dynamics of Zooplankton along the Romanian Black Sea Coastline: Temporal Variation, Community Structure, and Environmental Drivers. Diversity 2023, 15, 1024. [Google Scholar] [CrossRef]
- Lazar, L.; Spanu, A.; Boicenco, L.; Oros, A.; Damir, N.; Bisinicu, E.; Abaza, V.; Filimon, A.; Harcota, G.; Marin, O.; et al. Methodology for Prioritizing Marine Environmental Pressures under Various Management Scenarios in the Black Sea. Front. Mar. Sci. 2024, 11, 1388877. [Google Scholar] [CrossRef]
- Crise, A.; Kaberi, H.; Ruiz, J.; Zatsepin, A.; Arashkevich, E.; Giani, M.; Karageorgis, A.P.; Prieto, L.; Pantazi, M.; Gonzalez-Fernandez, D.; et al. A MSFD Complementary Approach for the Assessment of Pressures, Knowledge and Data Gaps in Southern European Seas: The PERSEUS Experience. Mar. Pollut. Bull. 2015, 95, 28–39. [Google Scholar] [CrossRef]
- Daskalov, G.M. Overfishing Drives Atrophic Cascade in the Black Sea. Mar. Ecol. Prog. Ser. 2002, 225, 53–63. [Google Scholar] [CrossRef]
- Daskalov, G.; Shlyakhov, V. Influence of Gelatinous Zooplankton on Fish Stocks in the Black Sea: Analysis of Biological Time-Series. Mar. Ecol. J. 2007, 5–24. [Google Scholar]
- Daskalov, G.M.; Grishin, A.N.; Rodionov, S.; Mihneva, V. Trophic Cascades Triggered by Overfishing Reveal Possible Mechanisms of Ecosystem Regime Shifts. Proc. Natl. Acad. Sci. USA 2007, 104, 10518–10523. [Google Scholar] [CrossRef]
- Oguz, T. Long-Term Impacts of Anthropogenic Forcing on the Black Sea Ecosystem. Oceanography 2012, 18, 112–121. [Google Scholar] [CrossRef]
- Oguz, T.; Velikova, V. Abrupt Transition of the Northwestern Black Sea Shelf Ecosystem from a Eutrophic to an Alternative Pristine State. Mar. Ecol. Prog. Ser. 2010, 405, 231–242. [Google Scholar] [CrossRef]
- Tabarcea, C.; Bisinicu, E.; Harcota, G.E.; Timofte, F.; Gomoiu, M.T. Zooplankton Community Structure and Dynamics Along the Romanian Black Sea Area In 2017. JEPE 2019, 20, 742–752. [Google Scholar]
- Bisinicu, E.; Harcota, G.E.; Lazar, L. Interactions between Environmental Factors and the Mesozooplankton Community from the Romanian Black Sea Waters. Turk. J. Zool. 2023, 47, 202–215. [Google Scholar] [CrossRef]
- Harcotă, G.E.; Bișinicu, E.; Tabarcea, C.; Țoțoiu, A.; Filimon, A.; Abaza, V.; Boicenco, L.; Timofte, F. Distribution and Abundance of the Macrozooplankton Comunity in the Black Sea In 2021. Ann. Acad. Rom. Sci. Ser. Biol. Sci. 2022, 11, 53–61. [Google Scholar] [CrossRef]
- Shiganova, T.A.; Mikaelyan, A.S.; Moncheva, S.; Stefanova, K.; Chasovnikov, V.K.; Mosharov, S.A.; Mosharova, I.N.; Slabakova, N.; Mavrodieva, R.; Stefanova, E.; et al. Effect of Invasive Ctenophores Mnemiopsis Leidyi and Beroe Ovata on Low Trophic Webs of the Black Sea Ecosystem. Mar. Pollut. Bull. 2019, 141, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Petran, A.; Moldoveanu, M. Post-Invasion Ecological Impact of the Atlantic Ctenophore Mnemiopsis leidyi Agassiz, 1865 On the Zooplankton from the Romanian Black Sea Waters. Cercet. Mar. 1994, 1994–1995, 135–157. [Google Scholar]
- Shiganova, T.A.; Dumont, H.J.; Mikaelyan, A.; Glazov, D.M.; Bulgakova, Y.V.; Musaeva, E.I.; Sorokin, P.Y.; Pautova, L.A.; Mirzoyan, Z.A.; Studenikina, E.I. Interaction between the Invading Ctenophores Mnemiopsis leidyi (A. Agassiz) and Beroe ovata Mayer 1912, and Their Influence on the Pelagic Ecosystem of the Northeastern Black Sea. In Aquatic Invasions in the Black, Caspian, and Mediterranean Seas; Dumont, H., Shiganova, T.A., Niermann, U., Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 35, pp. 33–70. [Google Scholar]
- Shiganova, T.; Mirzoyan, Z.; Studenikina, E.; Volovik, S.; Siokou-Frangou, I.; Zervoudaki, S.; Christou, E.; Skirta, A.; Dumont, H. Population Development of the Invader Ctenophore Mnemiopsis leidyi, in the Black Sea and in Other Seas of the Mediterranean Basin. Mar. Biol. 2001, 139, 431–445. [Google Scholar] [CrossRef]
- Kamburska, L.; Schrimpf, W.; Djavidnia, S.; Shiganova, T.; Stefanova, K. Adressing the Ecological Issue of the Invasive Species Special Focus on the Ctenophore Mnemiopsis leidy (Agassiz, 1865) in the Black Sea; Institute for Environment and Sustainability: Luxembourg, 2006. [Google Scholar]
- Mutlu, E. Distribution and Abundance of Ctenophores and Their Zooplankton Food in the Black Sea. II. Mnemiopsis leidyi. Mar. Biol. 1999, 135, 603–613. [Google Scholar] [CrossRef]
- Porumb, F. Le Zooplancton de La Mer Noire. Biologie Des Eaux Saumâtres de La Mer Noire. IRCM Constanţa 1977, 1, 99–108. [Google Scholar]
- Vereshchaka, A. Navigating the Zooplankton Realm: Oceans of Diversity Beneath the Sea Surface. Diversity 2024, 16, 717. [Google Scholar] [CrossRef]
- Magliozzi, C.; Druon, J.N.; Palialexis, A.; Aguzzi, L.; Antoniadis, K.; Artigas, L.F.; Azzellino, A.; Bisinicu, E.; Boicenco, L.; Bojanić, N.; et al. Pelagic Habitats under MSFD D1 Scientific Advice of Policy Relevance: Recommendations to Frame Problems and Solutions for the Pelagic Habitats’ Assessment; Publications Office of the European Union: Luxembourg, 2021; ISBN 9789276359586. [Google Scholar]
- Boicenco, L.; Buga, L.; Zaharia, T.; Nicolaev, S. Implementation of Marine Strategy Framework Directive in Romania. J. Environ. Prot. Ecol. 2018, 19, 196–207. [Google Scholar]
- Berg, T.; Fürhaupter, K.; Teixeira, H.; Uusitalo, L.; Zampoukas, N. The Marine Strategy Framework Directive and the Ecosystem-Based Approach—Pitfalls and Solutions. Mar. Pollut. Bull. 2015, 96, 18–28. [Google Scholar] [CrossRef]
- Vasilakopoulos, P.; Palialexis, A.; Boschetti, S.T.; Cardoso, A.C.; Druon, J.-N.; Konrad, C.; Kotta, M.; Magliozzi, C.; Palma, M.; Piroddi, C.; et al. Marine Strategy Framework Directive: Thresholds for MSFD Criteria: State of Play and Next Steps; Publications Office of the European Union: Luxembourg, 2022; ISBN 9789276536895. [Google Scholar]
- Bisinicu, E.; Lazar, L. Exploring Mesozooplankton Insights by Assessing the Ecological Status of Black Sea Waters Under the Marine Strategy Framework Directive. Oceans 2024, 5, 923–950. [Google Scholar] [CrossRef]
- Jakhar, P. Role of Phytoplankton and Zooplankton as Health Indicators of Aquatic Ecosystem: A Review. Int. J. Innov. Res. Stud. 2013, 2, 489–500. [Google Scholar]
- Garmendia, M.; Borja, Á.; Franco, J.; Revilla, M. Phytoplankton Composition Indicators for the Assessment of Eutrophication in Marine Waters: Present State and Challenges within the European Directives. Mar. Pollut. Bull. 2013, 66, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis, 3rd ed.; PRIMER-E: Plymouth, UK, 2014. [Google Scholar]
- Jonasdttir, S.H.; Kiorboe, T. Copepod Recruitment and Food Composition: Do Diatoms Affect Hatching Success? Mar. Biol. 1996, 125, 743–750. [Google Scholar] [CrossRef]
- Harvey, B.P.; Agostini, S.; Kon, K.; Wada, S.; Hall-Spencer, J.M. Diatoms Dominate and Alter Marine Food-Webs When CO2 Rises. Diversity 2019, 11, 242. [Google Scholar] [CrossRef]
- Kleppel, G.S. On the Diets of Calanoid Copepods. Mar. Ecol. Prog. Ser. 1993, 99, 183–195. [Google Scholar] [CrossRef]
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- Hogfors, H.; Motwani, N.H.; Hajdu, S.; El-Shehawy, R.; Holmborn, T.; Vehmaa, A.; Engström-Öst, J.; Brutemark, A.; Gorokhova, E. Bloom-Forming Cyanobacteria Support Copepod Reproduction and Development in the Baltic Sea. PLoS ONE 2014, 9, e112692. [Google Scholar] [CrossRef]
- Litchman, E. Understanding and Predicting Harmful Algal Blooms in a Changing Climate: A Trait-based Framework. Limnol Oceanogr. Lett. 2023, 8, 229–246. [Google Scholar] [CrossRef]
- Winder, M.; Sommer, U. Phytoplankton Response to a Changing Climate. Hydrobiologia 2012, 698, 5–16. [Google Scholar] [CrossRef]
- Richardson, A.J. In Hot Water: Zooplankton and Climate Change. ICES J. Mar. Sci. 2008, 65, 279–295. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful Algae at the Complex Nexus of Eutrophication and Climate Change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- du Pontavice, H.; Gascuel, D.; Kay, S.; Cheung, W. Climate-Induced Changes in Ocean Productivity and Food-Web Functioning Are Projected to Markedly Affect European Fisheries Catch. Mar. Ecol. Prog. Ser. 2023, 713, 21–37. [Google Scholar] [CrossRef]
- Smith, W.; Steinberg, D.; Bronk, D.; Tang, K. Marine Plankton Food Webs and Climate Change; William & Mary VIMS: Gloucester Point, VA, USA, 2008; pp. 1–4. [Google Scholar]
- Ducklow, H.; Cimino, M.; Dunton, K.H.; Fraser, W.R.; Hopcroft, R.R.; Ji, R.; Miller, A.J.; Ohman, M.D.; Sosik, H.M. Marine Pelagic Ecosystem Responses to Climate Variability and Change. Bioscience 2022, 72, 827–850. [Google Scholar] [CrossRef]
- Edwards, M.; Richardson, A.J. Impact of Climate Change on Marine Pelagic Phenology and Trophic Mismatch. Nature 2004, 430, 881–884. [Google Scholar] [CrossRef] [PubMed]
- McQuatters-Gollop, A.; Mee, L.D.; Raitsos, D.E.; Shapiro, G.I. Non-Linearities, Regime Shifts and Recovery: The Recent Influence of Climate on Black Sea Chlorophyll. J. Mar. Syst. 2008, 74, 649–658. [Google Scholar] [CrossRef]
- Shiganova, T.A.; Sommer, U.; Javidpour, J.; Molinero, J.C.; Malej, A.; Kazmin, A.S.; Isinibilir, M.; Christou, E.; Siokou- Frangou, I.; Marambio, M.; et al. Patterns of Invasive Ctenophore Mnemiopsis leidyi Distribution and Variability in Different Recipient Environments of the Eurasian Seas: A Review. Mar. Environ. Res. 2019, 152, 104791. [Google Scholar] [CrossRef]
- D’Alelio, D.; Montresor, M.; Mazzocchi, M.G.; Margiotta, F.; Sarno, D.; Ribeira d’Alcalà, M. Plankton Food-Webs: To What Extent Can They Be Simplified? Adv. Oceanogr. Limnol. 2016, 7, 67–92. [Google Scholar] [CrossRef]
- Akoglu, E.; Salihoglu, B.; Libralato, S.; Oguz, T.; Solidoro, C. An Indicator-Based Evaluation of Black Sea Food Web Dynamics during 1960–2000. J. Mar. Syst. 2014, 134, 113–125. [Google Scholar] [CrossRef]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas. Water 2019, 11, 1. [Google Scholar] [CrossRef]
- Stelmakh, L.; Kovrigina, N.; Gorbunova, T. Phytoplankton Seasonal Dynamics under Conditions of Climate Change and Anthropogenic Pollution in the Western Coastal Waters of the Black Sea (Sevastopol Region). J. Mar. Sci. Eng. 2023, 11, 569. [Google Scholar] [CrossRef]
- Capet, A.; Beckers, J.M.; Grégoire, M. Drivers, Mechanisms and Long-Term Variability of Seasonal Hypoxia on the Black Sea Northwestern Shelf—Is There Any Recovery after Eutrophication? Biogeosciences 2013, 10, 3943–3962. [Google Scholar] [CrossRef]
- O’Higgins, T.; Farmer, A.; Daskalov, G.; Knudsen, S.; Mee, L. Achieving Good Environmental Status in the Black Sea: Scale Mismatches in Environmental Management. Ecol. Soc. 2014, 19, 54. [Google Scholar] [CrossRef]
- Yilmaz, A.; East, M.; Sciences, M.; Box, P.O. Primary Production, Availability/Uptake of Nutrients and Photo-Adaptation of Phytoplankton in Three Interconnected Regional Seas: Black Sea, Sea of Marmara and Eastern Mediterranean. In Proceedings of the 2nd JGOFS Open Science Conference on “Ocean Biogeochemistry: A New Paradigm”, Bergen, Norway, 13–17 April 2000. [Google Scholar]
- Armstrong, R.A. Grazing Limitation and Nutrient Limitation in Marine Ecosystems: Steady State Solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 1994, 39, 597–608. [Google Scholar] [CrossRef]
- Smayda, T.J. Complexity in the Eutrophication-Harmful Algal Bloom Relationship, with Comment on the Importance of Grazing. Harmful Algae 2008, 8, 140–151. [Google Scholar] [CrossRef]
- Finenko, G.A. Population Dynamics, Ingestion, Growth and Reproduction Rates of the Invader Beroe Ovata and Its Impact on Plankton Community in Sevastopol Bay, the Black Sea. J. Plankton Res. 2003, 25, 539–549. [Google Scholar] [CrossRef]
- Gray, S.A.; Gray, S.; Cox, L.J.; Henly-Shepard, S. Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 965–973. [Google Scholar]
- Mee, L.D. The Black Sea in Crisis: A Need for Concerted International Action the Black Sea. Ambio 1992, 21, 278–286. [Google Scholar]
- Oguz, T.; Dippner, J.W.; Kaymaz, Z. Climatic Regulation of the Black Sea Hydro-Meteorological and Ecological Properties at Interannual-to-Decadal Time Scales. J. Mar. Syst. 2006, 60, 235–254. [Google Scholar] [CrossRef]
- Karlsson, A.; Auer, N.; Schulz-Bull, D.; Abrahamsson, K. Cyanobacterial Blooms in the Baltic—A Source of Halocarbons. Mar. Chem. 2008, 110, 129–139. [Google Scholar] [CrossRef]
- Savchuk, O.P.; Wulff, F. Modeling the Baltic Sea Eutrophication in a Decision Support System. Ambio 2007, 36, 141–148. [Google Scholar] [CrossRef]
- Lilover, M.J.; Stips, A. The Variability of Parameters Controlling the Cyanobacteria Bloom Biomass in the Baltic Sea. J. Mar. Syst. 2008, 74, 108–115. [Google Scholar] [CrossRef]
- Andersen, J.H.; Axe, P.; Backer, H.; Carstensen, J.; Claussen, U.; Fleming-Lehtinen, V.; Järvinen, M.; Kaartokallio, H.; Knuuttila, S.; Korpinen, S.; et al. Getting the Measure of Eutrophication in the Baltic Sea: Towards Improved Assessment Principles and Methods. Biogeochemistry 2011, 106, 137–156. [Google Scholar] [CrossRef]
- Wasmund, N.; Kownacka, J.; Göbel, J.; Jaanus, A.; Johansen, M.; Jurgensone, I.; Lehtinen, S.; Powilleit, M. The Diatom/Dinoflagellate Index as an Indicator of Ecosystem Changes in the Baltic Sea 1. Principle and Handling Instruction. Front. Mar. Sci. 2017, 4, 22. [Google Scholar] [CrossRef]
- Carstensen, J.; Andersen, J.; Dromph, K. Approaches and Methods for Eutrophication Target Setting in the Baltic Sea Region; Technical Report BSEP-133; HELCOM: Helsinki, Finland, 2013; 134p. [Google Scholar]
- Rönnberg, C.; Bonsdorff, E. Baltic Sea Eutrophication: Area-Specific Ecological Consequences. Hydrobiologia 2004, 514, 227–241. [Google Scholar] [CrossRef]
- Greenwood, N.; Parker, E.R.; Fernand, L.; Sivyer, D.B.; Weston, K.; Painting, S.J.; Kröger, S.; Forster, R.M.; Lees, H.E.; Mills, D.K.; et al. Detection of Low Bottom Water Oxygen Concentrations in the North Sea; Implications for Monitoring and Assessment of Ecosystem Health. Biogeosciences 2010, 7, 1357–1373. [Google Scholar] [CrossRef]
- Allen, J.I.; Clarke, K.R. Effects of Demersal Trawling on Ecosystem Functioning in the North Sea: A Modelling Study. Mar. Ecol. Prog. Ser. 2007, 336, 63–75. [Google Scholar] [CrossRef]
- Van Leeuwen, S.; Tett, P.; Mills, D.; van Der Molen, J. Stratified and Nonstratified Areas in the North Sea: Long-Term Variability and Biological and Policy Implications. J. Geophys. Res. Oceans 2015, 118, 2121–2128. [Google Scholar] [CrossRef]
- Almroth, E.; Skogen, M.D. A North Sea and Baltic Sea Model Ensemble Eutrophication Assessment. Ambio 2010, 39, 59–69. [Google Scholar] [CrossRef]
- Andersen, J.H.; Al-Hamdani, Z.; Harvey, E.T.; Kallenbach, E.; Murray, C.; Stock, A. Relative Impacts of Multiple Human Stressors in Estuaries and Coastal Waters in the North Sea–Baltic Sea Transition Zone. Sci. Total Environ. 2020, 704, 135316. [Google Scholar] [CrossRef]
- Kovalev, A.V.; Mazzocchi, M.G.; Siokou-Frangou, I.; Kideys, A.E. Zooplankton of the Black Sea and the Eastern Mediterranean: Similarities and Dissimilarities. Mediterr. Mar. Sci. 2001, 2, 69–77. [Google Scholar] [CrossRef]
- Marampouti, C.; Buma, A.G.J.; de Boer, M.K. Mediterranean Alien Harmful Algal Blooms: Origins and Impacts. Environ. Sci. Pollut. Res. 2021, 28, 3837–3851. [Google Scholar] [CrossRef]
- Vollenweider, R.A.; Rinaldi, A.; Viviani, R.; Todini, E. Assessment of the State of Eutrophication in the Mediterranean Sea. MAP Tech. Rep. Ser. 1996, 106, 456. [Google Scholar] [CrossRef]
- Macias, D.; Garcia-Gorriz, E.; Piroddi, C.; Stips, A. Biogeochemical Control of Marine Productivity in the Mediterranean Sea during the Last 50 Years. Glob. Biogeochem. Cycles 2014, 28, 897–907. [Google Scholar] [CrossRef]
- Crispi, G.; Mosetti, R.; Solidoro, C.; Crise, A. Nutrients Cycling in Mediterranean Basins: The Role of the Biological Pump in the Trophic Regime. Ecol. Model. 2001, 138, 101–114. [Google Scholar] [CrossRef]
- Micheli, F.; Halpern, B.S.; Walbridge, S.; Ciriaco, S.; Ferretti, F.; Fraschetti, S.; Lewison, R.; Nykjaer, L.; Rosenberg, A.A. Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities. PLoS ONE 2013, 8, e79889. [Google Scholar] [CrossRef] [PubMed]
- Zaragüeta, M.; Acebes, P. Controlling Eutrophication in A Mediterranean Shallow Reservoir by Phosphorus Loading Reduction: The Need for an Integrated Management Approach. Environ. Manag. 2017, 59, 635–651. [Google Scholar] [CrossRef]
- Piroddi, C.; Coll, M.; Macias, D.; Steenbeek, J.; Garcia-Gorriz, E.; Mannini, A.; Vilas, D.; Christensen, V. Modelling the Mediterranean Sea Ecosystem at High Spatial Resolution to Inform the Ecosystem-Based Management in the Region. Sci. Rep. 2022, 12, 19680. [Google Scholar] [CrossRef]
- Vinogradov, M.E.; Grinberg, V.M. 64th Cruise of the Rv Vityaz—Studies of the Black Sea Pelagic Ecosystems. Okeanologiya 1979, 19, 348–352. [Google Scholar]
- Shushkina, E.A.; Vinogradov, M.E. Variation of the Structural-Functional Characteristics of Planktonic Communities with Their Development. Okeanologiya 1983, 23, 863–872. [Google Scholar]
- Shushkina, E.A. Production of the Main Ecological Groups of Plankton of the Epipelagic Oceanic Areas. Okeanologiya 1985, 25, 839–845. [Google Scholar]
- Mikhailovsky, G.E.; Suhanova, I.N. The Distribution of Characteristics of Phytoplankton and Zooplankton Correlation Structure in Pelagial of the Black-Sea. Okeanologiya 1987, 27, 311–316. [Google Scholar]
- Kideys, A.E. Recent Dramatic Changes in the Black-Sea Ecosystem—The Reason for the Sharp Decline in Turkish Anchovy Fisheries. J. Mar. Syst. 1994, 5, 171–181. [Google Scholar] [CrossRef]
- Leppakoski, E.; Mihnea, P.E. Enclosed seas under man-induced change: A comparison between the Baltic and Black Seas. Ambio 1996, 25, 380–389. [Google Scholar]
- Oguz, T.; Ducklow, H.; MalanotteRizzoli, P.; Tugrul, S.; Nezlin, N.P.; Unluata, U. Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model. J. Geophys. Res.-Ocean. 1996, 101, 16585–16599. [Google Scholar] [CrossRef]
- Oguz, T.; Malanotte-Rizzoli, P.; Ducklow, H. Towards coupling three dimensional eddy resolving general circulation and biochemical models in the Black Sea. In Sensitivity to Change: Black Sea, Baltic Sea, And North Sea; Springer: Dordrecht, The Netherlands, 1997; Volume 27, pp. 469–485. [Google Scholar]
- Zaitsev, Y.P.; Alexandrov, B.G. Recent man-made changes in the Black Sea ecosystem. In Sensitivity to Change: Black Sea, Baltic Sea, And North Sea; Springer: Dordrecht, The Netherlands, 1997; Volume 27, pp. 25–31. [Google Scholar]
- Yuneva, T.V.; Svetlichnii, L.S.; Yunev, O.A.; Georgieva, L.V.; Senichkina, L.G. Spatial variability of Calanus euxinus lipid content in connection with chlorophyll concentration and phytoplankton biomass. Okeanologiya 1997, 37, 745–752. [Google Scholar]
- Gregoire, M.; Beckers, J.M.; Nihoul, J.C.J. Coupled hydrodynamic ecosystem model of the Black Sea at basin scale—Model description and first results. In Sensitivity to Change: Black Sea, Baltic Sea, And North Sea; Springer: Dordrecht, The Netherlands, 1997; Volume 27, pp. 487–499. [Google Scholar]
- Mikaelyan, A.S. Long-term variability of phytoplankton communities in open Black Sea in relation to environmental changes. In Sensitivity to Change: Black Sea, Baltic Sea, and North Sea; Springer: Dordrecht, The Netherlands, 1997; Volume 27, pp. 105–116. [Google Scholar]
- Kovalev, A.; Niermann, U.; Melnikov, V.; Belokopitov, V.; Uysal, Z.; Kideys, A.E.; Unsal, M.; Altukhov, D. Long-term changes in the Black Sea zooplankton: The role of natural and anthropogenic factors. In Ecosystem Modeling as a Management Tool for The Black Sea; Springer: Dordrecht, The Netherlands, 1998; Volume 47, pp. 221–234. [Google Scholar]
- Oguz, T.; Ducklow, H.; Shushkina, E.A.; Malanotte-Rizzoli, P.; Tugrul, S.; Lebedeva, L.P. Simulation of upper layer biochemical structure in the Black Sea. In Ecosystem Modeling as a Management Tool for The Black Sea; Springer: Dordrecht, The Netherlands, 1998; Volume 47, pp. 257–299. [Google Scholar]
- Gregoire, M.; Beckers, J.M.; Nihoul, J.C.J.; Stanev, E. Reconnaissance of the main Black Sea’s ecohydrodynamics by means of a 3D interdisciplinary model. J. Mar. Syst. 1998, 16, 85–105. [Google Scholar] [CrossRef]
- Konsulov, A.; Kamburska, L. Zooplankton dynamics and variability off the Bulgarian Black Sea coast during 1991–1995. In Ecosystem Modeling as a Management Tool for The Black Sea; Springer: Dordrecht, The Netherlands, 1998; Volume 47, pp. 281–291. [Google Scholar]
- Kovalev, A.; Besiktepe, S.; Zagorodnyaya, J.; Kideys, A.E. Mediterraneanization of the Black Sea zooplankton is continuing. In Ecosystem Modeling as a Management Tool for The Black Sea; Springer: Dordrecht, The Netherlands, 1998; Volume 47, pp. 199–207. [Google Scholar]
- Yuneva, T.V.; Svetlichny, L.S.; Yunev, O.A.; Romanova, Z.A.; Kideys, A.E.; Bingel, F.; Uysal, Z.; Yilmaz, A.; Shulman, G.E. Nutritional condition of female Calanus euxinus from cyclonic and anticyclonic regions of the Black Sea. Mar. Ecol. Prog. Ser. 1999, 189, 195–204. [Google Scholar] [CrossRef]
- Oguz, T.; Ducklow, H.W.; Malanotte-Rizzoli, P.; Murray, J.W.; Shushkina, E.A.; Vedernikov, V.I.; Unluata, U. A physical-biochemical model of plankton productivity and nitrogen cycling in the Black Sea. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 1999, 46, 597–636. [Google Scholar] [CrossRef]
- Solovjova, N.V. Synthesis of ecosystemic and ecoscreening modelling in solving problems of ecological safety. Ecol. Model. 1999, 124, 1–10. [Google Scholar] [CrossRef]
- Nezlin, N.P. Unusual phytoplankton bloom in the Black Sea during 1998-1999: Analysis of remotely sensed data. Oceanology 2001, 41, 375–380. [Google Scholar]
- Grégoire, M.; Lacroix, G. Study of the oxygen budget of the Black Sea waters using a 3D coupled hydrodynamical-biogeochemical model. J. Mar. Syst. 2001, 31, 175–202. [Google Scholar] [CrossRef]
- Oguz, T.; Ducklow, H.W.; Purcell, J.E.; Malanotte-Rizzoli, P. Modeling the response of top-down control exerted by gelatinous carnivores on the Black Sea pelagic food web. J. Geophys. Res.-Ocean. 2001, 106, 4543–4564. [Google Scholar] [CrossRef]
- Kalchev, R.K.; Pehlivanov, L.Z.; Beshkova, M.B. Trophic relations in two lakes from the Bulgarian Black Sea coast and possibilities for their restoration. Water Sci. Technol. 2002, 46, 1–8. [Google Scholar] [CrossRef]
- Moncheva, S.; Doncheva, V.; Shtereva, G.; Kamburska, L.; Malej, A.; Gorinstein, S. Application of eutrophication indices for assessment of the Bulgarian Black Sea coastal ecosystem ecological quality. Water Sci. Technol. 2002, 46, 19–28. [Google Scholar] [CrossRef]
- Shiganova, T.A.; Dumont, H.J.; Sokolsky, A.F.; Kamakin, A.M.; Tinenkova, D.; Kurasheva, E.K. Population dynamics of Mnemiopsis leidyi in the Caspian Sea, and effects on the Caspian ecosystem. In Aquatic Invasions in the Black, Caspian, and Mediterranean Seas: The Ctenophores Mnemiopsis leidyi and Beroe in the Ponto-Caspian and Other Aquatic Invasions; Springer: Dordrecht, The Netherlands, 2004; Volume 35, pp. 71–111. [Google Scholar]
- Lancelot, C.; Staneva, J.; Gypens, N. Modelling the response of coastal ecosystem to nutrient change. Océanis 2004, 28, 531–556. [Google Scholar]
- Kantha, L.H. A general ecosystem model for applications to primary productivity and carbon cycle studies in the global oceans. Ocean. Model. 2004, 6, 285–334. [Google Scholar] [CrossRef]
- Velikova, V.; Cociasu, A.; Popa, L.; Boicenco, L.; Petrova, D. Phytoplankton community and hydrochemical characteristics of the Western Black Sea. Water Sci. Technol. 2005, 51, 9–18. [Google Scholar] [CrossRef]
- Svetlichny, L.S.; Kideys, A.E.; Hubareva, E.S.; Besiktepe, S.; Isinibilir, M. Development and lipid storage in Calanus euxinus from the Black and Marmara seas: Variabilities due to habitat conditions. J. Mar. Syst. 2006, 59, 52–62. [Google Scholar] [CrossRef]
- Morgan, J.A.; Quinby, H.L.; Ducklow, H.W. Bacterial abundance and production in the western Black Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1945–1960. [Google Scholar] [CrossRef]
- Oguz, T.; Merico, A. Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: A modeling study. J. Mar. Syst. 2006, 59, 173–188. [Google Scholar] [CrossRef]
- Bat, L.; Sahin, F.; Ustun, F.; Kideys, A.E.; Satilmis, H.H. The qualitative and quantitative distribution in phytoplankton and zooplankton of southern Black Sea of cape Sinop, Turkey in 1999–2000. In Proceedings of the Oceans 2007—Europe, Aberdeen, UK, 18–21 June 2007. [Google Scholar]
- Golubkov, S.; Kemp, R.; Golubkov, M.; Balushkina, E.; Litvinchuk, L.; Gubelit, Y. Biodiversity and the functioning of hypersaline lake ecosystems from Crimea Peninsula (Black Sea). Fundam. Appl. Limnol. 2007, 169, 79–87. [Google Scholar] [CrossRef]
- Oguz, T.; Gilbert, D. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2007, 54, 220–242. [Google Scholar] [CrossRef]
- Chu, P.C.; Ivanou, L.M.; Maryolina, T.M. On non-linear sensitivity of marine biological models to parameter variations. Ecol. Model. 2007, 206, 369–382. [Google Scholar] [CrossRef]
- Grégoire, M.; Raick, C.; Soetaert, K. Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Prog. Oceanogr. 2008, 76, 286–333. [Google Scholar] [CrossRef]
- Uzunova, S.; Mikhailov, K.; Michneva, V.; Dineva, S.; Petrova, D.; Gerdzikov, D. Seasonal Distribution of Nektobenthos in Varna Bay (Black Sea). Biotechnol. Biotechnol. Equip. 2009, 23, 951–954. [Google Scholar] [CrossRef]
- Stel’makh, L.V.; Babich, I.I.; Tugrul, S.; Moncheva, S.; Stefanova, K. Phytoplankton Growth Rate and Zooplankton Grazing in the Western Part of the Black Sea in the Autumn Period. Oceanology 2009, 49, 83–92. [Google Scholar] [CrossRef]
- Selifonova, J.P. The ecosystem of the Black Sea port of Novorossiysk under conditions of heavy anthropogenic pollution. Russ. J. Ecol. 2009, 40, 510–515. [Google Scholar] [CrossRef]
- Siokou-Frangou, I.; Zervoudaki, S.; Christou, E.D.; Zervakis, V.; Georgopoulos, D. Variability of mesozooplankton spatial distribution in the North Aegean Sea, as influenced by the Black Sea waters outflow. J. Mar. Syst. 2009, 78, 557–575. [Google Scholar] [CrossRef]
- Demirkalp, F.Y.; Saygi, Y.; Caglar, S.S.; Gunduz, E.; Kilinc, S. Limnological Assesment on the Brakish Shallow Liman Lake from Kizilirmak Delta (Turkey). J. Anim. Vet. Adv. 2010, 9, 2132–2139. [Google Scholar] [CrossRef]
- Staneva, J.; Kourafalou, V.; Tsiaras, K. Seasonal and Interannual Variability of the North-Western Black Sea Ecosystem. Terr. Atmos. Ocean. Sci. 2010, 21, 163–180. [Google Scholar] [CrossRef]
- Zervoudaki, S.; Christou, E.D.; Assimakopoulou, G.; Örek, H.; Gucu, A.C.; Giannakourou, A.; Pitta, P.; Terbiyik, T.; Yucel, N.; Moutsopoulos, T.; et al. Copepod communities, production and grazing in the Turkish Straits System and the adjacent northern Aegean Sea during spring. J. Mar. Syst. 2011, 86, 45–56. [Google Scholar] [CrossRef]
- Politikos, D.V.; Triantafyllou, G.; Petihakis, G.; Tsiaras, K.; Somarakis, S.; Ito, S.I.; Megrey, B.A. Application of a bioenergetics growth model for European anchovy (Engraulis encrasicolus) linked with a lower trophic level ecosystem model. Hydrobiologia 2011, 670, 141–163. [Google Scholar] [CrossRef]
- Zmerli, H.T.; Yahia-Kéfi, O.D. Have Non-Indigenous Planktonic Species Been Introduced Via Ballast Waters in Two North African Ports (La Goulette and Bizerte, Tunisia)? Vie Milieu-Life Environ. 2012, 62, 1–9. [Google Scholar]
- Vasiliu, D.; Boicenco, L.; Gomoiu, M.T.; Lazar, L.; Mihailov, M.E. Temporal variation of surface andorophyll a in the Romanian near-shore waters. Mediterr. Mar. Sci. 2012, 13, 213–226. [Google Scholar] [CrossRef]
- Drits, A.V.; Nikishina, A.B.; Sergeeva, V.M.; Solov’ev, K.A. Feeding, respiration, and excretion of the Black Sea Noctiluca scintillans MacCartney in summer. Oceanology 2013, 53, 442–450. [Google Scholar] [CrossRef]
- Klisarova, D. Investigation of Invasive Species in Ballast Waters of Ships. In Proceedings of the Global Congress on ICM: Lessons Learned to Address New Challenges, Marmaris, Turkey, 30 October–3 November 2013; pp. 965–976. [Google Scholar]
- Mikaelyan, A.S.; Malej, A.; Shiganova, T.A.; Turk, V.; Sivkovitch, A.E.; Musaeva, E.I.; Kogovsek, T.; Lukasheva, T.A. Populations of the red tide forming dinoflagellate Noctiluca scintillans (Macartney): A comparison between the Black Sea and the northern Adriatic Sea. Harmful Algae 2014, 33, 29–40. [Google Scholar] [CrossRef]
- Siokou, I.; Frangoulis, C.; Grigoratou, M.; Pantazi, M. Zooplankton community dynamics in the N. Aegean front (E. Mediterranean) in the winter-spring period. Mediterr. Mar. Sci. 2014, 15, 706–720. [Google Scholar] [CrossRef]
- Chust, G.; Allen, J.I.; Bopp, L.; Schrum, C.; Holt, J.; Tsiaras, K.; Zavatarelli, M.; Chifflet, M.; Cannaby, H.; Dadou, I.; et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Change Biol. 2014, 20, 2124–2139. [Google Scholar] [CrossRef]
- Moncheva, S.; Stefanova, K.; Doncheva, V.; Hristova, O.; Dzhurova, B.; Racheva, E. Plankton Indicators to Inform Eutrophication Management. In Proceedings of the Twelfth International Conference on the Mediterranean Coastal Environment (MEDCOAST 15), Varna, Bulgaria, 6–10 October 2015; pp. 351–362. [Google Scholar]
- Cannaby, H.; Fach, B.A.; Arkin, S.S.; Salihoglu, B. Climatic controls on biophysical interactions in the Black Sea under present day conditions and a potential future (A1B) climate scenario. J. Mar. Syst. 2015, 141, 149–166. [Google Scholar] [CrossRef]
- Arashkevich, E.G.; Louppova, N.E.; Nikishina, A.B.; Pautova, L.A.; Chasovnikov, V.K.; Drits, A.V.; Podymov, O.I.; Romanova, N.D.; Stanichnaya, R.R.; Zatsepin, A.G.; et al. Marine environmental monitoring in the shelf zone of the Black Sea: Assessment of the current state of the pelagic ecosystem. Oceanology 2015, 55, 871–876. [Google Scholar] [CrossRef]
- Sârbu, G.; Totoiu, A.; Nenciu, M.I.; Boicenco, L.; Radu, G. Identifying And Quantifying Marine Ecosystem Effects on the Black Sea Sprat Biology. In Proceedings of the SGEM 2016—Water Resources, Forest, Marine and Ocean Ecosystems Conference Proceedings, Albena, Bulgaria, 30 June–6 July 2016; pp. 755–762. [Google Scholar]
- Imchenko, I.E.; Lazarchuk, I.P.; Ivashchenko, I.K.; Igumnova, E.M. Modeling of the Sea Upper Layer Ecosystem Fields by the Adaptive Balance of Causes Method. Phys. Oceanogr. 2016, 1, 71–87. [Google Scholar] [CrossRef]
- Sen Ozdemir, N.; Feyzioglu, A.M.; Caf, F.; Yildiz, I. Seasonal changes in abundance, lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian J. Fish. 2017, 64, 55–66. [Google Scholar] [CrossRef]
- Silkin, V.A.; Pautova, L.A.; Fedorov, A.V.; Shitikov, E.I.; Drozdov, V.V.; Lukasheva, T.A.; Zasko, D.A. Formation of Artificial Communities for the Ballast Water Management Systems Testing in Accordance with Requirements of International Maritime Organization. Russ. J. Biol. Invasions 2018, 9, 184–194. [Google Scholar] [CrossRef]
- Mazlum, R.E.; Aytan, U.; Agirbas, E. The Feeding Behaviour of Pleurobrachia Pileus (Ctenophora: Tentaculata) in the Southeastern Black Sea: In Relation to Area and Season. Fresenius Environ. Bull. 2018, 27, 871–879. [Google Scholar]
- Dönmez, M.A.; Bat, L. Detection of feeding dietary Rhizostoma pulmo (Macri, 1778) in Samsun coasts of the Black Sea, Turkey. Su Urunleri Dergisi—Ege J. Fish. Aquat. Sci. 2019, 36, 135–144. [Google Scholar] [CrossRef]
- Vereshchaka, A.L.; Anokhina, L.L.; Lukasheva, T.A.; Lunina, A.A. Long-term studies reveal major environmental factors driving zooplankton dynamics and periodicities in the Black Sea coastal zooplankton. PeerJ 2019, 7, e7588. [Google Scholar] [CrossRef] [PubMed]
- Tas, S.; Kus, D.; Yilmaz, I.N. Temporal variations in phytoplankton composition in the north-eastern Sea of Marmara: Potentially toxic species and mucilage event. Mediterr. Mar. Sci. 2020, 21, 668–683. [Google Scholar] [CrossRef]
- Selifonova, Z.P.; Chasovnikov, V.K.; Samyshev, E.Z.; Makarevich, P.R. State of the Marine Ecosystem Near the Mouth of the Agoy River (Black Sea). South Russ.-Ecol. Dev. 2020, 15, 16–27. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Mikaelyan, A.S.; Stanichny, S.V.; Kubryakova, E.A. Seasonal Stages of Chlorophyll-a Vertical Distribution and Its Relation to the Light Conditions in the Black Sea from Bio-Argo Measurements. J. Geophys. Res.-Ocean. 2020, 125, e2020JC016790. [Google Scholar] [CrossRef]
- Sen, Ö.N.; Feyzioglu, A.M.; Caf, F. The evaluation of seasonal fatty acid composition and food sources of Pileurobrachia pileus (Ctenophora) in terms of trophic marker fatty acids in the Southeastern Black Sea. Su Urunleri Dergisi—Ege J. Fish. Aquat. Sci. 2021, 38, 211–218. [Google Scholar] [CrossRef]
- Friedland, K.D.; Methratta, E.T.; Gill, A.B.; Gaichas, S.K.; Curtis, T.H.; Adams, E.M.; Morano, J.L.; Crear, D.P.; McManus, M.C.; Brady, D.C. Resource Occurrence and Productivity in Existing and Proposed Wind Energy Lease Areas on the Northeast US Shelf. Front. Mar. Sci. 2021, 8, 629230. [Google Scholar] [CrossRef]
- Kovalyshyna, S.; Chuzhekova, T.; Grandova, M.; Onishchenko, E.; Zubcov, E.; Ukrainskyy, V.; Goncharov, O.; Munjiu, O.; Nabokin, M.; Ene, A. Ecological Conditions of the Lower Dniester and Some Indicators for Assessment of the Hydropower Impact. Appl. Sci. 2021, 11, 9900. [Google Scholar] [CrossRef]
- Melnikov, V.; Melnik, A.; Mashukova, O.; Kapranov, S.; Melnik, L. Bioluminescence of ctenophores near the boundary of oxygen-depleted waters at the redoxcline of the Black Sea. Luminescence 2021, 36, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Krasheninnikova, S.B.; Minkina, N.I.; Shokurova, I.G.; Samyshev, E.Z. Comprehensive Analysis of the Distribution of Ecosystem Components in the Black Sea Taking into Account Hydrochemical and Hydrometeorological Factors. Water Resour. 2022, 49, 134–141. [Google Scholar] [CrossRef]
- Paraskiv, A.A.; Tereshchenko, N.N.; Proskurnin, V.Y.; Chuzhikova-Proskurnina, O.D.; Trapeznikov, A.V.; Plataev, A.P. Accumulation Ability of Hydrobionts and Suspended Matter in Relation to Plutonium Radioisotopes in Coastal Waters (Sevastopol Bay, the Black Sea). Vestn. Tomsk. Gos. Univ.-Biol. 2022, 60, 78–101. [Google Scholar] [CrossRef]
- Shiganova, T.A.; Kamaki, A.M.; Pautova, L.A.; Kazmin, A.S.; Roohi, A.; Dumont, H.J. An impact of non-native species invasions on the Caspian Sea biota. Adv. Mar. Biol. 2023, 94, 69–157. [Google Scholar] [CrossRef] [PubMed]
- Klisarova, D.; Gerdzhikov, D.; Nikolova, N.; Gera, M.; Veleva, P. Influence of Some Environmental Factors on Summer Phytoplankton Community Structure in the Varna Bay, Black Sea (1992–2019). Water 2023, 15, 1677. [Google Scholar] [CrossRef]
- Mutlu, E.; Karaca, D. Records of Three Immature Gelatinous Specimens for the Turkish Mediterranean Coast with an Emphasis on Alternative Pathways. Aquat. Sci. Eng. 2024, 39, 43–53. [Google Scholar] [CrossRef]
- Bagheri, S.; Sabkara, J.; Kideys, A.E. Effect of Non-Native Ctenophore Beroe ovata on Invader Mnemiopsis leidyi and Mesozooplankton in the South-Western Caspian Sea. Inland Water Biol. 2024, 17, 1022–1039. [Google Scholar] [CrossRef]
- Bisinicu, E.; Harcota, G.; Coatu, V.; Lazar, L. Validating an In-House Method for Assessing Effluent Discharge Toxicity Using Acartia tonsa in the Black Sea. Appl. Sci. 2024, 14, 9861. [Google Scholar] [CrossRef]
- Melnik, A.V.; Silakov, M.I.; Mashukova, O.V.; Melnik, L.A. Bioluminescence of ctenophore Pleurobrachia pileus (O.F. Muller 1776). Vestn. Tomsk. Gos. Univ.-Biol. 2024, 66, 234–251. [Google Scholar] [CrossRef]
Step | Description | Count |
---|---|---|
Web of Science search results | 133 papers | |
Other basins/non-marine systems | 47 papers | |
Black Sea marine-focused studies | 86 papers |
Region | Governance Platform | Plankton Indicators Used | Descriptors Addressed | Functional Approaches | Modeling/Tools |
---|---|---|---|---|---|
Black Sea | BSC, EMBLAS | Chlorophyll-a (satellite, in situ); basic biomass estimates | D1 (limited), D5 | Minimal, functional metrics are rarely applied | Limited; some NPZD/FCM pilot studies |
Baltic Sea | HELCOM | Chl-a, cyanobacteria index, zooplankton abundance & size | D1, D4, D5 | Size-based, life-history traits, bloom metrics | Regional NPZD models, scenario simulations |
North Sea | OSPAR, CPR program | Size spectra, biomass trends, trophic level changes | D1, D4, D5, D6 | Trait-based indicators; mTL, energy flow metrics | CPR data-based ecosystem modeling |
Mediterranean | UNEP/MAP (IMAP) | Functional phytoplankton traits, bloom phenology | D1, D4, D5 (varies by subregion) | Emerging: diversity indices, trophic coupling | Satellite + local model coupling, climate risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisinicu, E.; Lazar, L. Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance. Phycology 2025, 5, 39. https://doi.org/10.3390/phycology5030039
Bisinicu E, Lazar L. Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance. Phycology. 2025; 5(3):39. https://doi.org/10.3390/phycology5030039
Chicago/Turabian StyleBisinicu, Elena, and Luminita Lazar. 2025. "Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance" Phycology 5, no. 3: 39. https://doi.org/10.3390/phycology5030039
APA StyleBisinicu, E., & Lazar, L. (2025). Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance. Phycology, 5(3), 39. https://doi.org/10.3390/phycology5030039