Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Surface Area Analysis
2.3. Temperature Experiment
2.4. Abundances of Vibrio vulnificus/cholerae, Vibrio parahaemolyticus, and Vibrio alginolyticus
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-González, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In IPCC Special Report on the Ocean Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 3–35. [Google Scholar] [CrossRef]
- Prakash, S. Impact of Climate change on Aquatic Ecosystem and its Biodiversity: An overview. Int. J. Biol. Innov. 2021, 3, 312–317. [Google Scholar] [CrossRef]
- Froelich, B.A.; Daines, D.A. In hot water: Effects of climate change on Vibrio–human interactions. Environ. Microbiol. 2020, 22, 4101–4111. [Google Scholar] [CrossRef]
- Brumfield, K.D.; Usmani, M.; Chen, K.M.; Gangwar, M.; Jutla, A.S.; Huq, A.; Colwell, R.R. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ. Microbiol. 2021, 23, 7314–7340. [Google Scholar] [CrossRef]
- Trinanes, J.; Martinez-Urtaza, J. Future scenarios of risk of Vibrio infections in a warming planet: A global mapping study. Lancet Planet. Health 2021, 5, e426–e435. [Google Scholar] [CrossRef]
- Craun, G.F. Waterborne disease. In Waterborne Diseases in the United States; CRC Press, Inc.: BocaRaton, FL, USA, 1986; pp. 3–10. [Google Scholar]
- Cabral, J.P.S. Water Microbiology. Bacterial Pathogens and Water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.K.; Sondak, C.F.A.; Beardall, J. The future of seaweed aquaculture in a rapidly changing world. Eur. J. Phycol. 2017, 52, 495–505. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and microalgae: An overview for unlocking their potential in global aquaculture development. FAO Fish. Aquac. Circ. 2021, 1229. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef]
- Düsedau, L.; Ren, Y.; Hou, M.; Wahl, M.; Hu, Z.M.; Wang, G.; Weinberger, F. Elevated Temperature-Induced Epimicrobiome Shifts in an Invasive Seaweed Gracilaria vermiculophylla. Microorganisms 2023, 11, 599. [Google Scholar] [CrossRef]
- Singh, R.P.; Reddy, C.R.K. Seaweed–microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol. 2014, 88, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Saha, M. Infochemicals in terrestrial plants and seaweed holobionts: Current and future trends. New Phytol. 2021, 229, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Gao, K. Effects of climate change factors on marine macroalgae: A review. Adv. Mar. Biol. 2021, 88, 91–136. [Google Scholar] [CrossRef] [PubMed]
- Goecke, F.; Labes, A.; Wiese, J.; Imhoff, J.F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 2010, 409, 267–299. [Google Scholar] [CrossRef]
- Mahmud, Z.H.; Neogi, S.B.; Kassu, A.; Mai Huong, B.T.; Jahid, I.K.; Islam, M.S.; Ota, F. Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiol. Ecol. 2008, 64, 209–218. [Google Scholar] [CrossRef]
- Sampaio, A.; Silva, V.; Poeta, P.; Aonofriesei, F. Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. Diversity 2022, 14, 97. [Google Scholar] [CrossRef]
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef]
- Kalvaitienė, G.; Vaičiūtė, D.; Bučas, M.; Gyraitė, G.; Kataržytė, M. Macrophytes and their wrack as a habitat for faecal indicator bacteria and Vibrio in coastal marine environments. Mar. Pollut. Bull. 2023, 194, 115325. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. [Google Scholar] [CrossRef]
- Blackwell, K.D.; Oliver, J.D. The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina Estuaries. J. Microbiol. 2008, 46, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.A.; Shafaie, A. A Review of Pathogenic Vibrio Infections for Clinicians. Infect. Med. 2000, 17, 665–685. [Google Scholar]
- Coerdt, K.M.; Khachemoune, A. Vibrio vulnificus: Review of Mild to Life-threatening Skin Infections PRACTICE POINTS. Cutis 2021, 107, E12–E17. [Google Scholar] [CrossRef]
- Amato, E.; Riess, M.; Thomas-Lopez, D.; Linkevicius, M.; Pitkänen, T.; Wołkowicz, T.; Rjabinina, J.; Jernberg, C.; Hjertqvist, M.; MacDonald, E.; et al. Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Eurosurveillance 2022, 27, 2101088. [Google Scholar] [CrossRef]
- Fleischmann, S.; Herrig, I.; Wesp, J.; Stiedl, J.; Reifferscheid, G.; Strauch, E.; Alter, T.; Brennholt, N. Prevalence and Distribution of Potentially Human Pathogenic Vibrio spp. on German North and Baltic Sea Coasts. Front. Cell. Infect. Microbiol. 2022, 12, 846819. [Google Scholar] [CrossRef]
- Mahmud, Z.H.; Neogi, S.B.; Kassu, A.; Wada, T.; Islam, M.S.; Nair, G.B.; Ota, F. Seaweeds as a reservoir for diverse Vibrio parahaemolyticus populations in Japan. Int. J. Food Microbiol. 2007, 118, 92–96. [Google Scholar] [CrossRef]
- Vezzulli, L.; Colwell, R.R.; Pruzzo, C. Ocean Warming and Spread of Pathogenic Vibrios in the Aquatic Environment. Microb. Ecol. 2013, 65, 817–825. [Google Scholar] [CrossRef]
- Pruzzo, C.; Huq, A.; Colwell, R.R.; Donelli, G. Pathogenic Vibrio Species in the Marine and Estuarine Environment. Ocean. Health Pathog. Mar. Environ. 2005, 217–252. [Google Scholar] [CrossRef]
- Oliver, J.D. The Viable but Nonculturable State in Bacteria. J. Microbiol. 2005, 43, 93–100. [Google Scholar] [PubMed]
- Baker-Austin, C.; Trinanes, J.A.; Taylor, N.G.H.; Hartnell, R.; Siitonen, A.; Martinez-Urtaza, J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 2013, 3, 73–77. [Google Scholar] [CrossRef]
- Kaspar, C.W.; Tamplin, M.L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl. Environ. Microbiol. 1993, 59, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Namadi, P.; Deng, Z. Optimum environmental conditions controlling prevalence of vibrio parahaemolyticus in marine environment. Mar. Environ. Res. 2023, 183, 105828. [Google Scholar] [CrossRef] [PubMed]
- Geisser, A.H.; Scro, A.K.; Smolowitz, R.; Fulweiler, R.W. Macroalgae host pathogenic Vibrio spp. In a temperate estuary. Front. Mar. Sci. 2025, 12, 1549732. [Google Scholar] [CrossRef]
- Takemura, A.F.; Chien, D.M.; Polz, M.F. Associations and dynamics of vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 2014, 5, 75606. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Kahru, A.; Mander, Ü.; Nõges, P.; Nõges, T.; Tuvikene, A.; Vasemägi, A. Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: Stress responses, adaptation, and scaling. Reg. Environ. Change 2017, 17, 2061–2077. [Google Scholar] [CrossRef]
- Lutz, C.; Erken, M.; Noorian, P.; Sun, S.; McDougald, D. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front. Microbiol. 2013, 4, 70843. [Google Scholar] [CrossRef]
- Mensch, B.; Neulinger, S.C.; Graiff, A.; Pansch, A.; Künzel, S.; Fischer, M.A.; Schmitz, R.A. Restructuring of epibacterial communities on fucus vesiculosus forma mytili in response to elevated pco2 and increased temperature levels. Front. Microbiol. 2016, 7, 180232. [Google Scholar] [CrossRef]
- Vezzulli, L.; Baker-Austin, C.; Kirschner, A.; Pruzzo, C.; Martinez-Urtaza, J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: A neglected research field? Environ. Microbiol. 2020, 22, 4342–4355. [Google Scholar] [CrossRef]
- Tuhumury, N.C.; Sahetapy, J.M.F.; Matakupan, J. Isolation and identification of bacterial pathogens causing ice-ice disease in Eucheuma cottonii seaweed at Seira Island Waters, Tanimbar Islands District, Maluku, Indonesia. Biodiversitas J. Biol. Divers. 2024, 25, 964–970. [Google Scholar] [CrossRef]
- Wang, G.; Shuai, L.; Li, Y.; Lin, W.; Zhao, X.; Duan, D. Phylogenetic analysis of epiphytic marine bacteria on Hole-Rotten diseased sporophytes of Laminaria japonica. J. Appl. Phycol. 2008, 20, 403–409. [Google Scholar] [CrossRef]
- Haley, B.J.; Chen, A.; Grim, C.J.; Clark, P.; Diaz, C.M.; Taviani, E.; Hasan, N.A.; Sancomb, E.; Elnemr, W.M.; Islam, M.A.; et al. Vibrio cholerae in a historically cholera-free country. Environ. Microbiol. Rep. 2012, 4, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Fraschetti, S.; Alifano, P.; Tredici, M.S.; Stabili, L. Association of Vibrio community with the Atlantic Mediterranean invasive alga Caulerpa cylindracea. J. Exp. Mar. Biol. Ecol. 2016, 475, 129–136. [Google Scholar] [CrossRef]
- Ziino, G.; Nibali, V.; Panebianco, A. Bacteriological investigation on ‘Mauro’ sold in Catania. Vet. Res. Commun. 2010, 34 (Suppl. 1), 157–161. [Google Scholar] [CrossRef] [PubMed]
- Barberi, O.N.; Byron, C.J.; Burkholder, K.M.; St. Gelais, A.T.; Williams, A.K. Assessment of bacterial pathogens on edible macroalgae in coastal waters. J. Appl. Phycol. 2020, 32, 683–696. [Google Scholar] [CrossRef]
- Gonzalez, D.J.; Gonzalez, R.A.; Froelich, B.A.; Oliver, J.D.; Noble, R.T.; McGlathery, K.J. Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Mar. Ecol. Prog. Ser. 2014, 505, 29–36. [Google Scholar] [CrossRef]
- Michotey, V.; Blanfuné, A.; Chevalier, C.; Garel, M.; Diaz, F.; Berline, L.; Le Grand, L.; Armougom, F.; Guasco, S.; Ruitton, S.; et al. In situ observations and modelling revealed environmental factors favouring occurrence of Vibrio in microbiome of the pelagic Sargassum responsible for strandings. Sci. Total Environ. 2020, 748, 141216. [Google Scholar] [CrossRef]
- Akrong, M.O.; Anning, A.K.; Addico, G.D.; Hogarh, J.N.; Adu-Gyamfi, A.; deGraft-Johnson, K.A.; Ale, M.; Ampofo, J.A.; Meyer, A.S. Variations in seaweed-associated and planktonic bacterial communities along the coast of Ghana. Mar. Biol. Res. 2023, 19, 219–233. [Google Scholar] [CrossRef]
- Selvarajan, R.; Ribanda, T.; Venkatachalam, S.; Ogola, H.J.O.; Obieze, C.C.; Msagati, T.A. Distribution, Interaction and Functional Profiles of Epiphytic Bacterial Communities from the Rocky Intertidal Seaweeds, South Africa. Sci Rep. 2019, 9, 19835. [Google Scholar] [CrossRef]
- Reilly, G.D.; Reilly, C.A.; Smith, E.G.; Baker-Austin, C. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011. Eurosurveillance 2011, 16, 3. [Google Scholar] [CrossRef]
- Akomea-Frempong, S.; Skonberg, D.I.; Arya, R.; Perry, J.J. Survival of Inoculated Vibrio spp., Shigatoxigenic Escherichia coli, Listeria monocytogenes, and Salmonella spp. on Seaweed (Sugar Kelp) During Storage. J. Food Prot. 2023, 86, 100096. [Google Scholar] [CrossRef]
- Griffis, R.; Howard, J. (Eds.) Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Wilkins, L.G.E.; Leray, M.; O’dea, A.; Yuen, B.; Peixoto, R.S.; Pereira, T.J.; Bik, H.M.; Coil, D.A.; Duffy, J.E.; Herre, E.A.; et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 2019, 17, e3000533. [Google Scholar] [CrossRef] [PubMed]
- Nahor, O.; Israel, Á.; Barger, N.; Rubin-Blum, M.; Luzzatto-Knaan, T. Epiphytic microbiome associated with intertidal seaweeds in the Mediterranean Sea: Comparative analysis of bacterial communities across seaweed phyla. Sci. Rep. 2024, 14, 18631. [Google Scholar] [CrossRef] [PubMed]
- Del Olmo, A.; Picon, A.; Nuñez, M. The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiol. 2018, 70, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Jia, R.; Luo, Y.; Feng, L. The inhibitory effect of Ulva fasciata on culturability, motility, and biofilm formation of Vibrio parahaemolyticus ATCC17802. Int. Microbiol. 2021, 24, 301–310. [Google Scholar] [CrossRef]
- Nevarez-Flores, E.; Cruz-López, R.; Zertuche-González, J.A.; Maske, H.; Ferreira-Arrieta, A.; Altamirano-Gómez, Z.; Sandoval-Gil, J.M. Bacterial community dynamics on the seaweed Ulva ohnoi during a full cultivation cycle in a land-based aquaculture pond system. Algal Res. 2025, 85, 103847. [Google Scholar] [CrossRef]
- Ismail, A.; Ktaria, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; Bour, M.E. Heterotrophic bacteria associated with the green alga Ulva rigida: Identification and antimicrobial potential. J. Appl. Phycol. 2018, 30, 2883–2899. [Google Scholar] [CrossRef]
- Loo, K.-Y.; Tan, L.T.-H.; Law, J.W.-F.; Pusparajah, P.; Wong, S.H.; Chan, K.-G.; Lee, L.-H.; Letchumanan, V. Vibrio parahaemolyticus: Exploring its incidence in Malaysia and the potential of Streptomyces sp. as an anti-Vibrio agent. Prog. Microbes Mol. Biol. 2023, 6, 1. [Google Scholar] [CrossRef]
- Kim, J.; Stekoll, M.; Yarish, C. Opportunities, challenges and future directions of open-water seaweed aquaculture in the United States. Phycologia 2019, 58, 446–461. [Google Scholar] [CrossRef]
- Meichssner, R.; Stegmann, N.; Cosin, A.S.; Sachs, D.; Bressan, M.; Marx, H.; Krost, P.; Rüdiger, S. Control of fouling in the aquaculture of Fucus vesiculosus and Fucus serratus by regular desiccation. J. Appl. Phycol. 2020, 32, 4145–4158. [Google Scholar] [CrossRef]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The seaweed holobiont: Understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 2013, 37, 462–476. [Google Scholar] [CrossRef]
- de Oliveira, L.S.; Tschoeke, D.A.; Magalhães Lopes, A.C.R.; Sudatti, D.B.; Meirelles, P.M.; Thompson, C.C.; Pereira, R.C.; Thompson, F.L. Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed Laurencia dendroidea. mSphere 2017, 2, 10–128. [Google Scholar] [CrossRef]
- Lamb, J.B.; Van De Water, J.A.J.M.; Bourne, D.G.; Altier, C.; Hein, M.Y.; Fiorenza, E.A.; Abu, N.; Jompa, J.; Harvell, C.D. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 2017, 355, 731–733. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, S.; Saha, M. Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds. Phycology 2025, 5, 38. https://doi.org/10.3390/phycology5030038
Wilson S, Saha M. Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds. Phycology. 2025; 5(3):38. https://doi.org/10.3390/phycology5030038
Chicago/Turabian StyleWilson, Sidney, and Mahasweta Saha. 2025. "Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds" Phycology 5, no. 3: 38. https://doi.org/10.3390/phycology5030038
APA StyleWilson, S., & Saha, M. (2025). Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds. Phycology, 5(3), 38. https://doi.org/10.3390/phycology5030038