Chemical Diversity of Marine Filamentous Benthic Cyanobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples from Abrolhos and Ishigaki
2.2. Isolation, Purification and Maintenance of Strains
2.3. Identification and Phylogenetic Analysis
2.4. Samples Preparation for Chemical Extraction
2.5. LC-HRMS Analysis and Data Processing
2.6. Chemical Variability and Predicted Biological Activity
3. Results
3.1. Phylogenetic Analysis of Isolated Cyanobacteria
3.2. Chemical Analysis and Raw Data Processing
3.3. GNPS Data Processing
3.4. DBsimilarity and t-SNE Plots
4. Discussion
4.1. Phylogenetic Relationships and Biogeography
4.2. Chemical Diversity and Metabolic Profiling
4.3. Implications for Future Research and Biotechnological Potential
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crockford, P.W.; Bar On, Y.M.; Ward, L.M.; Milo, R.; Halevy, I. The geologic history of primary productivity. Curr. Biol. 2023, 33, 4741–4750. [Google Scholar] [CrossRef]
- Nandagopal, P.; Steven, A.N.; Chan, L.-W.; Rahmat, Z.; Jamaluddin, H.; Noh, N.I.M. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. Biology 2021, 10, 1061. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-Y.; Teng, W.-K.; Zhao, L.; Hu, C.-X.; Zhou, Y.-K.; Han, B.-P.; Song, L.-R.; Shu, W.-S. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 2021, 15, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Latysheva, N.; Junker, V.L.; Palmer, W.J.; Codd, G.A.; Barker, D. The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 2012, 28, 603–606. [Google Scholar] [CrossRef]
- Warshan, D.; Espinoza, J.L.; Stuart, R.K.; Richter, R.A.; Kim, S.-Y.; Shapiro, N.; Woyke, T.; Kyrpides, N.C.; Barry, K.; Singan, V.; et al. Feathermoss and epiphytic Nostoc cooperate differently: Expanding the spectrum of plant-cyanobacteria symbiosis. ISME J. 2017, 11, 2821–2833. [Google Scholar] [CrossRef] [PubMed]
- Bergman, B.; Johansson, C.; Söderbäck, E. The Nostoc-Gunnera symbiosis. New Phytol. 1992, 122, 379–400. [Google Scholar] [CrossRef]
- Mutalipassi, M.; Riccio, G.; Mazzella, V.; Galasso, C.; Somma, E.; Chiarore, A.; de Pascale, D.; Zupo, V. Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Mar. Drugs 2021, 19, 227. [Google Scholar] [CrossRef]
- Álvarez, C.; Jiménez-Ríos, L.; Iniesta-Pallarés, M.; Jurado-Flores, A.; Molina-Heredia, F.P.; Ng, C.K.Y.; Mariscal, V. Symbiosis between cyanobacteria and plants: From molecular studies to agronomic applications. J. Exp. Bot. 2023, 74, 6145–6157. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Dong, Z.; Zhang, W.; Sun, T.; Chen, L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. Sci. Total Environ. 2024, 945, 173978. [Google Scholar] [CrossRef]
- Jensen, P.E.; Leister, D. Chloroplast evolution, structure and functions. F1000Prime Rep. 2014, 6, 40. [Google Scholar] [CrossRef]
- Moore, L.R.; Huang, T.; Ostrowski, M.; Mazard, S.; Kumar, S.S.; Gamage, H.K.A.H.; Brown, M.V.; Messer, L.F.; Seymour, J.R.; Paulsen, L.T. Unicellular Cyanobacteria Are Important Components of Phytoplankton Communities in Australia’s Northern Oceanic Ecoregions. Front. Microbiol. 2018, 9, 3356. [Google Scholar]
- Cai, L.; Li, H.; Deng, J.; Zhou, R.; Zeng, Q. Biological interactions with Prochlorococcus: Implications for the marine carbon cycle. Trends Microbiol. 2024, 32, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Herrero, A.; Stavans, J.; Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 2016, 40, 831–854. [Google Scholar] [CrossRef] [PubMed]
- Calteau, A.; Fewer, D.P.; Latifi, A.; Coursin, T.; Laurent, T.; Jokela, J.; Kerfeld, C.Y.; Sivonen, K.; Piel, J.; Gugger, M. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genom. 2014, 15, 977. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.M.; Coutinho, F.H.; Leomil, L.; Hargreaves, P.I.; Campeão, M.E.; Vieira, V.V.; Silva, B.S.; Fistarol, G.O.; Salomon, P.S.; Sawabe, T.; et al. Ecogenomics of the Marine Benthic Filamentous Cyanobacterium Adonisia. Microb. Ecol. 2020, 80, 249–265. [Google Scholar] [CrossRef]
- Jones, M.R.; Pinto, E.; Torres, M.A.; Dörr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell’Aversano, C.; Miles, C.O.; Beach, D.G.; et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 2021, 196, 117017. [Google Scholar] [CrossRef]
- Brocke, H.J.; Piltz, B.; Herz, N.; Abed, R.M.M.; Palinska, K.A.; John, U.; Haan, J.D.; de Beer, D.; Nugues, M.M. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. Coral Reefs. 2018, 37, 861–874. [Google Scholar] [CrossRef]
- Ford, A.K.; Bejarano, S.; Nugues, M.M.; Visser, P.M.; Albert, S.; Ferse, S.C.A. Reefs under Siege—The Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats. Front. Mar. Sci. 2018, 5, 18. [Google Scholar] [CrossRef]
- Cissell, E.C.; McCoy, S.J. Shotgun metagenomic sequencing reveals the full taxonomic, trophic, and functional diversity of a coral reef benthic cyanobacterial mat from Bonaire, Caribbean Netherlands. Sci. Total Environ. 2021, 755, 142719. [Google Scholar] [CrossRef]
- Sneed, J.M.; Meickle, T.; Engene, N.; Reed, S.; Gunasekera, S.; Paul, V.J. Bloom dynamics and chemical defenses of benthic cyanobacteria in the Indian River Lagoon, Florida. Harmful Algae 2017, 69, 75–82. [Google Scholar] [CrossRef]
- Charpy, L.; Casareto, B.E.; Langlade, M.J.; Suzuki, Y. Cyanobacteria in coral reef ecosystems: A review. J. Mar. Biol. 2012, 2012, 259571. [Google Scholar] [CrossRef]
- Ribeiro, F.d.V.; Caires, T.A.; Simões, M.A.d.A.; Hargreaves, P.I.; Villela, L.B.; Fistarol, G.d.O.; Cazelgrandi, A.B.; Pereira-Filho, G.H.; de Moura, R.L.; Pereira, R.C.; et al. Benthic cyanobacterial diversity and antagonistic interactions in Abrolhos Bank: Allelopathy, susceptibility to herbivory, and toxicity. Front. Mar. Sci. 2022, 8, 790277. [Google Scholar] [CrossRef]
- Babele, P.K.; Srivastava, A.; Young, J.D. Metabolic flux phenotyping of secondary metabolism in cyanobacteria. Trends Microbiol. 2023, 31, 1118–1130. [Google Scholar] [CrossRef]
- Larsen, J.S.; Pearson, L.A.; Neilan, B.A. Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biol. Evol. 2021, 13, evab056. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualization. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef] [PubMed]
- Leao, T.; Castelão, G.; Korobeynikov, A.; Monroe, E.A.; Podell, S.; Glukhov, E.; Allen, E.E.; Gerwick, W.H.; Gerwick, L. Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proc. Natl. Acad. Sci. USA 2017, 114, 3198–3203. [Google Scholar] [CrossRef]
- Hill, L.J.; Paradas, W.C.; Willemes, M.J.; Pereira, M.G.; Salomon, P.S.; Mariath, R.; Moura, R.L.; Atella, G.C.; Farina, M.; Amado-Filho, G.M.; et al. Acidification-induced cellular changes in Symbiodinium isolated from Mussismilia braziliensis. PLoS ONE 2019, 14, e0220130. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Streit, R.P.; Morais, J.; Schlaefer, J.A.; Swan, S.; Bellwood, D.R. Benthic cyanobacterial mat formation during severe coral bleaching at Lizard Island: The mediating role of water currents. Mar. Environ. Res. 2022, 181, 105752. [Google Scholar] [CrossRef]
- Hamamoto, K.; Mizuyama, M.; Nishijima, M.; Maeda, A.; Gibu, K.; Poliseno, A.; Iguchi, A.; Reimer, J.D. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. Env. Microbiome 2024, 19, 54. [Google Scholar] [CrossRef]
- Blanco, A.C.; Nadaoka, K.; Yamamoto, T. Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan. Mar. Environ. Res. 2008, 66, 520–535. [Google Scholar] [CrossRef]
- Zoffoli, M.L.; Frouin, R.; Moura, R.L.; de Medeiros, T.A.G.; Bastos, A.C.; Kampel, M. Spatial distribution patterns of coral reefs in the Abrolhos region (Brazil, South Atlantic Ocean). Cont. Shelf Res. 2022, 246, 104808. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Bastos, A.C.; Amado Filho, G.M.; Leite MD, A.; Boni, G.C.; Moraes, F.C.; Secchin, N.; Vieira, L.S.; Bahia, R.; Oliveira, N.; et al. Submerged reefs in the Abrolhos Shelf: Morphology and habitat distribution. In Seafloor Geomorphology as Benthic Habitat; Elsevier: Amsterdam, The Netherlands, 2020; pp. 519–532. [Google Scholar]
- Sato, M.; Nanami, A.; Bayne, C.J.; Makino, M.; Hori, M. Changes in the potential stocks of coral reef ecosystem services following coral bleaching in Sekisei Lagoon, southern Japan: Implications for the future under global warming. Sustain. Sci. 2020, 15, 863–883. [Google Scholar] [CrossRef]
- Afzal, M.S.; Udo, T.; Ueno, M.; Nakamura, T. Mass coral bleaching and mortality associated with high sea surface temperatures in the summer of 2022 in Sekisei Lagoon, Okinawa, Japan. Galaxea 2024, 26, 20–26. [Google Scholar] [CrossRef]
- Crisp, S.K.; Tebbett, S.B.; Bellwood, D.R. A critical evaluation of benthic phase shift studies on coral reefs. Mar. Environ. Res. 2022, 178, 105667. [Google Scholar] [CrossRef]
- Riegl, B.M.; Glynn, P.W. Population dynamics of the reef crisis: Consequences of the growing human population. Adv. Mar. Biol. 2020, 87, 1–30. [Google Scholar]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- Borges, R.M. Cyanobacteria Growth V2. Available online: https://www.protocols.io/view/cyanobacteria-growth-cz5ax82e (accessed on 18 September 2023).
- Coffroth, M.A.; Lasker, H.R.; Diamond, M.E.; Bruenn, J.A.; Bermingham, E. DNA fingerprints of a gorgonian coral: A method for detecting clonal structure in a vegetative species. Mar. Biol. 1992, 114, 317–325. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Rua, C.P.; Trindade-Silva, A.E.; Appolinario, L.R.; Venas, T.M.; Garcia, G.D.; Carvalho, L.S.; Lima, A.; Kruger, R.; Pereira, R.C.; Berlinck, R.G.; et al. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ 2014, 2, e419. [Google Scholar] [CrossRef] [PubMed]
- Wawrik, B.; Kerkhof, L.; Zylstra, G.J.; Kukor, J.J. Identification of unique type II polyketide synthase genes in soil. Appl. Environ. Microbiol. 2005, 71, 2232–2238. [Google Scholar] [CrossRef]
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef]
- Lefler, F.W.; Berthold, D.E.; Laughinghouse, H.D., IV. Cyanoseq: A database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. J. Phycol. 2023, 59, 470–480. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Borges, R.M.; Ferreira, G.d.A.; Chagas, F.; Hargrevaes, P.L. Cyanobacteria Growth (English) V1. Available online: https://www.protocols.io/view/cyanobacteria-growth-english-c66qzhdw (accessed on 9 January 2024).
- Borges, R.; Resende, J.; Moraes, A.; Pereira, A.; Garrett, R.; Bauermeister, A.; Silva, A. Guia Para Processamento De Dados De Cromatografia Acoplada A Espectrometria De Massas. Quim. Nova 2021, 45, 608–620. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P.C.; Pevzner, P.A. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 2018, 9, 4035. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Borges, R.M.; Ferreira, G.d.A.; Campos, M.M.; Teixeira, A.M.; Costa, F.d.N.; Chagas, F.O. Data Base similarity (DBsimilarity) of natural products to aid compound identification on MS and NMR pipelines, similarity networking, and more. Phytochem. Anal. 2024, 35, 93–101. [Google Scholar] [CrossRef]
- Konstantinou, D.; Voultsiadou, E.; Panteris, E.; Gkelis, S. Revealing new sponge-associated cyanobacterial diversity: Novel genera and species. Mol. Phylogenet. Evol. 2021, 155, 106991. [Google Scholar] [CrossRef]
- Konstantinou, D.; Voultsiadou, E.; Panteris, E.; Zervou, S.-K.; Hiskia, A.; Gkelis, S. Leptothoe, a new genus of marine cyanobacteria (Synechococcales) and three new species associated with sponges from the Aegean Sea. J. Phycol. 2019, 55, 882–897. [Google Scholar] [CrossRef]
- Mutalipassi, M.; Mazzella, V.; Romano, G.; Ruocco, N.; Costantini, M.; Glaviano, F.; Zupo, V. Growth and toxicity of (Cyanoprokaryota, Cyanophyta) at different conditions of light, salinity and temperature. Biol. Open 2019, 8, bio043604. [Google Scholar] [CrossRef]
- Engene, N.; Choi, H.; Esquenazi, E.; Rottacker, E.C.; Ellisman, M.H.; Dorrestein, P.C.; Gerwick, W.H. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ. Microbiol. 2011, 13, 1601–1610. [Google Scholar]
- Myers, J.L.; Sekar, R.; Richardson, L.L. Molecular Detection and Ecological Significance of the Cyanobacterial Genera Geitlerinema and Leptolyngbya in Black Band Disease of Corals. Appl. Environ. Microbiol. 2007, 73, 5173–5182. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.L.; Gunasekera, S.P.; Brown, A.L.; Ding, Y.; Miller, S.; Teplitski, M.; Paul, V.J. Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics. Mar. Drugs 2023, 21, 76. [Google Scholar] [CrossRef]
- Janssen, E.M.L.; Jones, M.R.; Pinto, E.; Dörr, F.; Torres, M.; Rios Jacinavicius, F.; Hanna, M.-M.; Karolina, S.; Luciana, T. S75|CyanoMetDB|Comprehensive Database of Secondary Metabolites from Cyanobacteria; Zenodo (CERN): Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Engene, N.; Rottacker, E.C.; Kaštovský, J.; Byrum, T.; Choi, H.; Ellisman, M.H.; Komárek, J.; Gerwick, W.H. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012, 62, 1171–1178. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Yao, J.; Lu, J.; Liu, Z.; Ding, L. Recent advances in chemistry and bioactivity of marine cyanobacteria Moorea species. Eur. J. Med. Chem. 2020, 201, 112473. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef]
- Fang, G.-Y.; Chai, L.-J.; Zhong, X.-Z.; Lu, Z.-M.; Zhang, X.-J.; Wu, L.-H.; Wang, S.-T.; Shen, C.-H.; Shi, J.-S.; Xu, Z.-H. Comparative Genomics Unveils the Habitat Adaptation and Metabolic Profiles of Clostridium in an Artificial Ecosystem for Liquor Production. mSystems 2022, 7, e0029722. [Google Scholar] [CrossRef]
- Dzeha, T.; Hall, M.J.; Burgess, J.G. Micrococcin P1 and P2 from Epibiotic Bacteria Associated with Isolates of from Kenya. Mar. Drugs 2022, 20, 128. [Google Scholar] [CrossRef]
- Janssen, E.M.-L. Cyanobacterial peptides beyond microcystins—A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Christensen, V.G.; Khan, E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci. Total Environ. 2020, 736, 139515. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chagas, F.O.; Hargreaves, P.I.; Trindade, V.G.S.; Silva, T.B.M.; Ferreira, G.d.A.; Pestana, Y.; Alves, M.A.; Salomon, P.S.; Bielinski, V.A.; Borges, R.M. Chemical Diversity of Marine Filamentous Benthic Cyanobacteria. Phycology 2024, 4, 589-604. https://doi.org/10.3390/phycology4040032
Chagas FO, Hargreaves PI, Trindade VGS, Silva TBM, Ferreira GdA, Pestana Y, Alves MA, Salomon PS, Bielinski VA, Borges RM. Chemical Diversity of Marine Filamentous Benthic Cyanobacteria. Phycology. 2024; 4(4):589-604. https://doi.org/10.3390/phycology4040032
Chicago/Turabian StyleChagas, Fernanda O., Paulo I. Hargreaves, Victoria Gabriela S. Trindade, Taiane B. M. Silva, Gabriela de A. Ferreira, Yasmin Pestana, Marina A. Alves, Paulo Sergio Salomon, Vincent A. Bielinski, and Ricardo M. Borges. 2024. "Chemical Diversity of Marine Filamentous Benthic Cyanobacteria" Phycology 4, no. 4: 589-604. https://doi.org/10.3390/phycology4040032
APA StyleChagas, F. O., Hargreaves, P. I., Trindade, V. G. S., Silva, T. B. M., Ferreira, G. d. A., Pestana, Y., Alves, M. A., Salomon, P. S., Bielinski, V. A., & Borges, R. M. (2024). Chemical Diversity of Marine Filamentous Benthic Cyanobacteria. Phycology, 4(4), 589-604. https://doi.org/10.3390/phycology4040032