Reciprocal Effects of Metal Mixtures on Phytoplankton
Abstract
:1. Introduction
2. Phytoplankton as Heavy Metal Pollution Indicators
3. Behaviour of Heavy Metals in an Aquatic Ecosystem
4. Conventional and Novel Methods to Study Reciprocal Metal Mixture Toxicity Used Frequently
5. Previous Investigations Performed to Determine Reciprocal Toxicity of Metal Mixtures in Phytoplankton
6. Possible Mechanisms of Entry, Toxicity, and Detoxification in Algal Cells
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kahlon, S.K.; Sharma, G.; Julka, J.M.; Kumar, A.; Sharma, S.; Stadler, F.J. Impact of heavy metals and nanoparticles on aquatic biota. Environ. Chem. Lett. 2018, 16, 919–946. [Google Scholar] [CrossRef]
- Lefcort, H.; Freedman, Z.; House, S.; Pendleton, M. Hormetic effects of heavy metals in aquatic snails: Is a little bit of pollution good? Eco. Health 2008, 5, e10. [Google Scholar] [CrossRef]
- Niemi, G.J.; McDonald, M.E. Application of ecological indicators. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 89–111. [Google Scholar] [CrossRef]
- Chien, C.-T.; Pahlow, M.; Schartau, M.; Li, N.; Oschlies, A. Effects of phytoplankton physiology on global ocean biogeochemistry and climate. Sci. Adv. 2023, 9, eadg1725. [Google Scholar] [CrossRef]
- Hosie, G.; Fukuchi, M.; Kawaguchi, S. Development of the southern ocean continuous plankton recorder survey. Prog. Oceanogr. 2003, 58, 263–283. [Google Scholar] [CrossRef]
- Dziock, F.; Henle, K.; Foeckler, F.; Follner, K.; Scholz, M. Biological indicator systems in floodplains—A review. Int. Rev. Hydrobiol. 2006, 91, 271–291. [Google Scholar] [CrossRef]
- Alho, L.d.O.G.; Gebara, R.C.; Paina, K.d.A.; Sarmento, H.; Melão, M.d.G.G. Responses of Raphidocelis subcapitata exposed to Cd and Pb: Mechanisms of toxicity assessed by multiple endpoints. Ecotoxicol. Environ. Saf. 2019, 169, 950–959. [Google Scholar] [CrossRef]
- Fargašová, A.; Bumbálová, A.; Havránek, E. Ecotoxicological effects and uptake of metals (Cu+, Cu2+, Mn2+, Mo6+, Ni2+, V5+) in freshwater alga Scenedesmus quadricauda. Chemosphere 1999, 38, 1165–1173. [Google Scholar] [CrossRef]
- Filová, A.; Fargašová, A.; Molnárová, M. Cu, Ni, and Zn effects on basic physiological and stress parameters of Raphidocelis subcapitata algae. Environ. Sci. Pollut. Res. 2021, 28, 58426–58441. [Google Scholar] [CrossRef]
- Pastierová, J.; Kramarová, Z.; Molnárová, M.; Fargašová, A. Comparison of the sensitivity of four fresh-water micro-algae to selenate and selenite. Fresenius Environ. Bull. 2009, 18, 2033. [Google Scholar]
- Lewis, M.A. Algae and vascular plant tests. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment; Rand, G.M., Ed.; Taylor and Francis: Washington, DC, USA, 1995; pp. 135–169. [Google Scholar] [CrossRef]
- Dotsenko, I.V.; Mikhailenko, A.V. Phytoplankton and its role in accumulation of microelements in bottom deposits of Azov Sea. Sci. World J. 2019, 2019, 8456371. [Google Scholar] [CrossRef]
- Sanders, J.G.; Riedel, G.F. Metal accumulation and impacts in phytoplankton. In Metal Metabolism in Aquatic Environments; Langston, W.J., Bebianno, M.J., Eds.; Springer: Boston, MA, USA, 1998; pp. 59–76. [Google Scholar] [CrossRef]
- Fettweis, A.; Bergen, B.; Hansul, S.; De Schamphelaere, K.; Smolders, E. Correlated Ni, Cu, and Zn sensitivities of 8 freshwater algal species and consequences for low-level metal mixture effects. Environ. Toxicol. Chem. 2021, 40, 2013–2023. [Google Scholar] [CrossRef]
- Téllez, A.A.C.; Sánchez-Fortún, S.; Sánchez-Fortún, A.; García-Pérez, M.-E.; Chacon-Garcia, L.; Bartolomé, M.C. Prediction of the impact induced by Cd in binary interactions with other divalent metals on wild-type and Cd-resistant strains of Dictyosphaerium chlorelloides. Environ. Sci. Pollut. Res. 2022, 29, 22555–22565. [Google Scholar] [CrossRef]
- Kramárová, Z.; Fargašová, A.; Molnárová, M.; Bujdoš, M. Arsenic and selenium interactive effect on alga Desmodesmus quadricauda. Ecotoxicol. Environ. Saf. 2012, 86, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef]
- Tripathi, S.; Poluri, K.M. Metallothionein-and phytochelatin-assisted mechanism of heavy metal detoxification in microalgae. In Approaches to the Remediation of Inorganic Pollutants; Hasanuzzaman, M., Ed.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Tripathi, B.N.; Gaur, J.P. Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 2004, 219, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.K.; Gaur, J.P. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol. 1999, 143, 253–259. [Google Scholar] [CrossRef]
- Zheng, J.L.; Wang, Z.D.; Lin, Z.Q.; Li, Z.; Chen, J. A study of estuarine chemistry in the Zhujiang River I. Trace metal species in water phase. Oceanol. Et Limnol. Sin. /Hai Yang Yu Hu Zhao 1982, 13, 19–25. [Google Scholar]
- Zheng, J.L.; Wang, Z.D.; Lin, Z.Q.; Li, Z.; Chen, J. A study of estuarine chemistry in the Zhujiang River II. Chemical forms of heavy metals in the suspended particulate. Oceanol. Et Limnol. Sin. /Hai Yang Yu Hu Zhao 1982, 13, 523–530. [Google Scholar]
- Cassee, F.R.; Groten, J.P.; van Bladeren, P.J.; Feron, V.J. Toxicological evaluation and risk assessment of chemical mixtures. Crit. Rev. Toxicol. 1998, 28, 73–101. [Google Scholar] [CrossRef]
- Ting, Y.P.; Prince, I.; Lawson, F. Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi-ion situation. Biotechnol. Bioeng. 1990, 37, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Radwan, S.; Kowalik, W.; Kornijów, R. Accumulation of heavy metals in a lake ecosystem. Sci. Total Environ. 1990, 96, 121–129. [Google Scholar] [CrossRef]
- Kováčik, J.; Klejdus, B.; Babula, P.; Hedbavny, J. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J. Hazard. Mater. 2016, 306, 58–66. [Google Scholar] [CrossRef]
- Markley, C.T.; Herbert, B.E. Modeling phosphate influence on arsenate reduction kinetics by a freshwater cyanobacterium. Environ. Model. Assess. 2010, 15, 361–368. [Google Scholar] [CrossRef]
- Tahir, A.; Seyhan, A.; Ahmet, A.; Didem, A. Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sarıyar Dam Reservoir in Turkey. Afr. J. Biotechnol. 2008, 7, 1972–1977. [Google Scholar] [CrossRef]
- Franklin, N.M.; Stauber, J.L.; Lim, R.P.; Petocz, P. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): The effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ. Toxicol. Chem. 2002, 21, 2412. [Google Scholar] [CrossRef]
- Jager, T.; Albert, C.; Preuss, T.G.; Ashauer, R. General unified threshold model of survival—A toxicokinetic-toxicodynamic framework for ecotoxicology. Environ. Sci. Technol. 2011, 45, 2529–2540. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Sun, Y.; Feng, J.; Gao, Y.; Zhu, L. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model. Aquat. Toxicol. 2019, 210, 106–116. [Google Scholar] [CrossRef]
- Nagai, T.; De Schamphelaere, K.A. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions. Environ. Toxicol. Chem. 2016, 35, 2765–2773. [Google Scholar] [CrossRef]
- Nagai, T.; Kamo, M. Comparative modeling of the effect of metal mixtures on algal growth using biotic ligand model, concentration additive, and independent action. Jpn. J. Environ. Toxicol. 2014, 17, 57–68. (In Japanese) [Google Scholar]
- dos Santos, C.R.; Arcanjo, G.S.; Santos, L.V.d.S.; Koch, K.; Amaral, M.C.S. Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. Environ. Pollut. 2021, 290, 118049. [Google Scholar] [CrossRef]
- Kansara, K.; Bolan, S.; Radhakrishnan, D.; Palanisami, T.; Al-Muhtaseb, A.H.; Bolan, N.; Vinu, A.; Kumar, A.; Karakoti, A. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environ. Pollut. 2022, 296, 118726. [Google Scholar] [CrossRef] [PubMed]
- Sooriyakumar, P.; Bolan, N.; Kumar, M.; Singh, L.; Yu, Y.; Li, Y.; Weralupitiya, C.; Vithanage, M.; Ramanayaka, S.; Sarkar, B.; et al. Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: A review. J. Hazard. Mater. Adv. 2022, 6, 100077. [Google Scholar] [CrossRef]
- Gregorio, V.; Chèvre, N.; Junghans, M. Critical issues in using the common mixture toxicity models concentration addition or response addition on species sensitivity distributions: A theoretical approach. Environ. Toxicol. Chem. 2013, 32, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- de Zwart, D.; Posthuma, L. Complex mixture toxicity for single and multiple species: Proposed methodologies. Environ. Toxicol. Chem. 2005, 24, 2665–2676. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, T.; Altenburger, R.; Arrhenius, A.; Blanck, H.; Faust, M.; Finizio, A.; Gramatica, P.; Grote, M.; Junghans, M.; Meyer, W.; et al. The BEAM-project: Prediction and assessment of mixture toxicities in the aquatic environment. Cont. Shelf Res. 2003, 23, 1757–1769. [Google Scholar] [CrossRef]
- McGeer, J.C.; Brix, K.V.; Skeaff, J.M.; DeForest, D.K.; Brigham, S.I.; Adams, W.J.; Green, A. Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem. 2003, 22, 1017–1037. [Google Scholar] [CrossRef]
- Ince, N.H.; Dirilgen, N.; Apikyan, I.G.; Tezcanli, G.; Üstün, B. Assessment of toxic interactions of heavy metals in binary mixtures: A statistical approach. Arch. Environ. Contam. Toxicol. 1999, 36, 365–372. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework. Environ. Sci. Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef]
- Kapkov, V.I.; Belenikina, O.A.; Fedorov, V.D. Effect of heavy metals on marine phytoplankton. Mosc. Univ. Biol. Sci. Bull. 2011, 66, 32–36. [Google Scholar] [CrossRef]
- Wagner, H.; Jakob, T.; Wilhelm, C. Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol. 2006, 169, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Rimet, F.; Ector, L.; Cauchie, H.M.; Hoffmann, L. Changes in diatom-dominated biofilms during simulated improve-ments in water quality: Implications for diatom-based monitoring in rivers. Eur. J. Phycol. 2009, 44, 567–577. [Google Scholar] [CrossRef]
- Lee, J.G.; Ahner, B.A.; Morel, F.M. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ. Sci. Technol. 1996, 30, 1814–1821. [Google Scholar] [CrossRef]
- Pistocchi, R.; Guerrini, F.; Balboni, V.; Boni, L. Copper toxicity and carbohydrate production in the microalgae Cylin-drotheca fusiformis and Gymnodinium sp. Eur. J. Phycol. 1997, 32, 125–132. [Google Scholar] [CrossRef]
- Heijerick, D.; De Schamphelaere, K.; Janssen, C. Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: Possibilities and limitations. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 133, 207–218. [Google Scholar] [CrossRef]
- Gebara, R.C.; Alho, L.d.O.G.; Rocha, G.S.; Mansano, A.d.S.; Melão, M.d.G.G. Zinc and aluminum mixtures have synergic effects to the algae Raphidocelis subcapitata at environmental concentrations. Chemosphere 2020, 242, 125231. [Google Scholar] [CrossRef]
- Gebara, R.C.; Alho, L.d.O.G.; Mansano, A.d.S.; Rocha, G.S.; Melão, M.d.G.G. Single and combined effects of Zn and Al on photosystem II of the green microalgae Raphidocelis subcapitata assessed by pulse-amplitude modulated (PAM) fluorometry. Aquat. Toxicol. 2023, 254, 106369. [Google Scholar] [CrossRef]
- Wong, P.; Chang, L. Effects of copper, chromium and nickel on growth, photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa 251. Environ. Pollut. 1991, 72, 127–139. [Google Scholar] [CrossRef]
- Lavoie, M.; Campbell, P.G.C.; Fortin, C. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model. Environ. Sci. Technol. 2014, 48, 1222–1229. [Google Scholar] [CrossRef]
- Rachlin, J.W.; Grosso, A. The growth response of the green alga, Chlorella vulgaris to combined divalent cation exposure. Arch. Environ. Contam. Toxicol. 1993, 24, 16–20. [Google Scholar] [CrossRef]
- Lasheen, M.R.; Shehata, S.A.; Ali, G.H. Effect of cadmium, copper and chromium (VI) on the growth of Nile water algae. Water Air Soil Pollut. 1990, 50, 19–30. [Google Scholar] [CrossRef]
- Suratno, S.; Puspitasari, R.; Purbonegoro, T.; Mansur, D. Copper and cadmium toxicity to marine phytoplankton, Chaetoceros gracilis and Isochrysis sp. Indones. J. Chem. 2015, 15, 172–178. [Google Scholar] [CrossRef]
- Stoiber, T.L.; Shafer, M.M.; Armstrong, D.E. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii. Environ. Toxicol. Chem. 2010, 29, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Dei, R.C. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii. Environ. Pollut. 2006, 142, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.P.; Handayani, N.S.N.; Pramudita, I.G.A. Combined effects of copper and cadmium on Chlorella pyrenoidosa H. Chick: Subcellular accumulation, distribution, and growth inhibition. Toxicol. Environ. Chem. 2017, 99, 1368–1377. [Google Scholar] [CrossRef]
- Lam, P.K.S.; Wut, P.F.; Chan, A.C.W.; Wu, R.S.S. Individual and combined effects of cadmium and copper on the growth response of Chlorella vulgaris. Environ. Toxicol. 1999, 14, 347–353. [Google Scholar] [CrossRef]
- Qian, H.; Li, J.; Sun, L.; Chen, W.; Sheng, G.D.; Liu, W.; Fu, Z. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat. Toxicol. 2009, 94, 56–61. [Google Scholar] [CrossRef]
- Echeveste, P.; Silva, J.C.; Lombardi, A.T. Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton. Ecotoxicol. Environ. Saf. 2017, 143, 228–235. [Google Scholar] [CrossRef]
- Visviki, I.; Rachlin, J.W. The toxic action and interactions of copper and cadmium to the marine alga Dunaliella minuta, in both acute and chronic exposure. Arch. Environ. Contam. Toxicol. 1991, 20, 271–275. [Google Scholar] [CrossRef]
- Foster, P.L.; Morel, F.M.M. Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron. Limnol. Oceanogr. 1982, 27, 745–752. [Google Scholar] [CrossRef]
- Stratton, G.W.; Corke, C.T. The effect of mercuric, cadmium, and nickel ion combinations on a blue-green alga. Chemosphere 1979, 8, 731–740. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Xiao, N.; Zheng, M.; Qin, L.; Mo, L. Joint toxicity of zinc, cadmium and plumbum on S. obliquus. Adv. Eng. Softw. 2016, 11, 536–540. [Google Scholar] [CrossRef]
- Lavoie, M.; Campbell, P.G.C.; Fortin, C. Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga. Environ. Sci. Technol. 2012, 46, 12129–12136. [Google Scholar] [CrossRef] [PubMed]
- Bræk, G.S.; Malnes, D.; Jensen, A. Heavy metal tolerance of marine phytoplankton. IV. Combined effect of zinc and cadmium on growth and uptake in some marine diatoms. J. Exp. Mar. Biol. Ecol. 1980, 42, 39–54. [Google Scholar] [CrossRef]
- Kochoni, G.M.; Fortin, C. Iron modulation of copper uptake and toxicity in a green alga (Chlamydomonas reinhardtii). Environ. Sci. Technol. 2019, 53, 6539–6545. [Google Scholar] [CrossRef] [PubMed]
- Van Regenmortel, T.; De Schamphelaere, K.A. Mixtures of Cu, Ni, and Zn act mostly noninteractively on Pseudokirchneriella subcapitata growth in natural waters. Environ. Toxicol. Chem. 2017, 37, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Andosch, A.; Affenzeller, M.J.; Lütz, C.; Lütz-Meindl, U. A freshwater green alga under cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J. Plant Physiol. 2012, 169, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Marín, P.; Fortin, C.; Campbell, P.G.C. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii. BioMetals 2014, 27, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Bræk, G.S.; Jensen, A.; Mohus, A. Heavy metal tolerance of marine phytoplankton. III. Combined effects of copper and zinc ions on cultures of four common species. J. Exp. Mar. Biol. Ecol. 1976, 25, 37–50. [Google Scholar] [CrossRef]
- Koppel, D.J.; Adams, M.S.; King, C.K.; Jolley, D.F. Preliminary study of cellular metal accumulation in two Antarctic marine microalgae—Implications for mixture interactivity and dietary risk. Environ. Pollut. 2019, 252, 1582–1592. [Google Scholar] [CrossRef]
- Ouyang, H.; Kong, X.; He, W.; Qin, N.; He, Q.; Wang, Y.; Wang, R.; Xu, F. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin. Sci. Bull. 2012, 57, 3363–3370. [Google Scholar] [CrossRef]
- Rodgher, S.; Contador, T.M.; Rocha, G.S.; Espindola, E.L. Effect of phosphorus on the toxicity of zinc to the microalga Raphidocelis subcapitata. An. Da Acad. Bras. De Ciências 2020, 92 (Suppl. S2), e20190050. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Gevaert, F.; Ouddane, B.; Duong, G.; Souissi, S. Single toxicity of arsenic and combined trace metal exposure to microalga of ecological and commercial interest: Diacronema lutheri. Chemosphere 2022, 291, 132949. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, L.L.; Alho, L.d.O.G.; de Abreu, C.B.; Gebara, R.C.; Mansano, A.d.S.; Melão, M.d.G.G. Effects of cadmium and cobalt mixtures on growth and photosynthesis of Raphidocelis subcapitata (Chlorophyceae). Aquat. Toxicol. 2022, 244, 106077. [Google Scholar] [CrossRef] [PubMed]
- Shehata, S.A.; Lasheen, M.R.; Ali, G.H.; Kobbia, I.A. Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water Air Soil Pollut. 1999, 110, 119–135. [Google Scholar] [CrossRef]
- Fathi, A.; El-Shahed, A.; Shoulkamy, M.; Ibraheim, H.; Rahman, O.A. Response of nile water phytoplankton to the toxicity of cobalt, copper and zinc. Res. J. Environ. Toxicol. 2008, 2, 67–76. [Google Scholar] [CrossRef]
- Nys, C.; Van Regenmortel, T.; Janssen, C.R.; Blust, R.; Smolders, E.; De Schamphelaere, K.A. Comparison of chronic mixture toxicity of nickel-zinc-copper and nickel-zinc-copper-cadmium mixtures between Ceriodaphnia dubia and Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2017, 36, 1056–1066. [Google Scholar] [CrossRef]
- Starodub, M.; Wong, P.; Mayfield, C. Short term and long term studies on individual and combined toxicities of copper, zinc and lead to Scenedesmus quadricauda. Sci. Total. Environ. 1987, 63, 101–110. [Google Scholar] [CrossRef]
- Aruoja, V.; Dubourguier, H.-C.; Kasemets, K.; Kahru, A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total. Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef]
- Webster, R.E.; Dean, A.P.; Pittman, J.K. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii. Environ. Sci. Technol. 2011, 45, 7489–7496. [Google Scholar] [CrossRef] [PubMed]
- Koppel, D.J.; Adams, M.S.; King, C.K.; Jolley, D.F. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity. Environ. Pollut. 2018, 242, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Koukal, B.; Rossé, P.; Reinhardt, A.; Ferrari, B.; Wilkinson, K.J.; Loizeau, J.-L.; Dominik, J. Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation. Water Res. 2007, 41, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Sunda, W.G. Feedback Interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 2012, 3, 204. [Google Scholar] [CrossRef]
- Volland, S.; Bayer, E.; Baumgartner, V.; Andosch, A.; Lütz, C.; Sima, E.; Lütz-Meindl, U. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 2014, 171, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch. Environ. Contam. Toxicol. 2011, 60, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Van Regenmortel, T.; Van de Perre, D.; Janssen, C.; De-Schamphelaere, K. The effects of a mixture of copper, nickel and zinc on the structure and function of a freshwater planktonic community. Environ. Toxicol. Chem. 2018, 37, 2380–2400. [Google Scholar] [CrossRef]
- Markert, N.; Rhiem, S.; Trimborn, M.; Guhl, B. Mixture toxicity in the Erft River: Assessment of ecological risks and toxicity drivers. Environ. Sci. Eur. 2020, 32, 1–13. [Google Scholar] [CrossRef]
- Fisher, N.S.; Jones, G.J. Heavy metals and marine phytoplankton: Correlation of toxicity and sulfhydryl-binding. J. Phycol. 1981, 17, 108–111. [Google Scholar] [CrossRef]
- Qian, H.; Sun, Z.; Sun, L.; Jiang, Y.; Wei, Y.; Xie, J.; Fu, Z. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere 2013, 93, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.S.; Lombardi, A.T.; Melão, M.d.G.G. Influence of phosphorus on copper toxicity to Selenastrum gracile (Reinsch) Korshikov. Ecotoxicol. Environ. Saf. 2016, 128, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Shiber, J.G. Trace metals with seasonal considerations in coastal algae and molluscs from Beirut, Lebanon. Hydrobiologia 1980, 69, 147–162. [Google Scholar] [CrossRef]
- Villares, R.; Puente, X.; Carballeira, A. Seasonal variation and background levels of heavy metals in two green sea-weeds. Environ. Pollut. 2002, 119, 79–90. [Google Scholar] [CrossRef]
- Riget, F.; Johansen, P.; Asmund, G. Natural seasonal variation of cadmium, copper, lead and zinc in brown seaweed (Fucus vesiculosus). Mar. Pollut. Bull. 1995, 30, 409–413. [Google Scholar] [CrossRef]
- Ometto, F.; Steinhovden, K.B.; Kuci, H.; Lunnbäck, J.; Berg, A.; Karlsson, A.; Handå, A.; Wollan, H.; Ejlertsson, J. Seasonal variation of elements composition and biomethane in brown macroalgae. Biomass Bioenergy 2018, 109, 31–38. [Google Scholar] [CrossRef]
- Lu, J.; Ma, Y.; Xing, G.; Li, W.; Kong, X.; Li, J.; Wang, L.; Yuan, H.; Yang, J. Revelation of microalgae’s lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environ. Pollut. 2019, 250, 186–195. [Google Scholar] [CrossRef]
- Olsson, S.; Penacho, V.; Puente-Sánchez, F.; Díaz, S.; Gonzalez-Pastor, J.E.; Aguilera, A. Horizontal gene transfer of phytochelatin synthases from bacteria to extremophilic green algae. Microb. Ecol. 2017, 73, 50–60. [Google Scholar] [CrossRef]
- Tripathi, S.; Poluri, K.M. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. Environ. Pollut. 2021, 285, 117443. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mecha-nisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.M.; Castro, P.M.; Malcata, F.X. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol. Prog. 2012, 28, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Hanikenne, M.; Krämer, U.; Demoulin, V.; Baurain, D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol. 2005, 137, 428–446. [Google Scholar] [CrossRef] [PubMed]
- La Fontaine, S.; Quinn, J.M.; Nakamoto, S.S.; Page, M.D.; Gohre, V.; Moseley, J.L.; Kropat, J.; Merchant, S. Cop-per-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot. Cell 2002, 1, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.D.; del Campo, J.A.; Kropat, J.; Merchant, S.S. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot. Cell 2007, 6, 1841–1852. [Google Scholar] [CrossRef] [PubMed]
- Blaby-Haas, C.E.; Merchant, S.S. The ins and outs of algal metal transport. Biochim. Biophys. Acta 2012, 1823, 1531–1552. [Google Scholar] [CrossRef] [PubMed]
- Sadka, A.; Himmelhoch, S.; Zamir, A. A 150 kilodalton cell surface protein is induced by salt in the halotolerant green alga Dunaliella salina. Plant Physiol. 1991, 95, 822–831. [Google Scholar] [CrossRef]
- Su, Z.; Chai, M.F.; Lu, P.L.; An, R.; Chen, J.; Wang, X.C. AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis. Planta 2007, 226, 1031–1039. [Google Scholar] [CrossRef]
- Gobler, C.J.; Berry, D.L.; Dyhrman, S.T.; Wilhelm, S.W.; Salamov, A.; Lobanov, A.V.; Zhang, Y.; Collier, J.L.; Wurch, L.L.; Kustka, A.B.; et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. PNAS 2011, 108, 4352–4357. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, B.; Zhang, H.; Huang, L.; Wang, H.; Lan, Q.; Yin, M.; Zhu, Z.; Yan, X.; Zhu, A.; et al. Heavy metals exacerbate the effect of temperature on the growth of Chlorella sp.: Implications on algal blooms and management. Processes 2022, 10, 2638. [Google Scholar] [CrossRef]
- Ferrari, M.; Cozza, R.; Marieschi, M.; Torelli, A. Role of sulfate transporters in chromium tolerance in Scenedesmus acutus M. (Sphaeropleales). Plants 2022, 11, 223. [Google Scholar] [CrossRef]
- Zheng, W.H.; Västermark, Å.; Shlykov, M.A.; Reddy, V.; Sun, E.I.; Saier, M.H. Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters. BMC Microbiol. 2013, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Niczyporuk, A.; Bajguz, A.; Kotowska, U.; Zambrzycka-Szelewa, E.; Sienkiewicz, A. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci. Rep. 2020, 10, 10193. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Jacinto, V.; García-Barrera, T.; Gómez-Ariza, J.L.; Garbayo-Nores, I.; Vílchez-Lobato, C. Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins. Chem. Biol. Interact 2015, 238, 82–90. [Google Scholar] [CrossRef] [PubMed]
Metal Mixture | Algal Species with Highest Growth Rate | Algal Species with Lowest Growth Rate |
---|---|---|
Cd + Cu | Chaetoceros curvisetus, Flagellates (7 × 106 cells L−1) | Navicula sp., Chaetoceros diadema, Chaetoceros radicans, Ceratium fusus (1 × 106 cells L−1) |
Cd + Co | Chaetoceros curvisetus, Thalassionema nitzschioides. Flagellates, Chaetoceros diadema, Gymnodinium sp. (12 × 106 cells L−1) | Melosira nummuloides (1 × 106 cells L−1) |
Cu + Co | Thalassionema nitzschioides, Flagellates (8 × 106 cells L−1) | Navicula sp., Chaetoceros radicans, Ditylum brightwellii, Gymnodinium sp. (1 × 106 cells L−1) |
Cd + Co + Cu | Ceutorhynchus curvisetus, Thalassionema nitzschioides (13 × 106 cells L−1) | Chaetoceros diadema, Ceratium fusus, Flagellates (3 × 106 cells L−1) |
Metal Mixture | Species | pH | Concentrations (mg L−1 or M) | Reciprocal Effect | Reference |
---|---|---|---|---|---|
Al + Zn | Raphidocelis subcapitata | NA | >0.026 mg L−1 Zn and 0.739 mg L−1 Al; 22.24–37.06 µM Al, 0.08–0.46 µM Zn | Antagonistic | [49,50] |
Cu + Cr + Ni | Chlorella pyrenoidosa 251 | 6.8 | 0.1–1.0 mg L−1 of Cu, Cr and Ni | Synergistic | [51] |
As + Se | Desmodesmus quadricauda | 7.2 | 29.05 mg L−1 As and 3.65 mg L−1 Se | Synergistic | [16] |
Cd + Co | Chlamydomonas reinhardtii | 7 | 2 × 10−8 M Cd and Co | Non-interactive | [52] |
Cd + Fe + Mn + Cu | Chlamydomonas reinhardtii | 7 | 2 × 10−8 M Cd2+, 1 × 10−17 M Fe3+, 1 × 10−6 M Mn2+, 1 × 10−13 M Cu2+ | Non-interactive | [52] |
Cd + Co | Chlorella vulgaris | 6.5 | 0.89 µM Cd and 9.50 µM Co | Antagonistic | [53] |
Cd + Cr | Nile river algal community | NA | 0.05–1.00 mg L−1 Cd and 0.25–3.00 mg L−1 Cr | Synergistic | [54] |
Cd + Cu | Chaetoceros gracilis; Isochrysis sp. | NA | 0, 0.56, 1.00, 1.80, 3.20, and 5.60 mg L−1 Cd and 0, 0.010, 0.018, 0.032, 0.056, 0.100 mg L−1 Cu | Synergistic | [55] |
Cd + Cu | Chlamydomonas reinhardtii | 7.5 | 40, 60, and 80 nM Cd and Cu | Antagonistic | [56] |
Cd + Cu | Chlamydomonas reinhardtii | 8 | 1 × 10−6–1 × 10−5 M Cd, and 1 × 10−6–1 × 10−5 M Cu | Synergistic | [57] |
Cd + Cu | Chlamydomonas reinhardtii | 6 | 3.52 × 10−6 Cu2+ M and 3.52 × 10−6 M Cd2+ | Antagonistic | [31] |
Cd + Cu | Chlorella pyrenoidosa | 8.6 | 13–25 µM Cu and 6 µM Cd | Synergistic | [58] |
Cd + Cu | Chlorella vulgaris | Antagonistic | [59] | ||
Cd + Cu | Chlorella vulgaris | NA | 1.5 μM Cu and 2.0 μM Cd | Synergistic | [60] |
Cd + Cu | Chlorella vulgaris | 6.5 | 2.80 µM Cu and 0.89 µM Cd | Synergistic | [53] |
Cd + Cu | Chlorella sp. | Synergistic | [29] | ||
Cd + Cu | Chlorolobion braunii | NA | 5 µM Cu and 1 µM Cd | Synergistic | [61] |
Cd + Cu | Dunaliella minuta | 7.4 | 7.57 µM Cu and 0.34 µM Cd | Antagonistic | [62] |
Cd + Cu | Navicula pelliculosa | 7 | 0.42–0.54 µM Cu and 0.50–0.59 µM Cd (EC50 values) | Antagonistic | [32] |
Cd + Cu | Nile river algal community | NA | 0.05–1.00 mg L−1 Cd and Cu | Synergistic | [54] |
Cd + Cu | Pseudokirchneriella subcapitata | 8.1 (BLM) | 0.006–0.046 μM Cu and 0–0.500 μM Cd | Synergistic | [33] |
Cd + Zn | Chlorella vulgaris | 6.8 | 2 × 10−5 M Zn and 0–8 × 10−5 M Cd | Antagonistic | [24] |
Cd + Fe | Thalassiosira weissflogii | NA | 1 × 10−10 M Cd2+ and 1 × 10−7.8 to 1 × 10−5.8 M Fe EDTA | Antagonistic | [63] |
Cd + Hg | Anabaena inaequalis | NA | Synergistic | [64] | |
Cd + Ni | Anabaena inaequalis | NA | Antagonistic and synergistic depending upon metal conc. | [64] | |
Cd + Pb | Scenedesmus obliquus | NA | EE-20 for Cd-Pb synergistic, EE-50 additive | Synergistic | [65] |
Cd + Zn | Chlamydomonas reinhardtii | 7 | 1 × 10−9 M Zn2+, 7 × 10−9 M Cd2+ | Antagonistic | [66] |
Cd + Zn | Chlamydomonas reinhardtii | 7 | 7 nM Cd2+ and 6 × 10−9 M | Antagonistic | [52] |
Cd + Zn | Chlorella sp. | Antagonistic | [29] | ||
Cd + Zn | Skeletonema costatum | 7.8 to 9 | 200–400 μg L−1 Zn 100 μg L−1 Cd | Additive to slight synergistic | [67] |
Cd + Zn | Phaeodactylum tricornutum | 7.8 to 9 | 3000 μg L−1 Cd 4000 μg L−1 Zn | Additive to slight antagonistic | [67] |
Cd + Zn | Scenedesmus obliquus | NA | EE-20 and EE-50 for Cd-Zn additive | Synergistic | [65] |
Co + Cu | Chlorella vulgaris | 6.5 | 9.5 µM Co and 2.8 µM Cu | Synergistic | [53] |
Cu + Fe | Chlamydomonas reinhardtii | 6–8 | 1 × 10−19 M Fe3+ and 1 × 10−13 to 1 × 10−10.5 | Antagonistic | [68] |
Cu + Ni | Pseudokirchneriella subcapitata | 6.2–8.2 | 0.001–2.680 mg L−1 Ni and 0.001–0.659 mg L−1 Cu | Non-interactive | [69] |
Cd + Ca | Micrasterias denticulata | NA | 2 mM CaSO4 and 150 μM CdSO4 | Antagonistic | [70] |
Cu + Pb | Chlamydomonas reinhardtii | 7 | ≤1 mg L−1 of Cu and Pb | Antagonistic | [71] |
Cu + Zn | Chlorella sp. | Antagonistic | [29] | ||
Cu + Zn | Navicula pelliculosa | 7 | 3.48 µM Zn and 0.51 µM Cu (EC50 values) | Additive | [32] |
Cu + Zn | Phaeodactylum tricornutum | NA | 0.25 mg L−1 Cu and 4.00 mg L−1 Zn | Synergistic | [72] |
Cu + Zn | Phaeocystis antarctica; Cryothecomonas armigera | 7.9 | Antagonistic | [73] | |
Cu + Zn | Scenedesmus sp. | 7 | 2.5–40.0 μM CuCl2.2H2O and 5–100 μM ZnCl2 | Synergistic | [19] |
Cu + Zn | Pseudokirchneriella subcapitata | 8.1 (BLM) | 0.20–2.00 μM Zn and 0.006–0.046 μM Cu | Antagonistic | [33] |
Cd + Zn | Pseudokirchneriella subcapitata | 8.1 (BLM) | 0.20–2.0 μM Zn 0.036–2.100 μM Cd | Antagonistic | [33] |
Cr + Cu | Chlorella vulgaris | NA | 0.05, 0.50, 5.00 μM | Additive | [74] |
Hg + Ni | Anabaena inaequalis | Additive | [64] | ||
Mg + Pb | Chlamydomonas reinhardtii | 7 | ≤1 mg L−1 of M and Pb | Antagonistic | [71] |
Ni + Zn | Navicula pelliculosa | 7 | 0.15–0.19 µM Ni and 3.48–3.71 µM Zn (EC50 values) | Synergistic | [32] |
P + Zn | Raphidocelis subcapitata | NA | 0.09 × 10−6 M to 9.08 × 10−6 M Zn and 2.3 × 10−4 M, 2.3 × 10−6 M and 1.0 × 10−6 M P | Additive | [75] |
Pb + Zn | Scenedesmus obliquus | NA | EE-20 and EE-50 for Pb-Zn synergistic | Additive | [65] |
As(V) + Cd + Cu + Ni + Pb | Diacronema lutheri | NA | 450 µg L−1 As(V), 109 µg L−1 Cd, 34 µg L−1 Cu, 126 µg L−1 Ni, 414 µg L−1 Pb | As(V) had the main toxicity in the mixture | [76] |
Cd + Co | Raphidocelis subcapitata | NA | 0.13–0.25 mg L−1 Co, 0.025–0.100 mg L−1 Cd | Synergistic (high Co and low Cd) Antagonistic (low Co and high Cd) | [77] |
Cd + Co + Cu | Chlorella vulgaris | 6.5 | 2.80 µM Cu, 0.89 µM Cd and 9.50 µM Co | Antagonistic | [63] |
Cd + Cr + Cu | Nile river algal community | NA | 0.05 mg L−1 Cd and 0.10 mg L−1 Cu, Cr | Antagonistic | [78] |
Cd + Ni + Zn | Nile river algal community | NA | 0.05 mg L−1 Cd and 0.10 mg L−1 Cu, Zn | Antagonistic | [78] |
Co + Cu + Zn | Chlorophyceare; Bacilariophyceae; Cyanophyceae | NA | 1 × 10−6 to 1 × 10−10 mg L−1 Cu, Co and Zn | Synergistic | [79] |
Cu + Ni + Zn | Pseudokirchneriella subcapitata | 7.2 | 0.0200 mg L−1 Zn, 0.0010 mg L−1 Ni, 0.0025 mg L−1 Cu | Non-interactive | [80] |
Cu + Ni + Zn | Pseudokirchneriella subcapitata | 6.2–8.2 | 0.001–2.680 mg L−1 Ni, 0.001–0.659 mg L−1 Cu, and 0.001–0.450 mg L−1 Zn | Non-interactive | [69] |
Cu + Pb + Zn | Scenedesmus quadricauda | 8 | 0.1–0.2 mg L−1 Cu, 0.3–0.5 mg L−1 Zn, 0.3–0.6 mg L−1 Pb | Synergistic (growth) | [81] |
Cu + Pb + Zn | Scenedesmus quadricauda | 8 | 0.1–0.2 mg L−1 Cu, 0.3–0.5 mg L−1 Zn, 0.3–0.6 mg L−1 Pb | Antagonistic (photosynthesis) | [81] |
Cu + Ti + Zn (nanoparticles) | Pseudokirchneriella subcapitata | 7.5–8 | 380 mg L−1 TiO, 0.068 mg L−1 ZnO, 6.400 mg L−1 CuO | Non-interactive | [82] |
Cd + Co + Fe + Zn + P | Chlamydomonas reinhardtii | 7 | 1–100 μM P, 5–40 μM CdCl2 | Antagonistic | [83] |
Cd + Cu + Ni + Zn | Nile river algal community | NA | 0.05 mg L−1 Cd and 0.10 mg L−1 Cu, Cr, Zn | Synergistic | [78] |
Cd + Cu + Ni + Zn | Pseudokirchneriella subcapitata | 0.0200 mg L−1 Zn + 0.0010 mg L−1 Ni + 0.0025 mg L−1 Cu | Non-interactive | [80] | |
Cd + Cu + Ni + Pb + Zn | Phaeocystis antarctica; Cryothecomonas armigera | 7.9 | Synergistic while Zn behaves antagonistic | [84] | |
Cd + Cu + Pb + Zn | Pseudokirchneriella subcapitata | NA | 30, 60, 120, 250 and 500 mg L−1 for Cd and Zn; and 500, 1000, 2000, 3000, 4000 mg L−1 for Cu and Pb | Exude formation lowers metal toxicity | [85] |
Co + Cu + Fe + Mn + Mo + Ni + Zn | Marine phytoplankton communities | 8.1 | Various oceanic conc. comparison | Complex interactions with biogeochemical influence of ocean | [86] |
Fe + Cr + Cd | Micrasterias denticulata | Near 7 with added soil with buffering property | 600 nM Cd, 10 μM Cr, and 100 μM Fe | Antagonistic | [87] |
Zn + Cd + Cr | Micrasterias denticulata | Near 7 with added soil with buffering property | 600 nM Cd, 10 μM Cr, and 300 nM Zn | Antagonistic | [87] |
Antagonism | Synergism | Additive Effect | Non-Interactive |
---|---|---|---|
Marine algal populations: | |||
Cd + Cu [32] | Cd + Cu [55] | Cd + Zn [67] | |
Cd + Fe [63] | Cd + Hg [64] | Cu + Zn [32] | |
Cd + Ni [64] | Cd + Ni [64] | Hg + Ni [64] | |
Cd + Cr + Fe [87] | Cd + Cr + Ni + Pb + Zn [84]—except of Zn in the mixture | ||
Cd + Cr + Zn [87] | Cu + Zn [72] | ||
Cd + Cr + Ni + Pb + Zn [84]—Zn as antagonist to others | |||
Cd + Cu + Ni + Pb + As(V) [76]—As(V) has the main toxicity | |||
Cu + Zn [73] | |||
Cu + Co + Fe + Mn + Mo + Ni + Zn [86]—complex interactions with the biogeochemical part of ocean | |||
Freshwater algal populations: | |||
Al + Zn [49,50] | As + Se [16] | Cu + Cr [74] | Cd + Co [52] |
Cd + Ca [70] | Cd + Co [77]—low Cd and high Co | Zn + P [75] | Cd + Cu + Fe + Mn [52] |
Cd + Co [53] | Cd + Cr [54] | Zn + Pb [65] | Cd + Cu + Ni + Zn [80] |
Cd + Co [77]—high Cd and low Co | Cd + Cu [29,33,53,54,57,58,60,61] | Cu + Ni [69] | |
Cd + Cu [31,56,59] | Cd + Pb [65] | Cu + Ni + Zn [80] | |
Cd + Zn [24,29,52,66] | Cd + Zn [65] | Cu + Ti + Zn (nanoparticles) [80] | |
Cd + Co + Cu [53] | Cd + Cu + Ni + Zn [78] | ||
Cd + Cr + Cu [78] | Cu + Co [53] | ||
Cd + Ni + Zn [78] | Cu + Zn [19] | ||
Cd + Co + Fe + Zn + P [83] | Cu + Cr + Ni [51] | ||
Cu + Fe [68] | Cu + Pb + Zn [81]—for growth | ||
Cu + Pb [71] | |||
Cu + Zn [29,33] | |||
Cu + Pb + Zn [81]—for photosynthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, A.; Šotek, P.E.; Molnárová, M. Reciprocal Effects of Metal Mixtures on Phytoplankton. Phycology 2024, 4, 117-138. https://doi.org/10.3390/phycology4010007
Nawaz A, Šotek PE, Molnárová M. Reciprocal Effects of Metal Mixtures on Phytoplankton. Phycology. 2024; 4(1):117-138. https://doi.org/10.3390/phycology4010007
Chicago/Turabian StyleNawaz, Ammara, Pavlína Eliška Šotek, and Marianna Molnárová. 2024. "Reciprocal Effects of Metal Mixtures on Phytoplankton" Phycology 4, no. 1: 117-138. https://doi.org/10.3390/phycology4010007
APA StyleNawaz, A., Šotek, P. E., & Molnárová, M. (2024). Reciprocal Effects of Metal Mixtures on Phytoplankton. Phycology, 4(1), 117-138. https://doi.org/10.3390/phycology4010007