Foreground Emission Randomization Due to Dynamics of Magnetized Interstellar Medium: WMAP and Planck Frequency Bands
Abstract
1. Introduction
2. Distributed Chaos and Magnetic Helicity
2.1. Deterministic Chaos in Magnetized Plasma
2.2. Magnetic Helicity
2.3. Distributed Chaos Dominated by Magnetic Helicity
2.4. Spontaneous Breaking of Local Reflectional Symmetry
3. Magneto-Inertial Range of Scales
4. Observations in the Galactic Magnetized Plasma
5. Synchrotron Emission
6. Dust Emission
7. Conclusions and Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Maggs, J.E.; Morales, G.J. Generality of deterministic chaos, exponential spectra, and Lorentzian pulses in magnetically confined plasmas. Phys. Rev. Lett. 2011, 107, 85003. [Google Scholar] [CrossRef] [PubMed]
- Maggs, J.E.; Morales, G.J. Origin of Lorentzian pulses in deterministic chaos. Phys. Rev. E 2012, 86, 015401. [Google Scholar] [CrossRef] [PubMed]
- Maggs, J.E.; Morales, G.J. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics. Plasma Phys. Control. Fusion 2012, 54, 124041. [Google Scholar] [CrossRef]
- Khurshid, S.; Donzis, D.A.; Sreenivasan, K.R. Energy spectrum in the dissipation range. Phys. Rev. Fluids 2018, 3, 082601. [Google Scholar] [CrossRef]
- Wu, Z.-Z.; Kadanoff, L.P.; Libchaber, A.; Sano, M. Frequency power spectrum of temperature fluctuations in free convection. Phys. Rev. Lett. 1990, 64, 2140–2143. [Google Scholar] [CrossRef]
- Ghosh, T.; Delabrouille, J.; Remazeilles, M.; Cardoso, J.-F.; Souradeep, T. Foreground maps in Wilkinson Microwave Anisotropy Probe frequency bands. Mon. Not. R. Astron. Soc. 2011, 412, 883–899. [Google Scholar] [CrossRef]
- Maus, S. The geomagnetic power spectrum. Geophys. J. Int. 2008, 174, 135–142. [Google Scholar] [CrossRef]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence; Dover Publications: New York, NY, USA, 2007. [Google Scholar]
- Iroshnikov, R.S. Turbulence of a conducting fluid in a strong magnetic field. Astron. Zhurnal 1963, 40, 742, (English translation in Sov. Astron. 1964, 7, 566). [Google Scholar]
- Bershadskii, A. Magneto-inertial range dominated by magnetic helicity in space plasmas. Fundam. Plasma Phys. 2024, 11, 100066. [Google Scholar] [CrossRef]
- Korpi-Lagg, M.J.; Mac Low, M.-M.; Frederick, A. Computational approaches to modeling dynamos in galaxies. Living Rev. Comput. Astrophys. 2024, 10, 3. [Google Scholar] [CrossRef]
- West, J.L.; Henriksen, N.; Ferriere, K.; Woodfinden, A.; Jaffe, T.; Gaensler, M.; Irwin, J.A. Helicity in the large-scale Galactic magnetic field. Mon. Not. R. Astron. Soc. 2020, 499, 3673–3689. [Google Scholar] [CrossRef]
- Beck, R.; Chamandy, L.; Elson, E.; Blackman, E.G. Synthesizing observations and theory to understand galactic magnetic fields: Progress and challenges. Galaxies 2020, 8, 4. [Google Scholar] [CrossRef]
- Jaffe, T.R. Practical modeling of large-scale galactic magnetic fields: Status and prospects. Galaxies 2019, 7, 52. [Google Scholar] [CrossRef]
- Shukurov, A.; Felippe, L.; Rodrigues, S.; Bushby, P.J.; Hollins, J.; Rachen, J.P. A physical approach to modelling large-scale galactic magnetic fields. Astron. Astrophys. 2019, 623, A113. [Google Scholar] [CrossRef]
- Moss, D.; Sokoloff, D. Galactic winds and the origin of large-scale magnetic fields. Astron. Astrophys. 2017, 598, A72. [Google Scholar] [CrossRef]
- Bershadskii, A. Parity violation and magnetic helicity on cosmological scales: From turbulent baryogenesis to galaxy clusters. Qeios 2025. [Google Scholar] [CrossRef]
- Ruzmaikin, A.; Sokoloff, D.; Shukurov, A. The dynamo origin of magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 1989, 241, 1–14. [Google Scholar] [CrossRef]
- Sokolov, D.D. The disk dynamo with fluctuating spirality. Astron. Rep. 1997, 41, 68–72. [Google Scholar]
- Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P. On the amplification of magnetic fields in cosmic filaments and galaxy clusters. Mon. Not. R. Astron. Soc. 2014, 445, 3706–3722. [Google Scholar] [CrossRef]
- Subramanian, K. From primordial seed magnetic fields to the galactic dynamo. Galaxies 2019, 7, 47. [Google Scholar] [CrossRef]
- Seta, A.; Bushby, P.J.; Shukurov, A.; Wood, T.S. On the saturation mechanism of the fluctuation dynamo at Prm ≥ 1. Phys. Rev. Fluids 2020, 5, 043702. [Google Scholar] [CrossRef]
- Moffatt, H.K.; Tsinober, A. Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 1992, 24, 281–312. [Google Scholar] [CrossRef]
- Zenati, Y.; Vishniac, E.T. Conserving local magnetic helicity in numerical simulations. Astrophys. J. 2023, 948, 11. [Google Scholar] [CrossRef]
- Matthaeus, W.H.; Goldstein, M.L. Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 1982, 87, 6011–6028. [Google Scholar] [CrossRef]
- Shebalin, J.V. Global invariants in ideal magnetohydrodynamic turbulence. Phys. Plasmas 2013, 20, 102305. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Moffatt, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117–129. [Google Scholar] [CrossRef]
- Moffatt, H.K. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals. J. Fluid Mech. 1985, 159, 359–378. [Google Scholar] [CrossRef]
- Kerr, R.M. Elementary Vortices and Coherent Structures. In Proceedings of the IUTAM Symposium, Kyoto, Japan, 26–28 October 2004; pp. 1–8. [Google Scholar]
- Holm, D.D.; Kerr, R.M. Helicity in the formation of turbulence. Phys. Fluids 2007, 19, 025101. [Google Scholar] [CrossRef]
- Levich, E.; Tsinober, A. On the role of helical structures in three-dimensional turbulent flow. Phys. Lett. A 1983, 93, 293–297. [Google Scholar] [CrossRef]
- Seta, A.; Federrath, C. Magnetic fields in the Milky Way from pulsar observations: Effect of the correlation between thermal electrons and magnetic fields. Mon. Not. R. Astron. Soc. 2021, 502, 2220–2237. [Google Scholar] [CrossRef]
- Seta, A.; Federrath, C.; Livingston, J.D.; McClure-Griffiths, N.M. Rotation measure structure functions with higher-order stencils as a probe of small-scale magnetic fluctuations and its application to the Small and Large Magellanic Clouds. Mon. Not. R. Astron. Soc. 2023, 518, 919–944. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 1941, 30, 301–305. [Google Scholar]
- Bershadskii, A.; Sreenivasan, K.R. Intermittency and the passive nature of the magnitude of the magnetic field. Phys. Rev. Lett. 2004, 93, 064501. [Google Scholar] [CrossRef]
- Johnston, D.C. Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B 2006, 74, 184430. [Google Scholar] [CrossRef]
- Ntormousi, E.; Tassis, K.; Del Sordo, F.; Fragkoudi, F.; Pakmor, R. A dynamo amplifying the magnetic field of a Milky-Way-like galaxy. Astron. Astrophys. 2020, 641, A165. [Google Scholar] [CrossRef]
- Mikhailov, E.A.; Andreasyan, R.R. Initial galactic magnetic fields and the Biermann battery mechanism. Astron. Rep. 2021, 65, 715–722. [Google Scholar] [CrossRef]
- Hutschenreuter, S.; Haverkorn, M.; Frank, P.; Raycheva, N.C.; Enßlin, T.A. Disentangling the Faraday rotation sky. Astron. Astrophys. 2024, 690, A314. [Google Scholar] [CrossRef]
- Planck Collaboration. X. Diffuse component separation: Foreground maps. Astron. Astrophys. 2016, 594, A10. [Google Scholar]
- Van Eck, C.L.; Gaensler, B.M.; Hutschenreuter, S.; Livingston, J.; Ma, Y.K.; Riseley, C.J.; Thomson, A.J.M.; Adebahr, B.; Basu, A.; Birkinshaw, M.; et al. RMTable2023 and PolSpectra2023: Standards for reporting polarization and Faraday rotation measurements of radio sources. Astrophys. J. Suppl. Ser. 2023, 267, 28. [Google Scholar] [CrossRef]
- Finkbeiner, D.P. A full-sky H-α template for microwave foreground prediction. Astrophys. J. Suppl. Ser. 2003, 146, 407–415. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia telescope national facility pulsar catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- Hutschenreuter, S.; Enßlin, T.A. The Galactic Faraday depth sky revisited. Astron. Astrophys. 2020, 633, A150. [Google Scholar] [CrossRef]
- Mertsch, P.; Sarkar, S. Loops and spurs: The angular power spectrum of the Galactic synchrotron background. J. Cosmol. Astropart. Phys. 2013, 6, 41. [Google Scholar] [CrossRef]
- Zaldarriaga, M.; Seljak, U. All-sky analysis of polarization in the microwave background. Phys. Rev. D 1997, 55, 1830–1840. [Google Scholar] [CrossRef]
- Giardino, G.; Banday, A.J.; Górski, K.M.; Bennett, K.; Jonas, J.L.; Tauber, J. Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data. Astron. Astrophys. 2002, 387, 82–97. [Google Scholar] [CrossRef]
- Hu, Y.; Lazarian, A. Probing 3D magnetic fields—I. Polarized dust emission. Mon. Not. R. Astron. Soc. 2023, 519, 3736–3748. [Google Scholar] [CrossRef]
- Kogut, A.; Abitbol, M.H.; Chluba, J.; Delabrouille, J.; Fixsen, D.; Hill, J.C.; Patil, S.P.; Rotti, A. CMB Spectral Distortions: Status and Prospects. Bull. Am. Astron. Soc. 2019, 51, 113. [Google Scholar]
- Stalpes, K.A.; Collins, D.C.; Huffenberger, K. Planck dust polarization power spectra are consistent with strongly supersonic turbulence. Astrophys. J. 2024, 972, 26. [Google Scholar] [CrossRef]
- Martinez-Solaeche, G.; Karakci, A.; Delabrouille, J. A 3D model of polarized dust emission in the Milky Way. Mon. Not. R. Astron. Soc. 2018, 476, 1310–1330. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results XI. Polarized dust foregrounds. Astron. Astrophys. 2020, 641, A11. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Marinacci, F.; Torrey, P.; Puchwein, E. Cosmological simulations of galaxy formation. Nat. Rev. Phys. 2020, 2, 42–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bershadskii, A. Foreground Emission Randomization Due to Dynamics of Magnetized Interstellar Medium: WMAP and Planck Frequency Bands. Foundations 2025, 5, 21. https://doi.org/10.3390/foundations5020021
Bershadskii A. Foreground Emission Randomization Due to Dynamics of Magnetized Interstellar Medium: WMAP and Planck Frequency Bands. Foundations. 2025; 5(2):21. https://doi.org/10.3390/foundations5020021
Chicago/Turabian StyleBershadskii, Alexander. 2025. "Foreground Emission Randomization Due to Dynamics of Magnetized Interstellar Medium: WMAP and Planck Frequency Bands" Foundations 5, no. 2: 21. https://doi.org/10.3390/foundations5020021
APA StyleBershadskii, A. (2025). Foreground Emission Randomization Due to Dynamics of Magnetized Interstellar Medium: WMAP and Planck Frequency Bands. Foundations, 5(2), 21. https://doi.org/10.3390/foundations5020021