The Intrinsic Exceptional Point: A Challenge in Quantum Theory
Abstract
:1. Introduction
2. Conventional Exceptional Points Associated with Finite Jordan Blocks
2.1. The Phenomenon of EPN Degeneracy
- [1] For all of the “acceptable” lying in the “physical”, unitarity-compatible vicinity of the EPN value, , the normalized eigenvectors of are almost parallel to each other.
- [2] At the “unacceptable” value of , their set ceases to serve, as a basis suitable, say, for the purposes of perturbation theory.
- [3] At , one can still construct a “good basis” composed of the single remaining (degenerate) eigenvector and of an -plet of linearly independent associated vectors with .
2.2. EPN and Modified Schrödinger Equation
3. The Mechanism of the Unfolding of the EPN Degeneracy
3.1. The Hypothesis of Admissibility of at Least Some
3.2. The Possibility of Keeping the Perturbed Spectrum Real
4. Large N and Anomalous Hamiltonians
4.1. The Phenomenon of the Asymptotic Degeneracy of Eigenvectors
4.2. Canonical Representation of
5. Toward a Regularization of s by Perturbation
5.1. The EPN–IEP Differences and Parallels
5.2. IEP-Unfolding Bases
5.3. Recurrences
6. Constructive IEP-Perturbation Considerations
6.1. Formulation of the Problem
6.2. Structure of Solutions
7. Discussion
7.1. Benign Perturbations
7.2. The IC Oscillator as a Popular Toy Model
8. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Paradox of Stable Bound States in Complex Potentials
Appendix A.2. Beyond the Imaginary Cubic-Oscillator Potential
Appendix A.3. Beyond the Stationary Quasi-Hermitian Models
Appendix A.4. The Question of the Unitary-Evolution Accessibility of EPNs
Appendix A.5. A Note on the Broader Quantum Physics Framework
Appendix A.6. Final Note on the Notation and Outlook
References
- Siegl, P.; Krejčiřík, D. On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 2012, 86, 121702(R). [Google Scholar] [CrossRef]
- Trefethen, L.N.; Embree, M. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 2015, 56, 103513. [Google Scholar] [CrossRef]
- Bessis, D. (IPhT, Saclay, Paris, France). Personal communication, 1992.
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef]
- Dorey, P.; Dunning, C.; Tateo, R. Spectral equivalences, Bethe ansatz equations, andreality properties in -symmetric quantummechanics. J. Phys. A Math. Theor. 2001, 34, 5679. [Google Scholar]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin, Germany, 1966. [Google Scholar]
- Günther, U.; Stefani, F. IR-truncated PT -symmetric ix3 model and its asymptotic spectral scaling graph. arXiv 2019, arXiv:1901.08526. [Google Scholar]
- Dieudonné, J. Quasi-Hermitian operators. In Proceedings of the International Symposium on Linear Spaces, Jerusalem, Israel, 5–12 July 1961; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. 1992, 213, 74. [Google Scholar] [CrossRef]
- Znojil, M. Passage through exceptional point: Case study. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190831. [Google Scholar] [CrossRef]
- Graefe, E.M.; Günther, U.; Korsch, H.J.; Niederle, A.E. A non-Hermitian PT symmetric Bose-Hubbard model: Eigenvalue rings from unfolding higherorder exceptional points. J. Phys. A Math. Theor. 2008, 41, 255206. [Google Scholar] [CrossRef]
- Semorádová, I.; Siegl, P. Diverging eigenvalues in domain truncations of Schroedinger operators with complex potentials. SIAM J. Math. Anal. 2022, 54, 5064–5101. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Znojil, M. Complex symmetric Hamiltonians and exceptional points of order four and five. Phys. Rev. 2018, A 98, 032109. [Google Scholar] [CrossRef]
- Znojil, M. Admissible perturbations and false instabilities in PT-symmetric quantum systems. Phys. Rev. A 2018, 97, 032114. [Google Scholar] [CrossRef]
- Znojil, M. Unitarity corridors to exceptional points. Phys. Rev. A 2019, 100, 032124. [Google Scholar] [CrossRef]
- Günther, U.; Rotter, I.; Samsonov, B. Projective Hilbert space structures at exceptional points. J. Phys. A Math. Gen. 2007, 40, 8815. [Google Scholar] [CrossRef]
- Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. SIGMA 2009, 5, 001. arXiv:0901.0700. [Google Scholar] [CrossRef]
- Fisher, M.E. Yang-Lee edge singularity and φ3 field theory. Phys. Rev. Lett. 1978, 40, 1610–1613. [Google Scholar] [CrossRef]
- Bender, C.M. Making Sense of Non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1018. [Google Scholar] [CrossRef]
- Brody, D.C. Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 2013, 47, 035305. [Google Scholar] [CrossRef]
- Mityagin, B.; Siegl, P. Local form-subordination condition and riesz basisness of root systems. J. d’Anal. Math. 2019, 139, 83–119. [Google Scholar] [CrossRef]
- Langer, H.; Tretter, C. A Krein space approach to PT symmetry. Czech. J. Phys. 2004, 54, 1113–1120. [Google Scholar] [CrossRef]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Feinberg, J.; Riser, B. Pseudo-Hermitian random-matrix models: General formalism. Nucl. Phys. B 2022, 975, 115678. [Google Scholar] [CrossRef]
- Bender, C.M. (Ed.) PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Giordanelli, I.; Graf, G.M. The Real Spectrum of the Imaginary Cubic Oscillator: An Expository Proof. Ann. Henri Poincare 2015, 16, 99–112. [Google Scholar] [CrossRef]
- Dorey, P.; Dunning, C.; Tateo, R. From PT-symmetric quantum mechanics to conformal field theory. Pramana-J. Phys. 2009, 73, 217–239. [Google Scholar] [CrossRef]
- Abarbanel, H.D.I.; Bronzan, J.D.; Sugar, R.L.; White, A.R. Reggeon field theory: Formulation and use. Phys. Rep. C 1975, 21, 121. [Google Scholar] [CrossRef]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; CUP: Cambridge, UK, 2011. [Google Scholar]
- Shin, K.C. On the reality of the eigenvalues for a class of PT-symmetric oscillators. Commun. Math. Phys. 2002, 229, 543. [Google Scholar] [CrossRef]
- Fernández, F.; Guardiola, R.; Ros, J.; Znojil, M. Strong-coupling expansions for the PT-symmetric oscillators V(r) = aix + b(ix)2 + c(ix)3. J. Phys. A Math. Gen. 1998, 31, 10105–10112. [Google Scholar] [CrossRef]
- Dyson, F.J. General theory of spin-wave interactions. Phys. Rev. 1956, 102, 1217–1230. [Google Scholar] [CrossRef]
- Janssen, D.; Dönau, F.; Frauendorf, S.; Jolos, R.V. Boson description of collective states. Nucl. Phys. A 1971, 172, 145–165. [Google Scholar] [CrossRef]
- Bender, C.M.; Milton, K.A. Nonperturbative Calculation of Symmetry Breaking in Quantum Field Theory. Phys. Rev. D 1997, 55, R3255. [Google Scholar] [CrossRef]
- Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541–5549. [Google Scholar] [CrossRef]
- Bögli, S.; Siegl, P.; Tretter, C. Approximations of spectra of Schrödinger operators with complex potentials on Rd. Commun. Part. Diff. Equ. 2012, 42, 1001–1041. [Google Scholar] [CrossRef]
- Znojil, M. Time-dependent version of cryptohermitian quantum theory. Phys. Rev. D 2008, 78, 085003. [Google Scholar] [CrossRef]
- Fring, A.; Moussa, M.H.Y. Unitary quantum evolution for time-dependent quasi-Hermitian systems with non-observable Hamiltonians. Phys. Rev. A 2016, 93, 042114. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian interaction representation and its use in relativistic quantum mechanics. Ann. Phys. 2017, 385, 162–179. [Google Scholar] [CrossRef]
- Khantoul, B.; Bounames, A.; Maamache, M. On the invariant method for the time-dependent non-Hermitian Hamiltonians. Eur. Phys. J. Plus 2017, 132, 258. [Google Scholar] [CrossRef]
- Bishop, R.F.; Znojil, M. Non-Hermitian coupled cluster method for non-stationary systems and its interaction-picture reinterpretation. Eur. Phys. J. Plus 2020, 135, 374. [Google Scholar] [CrossRef]
- Ju, C.-Y.; Miranowicz, A.; Minganti, F.; Chan, C.-T.; Chen, G.-Y.; Nori, F. Einstein’s Quantum Elevator: Hermitization of Non-Hermitian Hamiltonians via a generalized vielbein Formalism. Phys. Rev. Res. 2022, 4, 023070. [Google Scholar] [CrossRef]
- Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357–390. [Google Scholar] [CrossRef]
- Bagarello, F. Algebras of unbounded operators and physical applications: A survey. Rev. Math. Phys. 2007, 19, 231–272. [Google Scholar] [CrossRef]
- Znojil, M. Quantum catastrophes: A case study. J. Phys. A Math. Theor. 2012, 45, 444036. [Google Scholar] [CrossRef]
- Znojil, M. Composite quantum Coriolis forces. Mathematics 2023, 11, 1375. [Google Scholar] [CrossRef]
- Znojil, M. Hybrid form of quantum theory with non-Hermitian Hamiltonians. Phys. Lett. A 2023, 457, 128556. [Google Scholar] [CrossRef]
- Jones, H.F.; Mateo, J. An Equivalent Hermitian Hamiltonian for the non-Hermitian −x4 Potential. Phys. Rev. D 2006, 73, 085002. [Google Scholar] [CrossRef]
- Fring, A.; Frith, T. Exact analytical solutions for time-dependent Hermitian Hamiltonian systems from static unobservable non-Hermitian Hamiltonians. Phys. Rev. A 2017, 95, 010102(R). [Google Scholar] [CrossRef]
- Ju, C.Y.; Miranowicz, A.; Chen, Y.N.; Chen, G.Y.; Nori, F. Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics. Quantum 2024, 8, 1277. [Google Scholar] [CrossRef]
- Alvarez, G. Bender-Wu branch points in the cubic oscillator. J. Phys. A Math. Gen. 1995, 28, 4589–4598. [Google Scholar] [CrossRef]
- Heiss, W.D. Exceptional points—Their universal occurrence and their physical significance. Czech. J. Phys. 2004, 54, 1091–1100. [Google Scholar] [CrossRef]
- Heiss, W.D. The physics of exceptional points. J. Phys. A Math. Theor. 2012, 45, 444016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M. The Intrinsic Exceptional Point: A Challenge in Quantum Theory. Foundations 2025, 5, 8. https://doi.org/10.3390/foundations5010008
Znojil M. The Intrinsic Exceptional Point: A Challenge in Quantum Theory. Foundations. 2025; 5(1):8. https://doi.org/10.3390/foundations5010008
Chicago/Turabian StyleZnojil, Miloslav. 2025. "The Intrinsic Exceptional Point: A Challenge in Quantum Theory" Foundations 5, no. 1: 8. https://doi.org/10.3390/foundations5010008
APA StyleZnojil, M. (2025). The Intrinsic Exceptional Point: A Challenge in Quantum Theory. Foundations, 5(1), 8. https://doi.org/10.3390/foundations5010008