Comparison of Harmonic Oscillator Model in Classical and Quantum Theories of Light-Matter Interaction
Abstract
:1. Introduction
2. Classical Harmonic Oscillator
2.1. Model of Harmonic Oscillator
2.2. Interaction of Charged Oscillator with Electromagnetic Radiation
2.3. Excitation Energy of Oscillator by Electromagnetic Pulse
3. Bohr Correspondence Principle and Its Generalization
3.1. Original Version of Bohr Correspondence Principle
3.2. Generalization of Bohr Correspondence Principle
4. Charged Quantum Oscillator in the Electromagnetic Field
4.1. Schwinger Formula for Excitation of Quantum Oscillator between Stationary States
4.2. Classical HO Is a Driver of Quantum One
4.3. Average Number of Excited Quanta
4.4. Saturation Effect upon Pulsed Excitation of a Quantum Oscillator
5. Other Correspondences between Quantum Descriptions of Light–Matter Interaction and Classical HO Model
5.1. HO Limit of Bloch Equations
5.2. Accounting for the Damping of HO in the Framework of the Classical and Quantum Approaches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiff, L.I. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Dong, S.-H. Factorization Method in Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Pergamon: Oxford, UK, 1976. [Google Scholar]
- Schwinger, J. The theory of quantized fields. Phys. Rev. 1949, 91, 728. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- Reimann, S.M.; Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 2002, 74, 1283. [Google Scholar] [CrossRef]
- Astapenko, V.A. Interaction of Ultrashort Electromagnetic Pulses with Matter; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013. [Google Scholar]
- Pakhomov, A.; Arkhipov, M.; Rosanov, N.; Arkhipov, R. Ultrafast control of vibrational states of polar molecules with subcycle unipolar pulses. Phys. Rev. A 2022, 105, 043103. [Google Scholar] [CrossRef]
- Arkhipov, R.; Pakhomov, A.; Arkhipov, M.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N. Population difference gratings created on vibrational transitions by nonoverlapping subcycle THz pulses. Sci. Rep. 2021, 11, 1961. [Google Scholar] [CrossRef] [PubMed]
- Bohr, N.; Kramers, H.A.; Slater, J.C. The quantum theory of radiation. Philos. Mag. 1924, 47, 785. [Google Scholar] [CrossRef]
- Kramers, H.A. The law of dispersion and Bohr’s theory of spectra. Nature 1924, 113, 673. [Google Scholar] [CrossRef]
- Kramers, H.A.; Heisenberg, W. Uber die Streuung von Strahlung durch Atome. Z. Phys. 1925, 31, 681. [Google Scholar] [CrossRef]
- Fermi, E. Uber die Theorie des Stosses zwischen Atomen und electrisch gelanden Teilchen. Z. Phys. 1924, 29, 315. [Google Scholar] [CrossRef]
- Bloch, F. Nuclear induction. Phys. Rev. 1946, 70, 460. [Google Scholar] [CrossRef]
- Alharbey, R.A. Driven qubit by train of Gaussian-pulses. Mathematics 2021, 9, 628. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Astapenko, V.A.; Sakhno, E.V. The spectroscopic correspondence principle for the time evolution of quantum transitions under the action of electromagnetic pulses. Phys. Scr. 2020, 95, 115504. [Google Scholar] [CrossRef]
- Astapenko, V.A.; Krotov, Y.A.; Sakhno, S.V. Pulse excitation of a harmonic oscillator: Dependence on the parameters of an exciting force. MIPT Proc. 2023, 15, 41. (In Russian) [Google Scholar]
- Astapenko, V.A. Simple formula for photoprocesses in ultrashort electromagnetic field. Phys. Lett. A 2010, 374, 1585. [Google Scholar] [CrossRef]
- Astapenko, V.A.; Sakhno, E.V. Excitation of a quantum oscillator by short laser pulses. Appl. Phys. B 2020, 126, 23. [Google Scholar] [CrossRef]
- Astapenko, V.A.; Rosmej, F.B.; Sakhno, E.V. Dynamics of time evolution of quantum oscillator excitation by electromagnetic pulses. J. Exp. Theor. Phys. 2021, 133, 155. [Google Scholar] [CrossRef]
- Husimi, K. Miscellanea in Elementary Quantum Mechanics. Prog. Theor. Phys. 1953, 9, 381. [Google Scholar] [CrossRef]
- Astapenko, V.A.; Krotov, Y.A.; Sakhno, S.V. Saturation effect upon pulsed excitation of a quantum oscillator. MIPT Proc. 2022, 14, 72. (In Russian) [Google Scholar]
- Demtröder, W. Laser Spectroscopy: Basic Concepts and Instrumentation; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Hassan, S.S.; Alharbey, R.A.; Jarad, T.; Almaatooq, S. Driven harmonic oscillator by train of chirped Gaussian pulses. Int. J. Appl. Math. 2020, 33, 59. [Google Scholar] [CrossRef]
- Hassan, S.S.; Joshi, A.; Frege, O.M.; Emam, W. Damping of a harmonic oscillator in a squeezed vacuum without rotating-wave approximation. Ann. Phys. 2007, 322, 2007. [Google Scholar] [CrossRef]
- Hassan, S.S.; Alharbey, R.A.; Jarad, T. Transient spectrum of pulsed-driven harmonic oscillator: Damping and pulse shape effects. Nonlinear Opt. Quantum Opt. 2018, 48, 277. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astapenko, V.; Bergaliyev, T. Comparison of Harmonic Oscillator Model in Classical and Quantum Theories of Light-Matter Interaction. Foundations 2023, 3, 549-559. https://doi.org/10.3390/foundations3030031
Astapenko V, Bergaliyev T. Comparison of Harmonic Oscillator Model in Classical and Quantum Theories of Light-Matter Interaction. Foundations. 2023; 3(3):549-559. https://doi.org/10.3390/foundations3030031
Chicago/Turabian StyleAstapenko, Valery, and Timur Bergaliyev. 2023. "Comparison of Harmonic Oscillator Model in Classical and Quantum Theories of Light-Matter Interaction" Foundations 3, no. 3: 549-559. https://doi.org/10.3390/foundations3030031
APA StyleAstapenko, V., & Bergaliyev, T. (2023). Comparison of Harmonic Oscillator Model in Classical and Quantum Theories of Light-Matter Interaction. Foundations, 3(3), 549-559. https://doi.org/10.3390/foundations3030031