On the Semi-Local Convergence of a Noor–Waseem-like Method for Nonlinear Equations
Abstract
:1. Introduction
2. Majorizing Sequences
3. Semilocal Convergence
- There exist , such that and
- There exists such that for eachDefine .
- There exists , such that for each ,
- Conditions of Lemma (1) or Lemma (3) hold, and
- .
- (1)
- There exists elementfor somewhich is a simple solution for equation.
- (2)
- Conditionholds.
- (3)
- There existssuch that
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Nomenclature
Abbreviations
Nomenclature
| Lipschitz constants | |
| , | Scalar sequences |
References
- Argyros, I.K. The Theory and Application of Iteration Methods, 2nd ed.; Engineering Series; CRC Press-Taylor and Francis Publ. Comp.: Boca Raton, FL, USA, 2022. [Google Scholar]
- Argyros, I.K. Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications. Mathematics 2021, 9, 1942. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernandez, M.A. Newton’s Method: An Updated Approach of Kantorvich’s Theory; Birkhaser: Cham, Switzerland, 2018. [Google Scholar]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multipoint methods for solving nonlinear equations: A survey. Appl. Math. Comput. 2014, 226, 635–660. [Google Scholar] [CrossRef] [Green Version]
- Regmi, S.; Argyros, C.I.; Argyros, I.K.; George, S. On the Semi-Local Convergence of a Traub-Type Method for Solving Equations. Foundations 2022, 2, 114–127. [Google Scholar] [CrossRef]
- Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 2009, 57, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Homeier, H.H. A modified Newton method with cubic convergence: The multivariate case. J. Compu. Appl. Math. 2004, 169, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Magreñán, Á.A.; Gutiérrez, J.M. Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 2015, 275, 527–538. [Google Scholar] [CrossRef]
- Singh, S.; Martínez, E.; Maroju, P.; Behl, R. A study of the local convergence of a fifth order iterative method. Indian J. Pure Appl. Math. 2020, 51, 439–455. [Google Scholar] [CrossRef]
- Argyros, I.K.; Giménez, E.; Magreñán, Á.A.; Sarría, I.; Sicilia, J.A. Improved semilocal convergence analysis in Banach space with applications to chemistry. J. Math. Chem. 2018, 6, 1958–1975. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Manzhirov, A.V. Handbook of Integral Equations; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
| t | |||
|---|---|---|---|
| 0 | 0.00456182 | 0.00030259 | 0.00540983 |
| 1 | 0 | 0.000538 | 0.00054542 |
| t | |||
|---|---|---|---|
| 0 | 0.0217956 | 0.0017009 | 0.0261157 |
| 1 | 0.0025605 | 2.37 × 10−5 | 0.0026192 |
| 2 | 3.5 × 10−5 | 0 | 3.5 × 10−5 |
| t | |||
|---|---|---|---|
| 0 | 0.0333333 | 0.0050057 | 0.0475323 |
| 1 | 0.0083457 | 0.000319 | 0.0091933 |
| 2 | 0.000523 | 1.2 × 10−6 | 0.0005263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Jaiswal, J.P.; Saxena, A.; Argyros, M.I. On the Semi-Local Convergence of a Noor–Waseem-like Method for Nonlinear Equations. Foundations 2022, 2, 512-522. https://doi.org/10.3390/foundations2020034
Argyros IK, Jaiswal JP, Saxena A, Argyros MI. On the Semi-Local Convergence of a Noor–Waseem-like Method for Nonlinear Equations. Foundations. 2022; 2(2):512-522. https://doi.org/10.3390/foundations2020034
Chicago/Turabian StyleArgyros, Ioannis K., Jai Prakash Jaiswal, Akanksha Saxena, and Michael I. Argyros. 2022. "On the Semi-Local Convergence of a Noor–Waseem-like Method for Nonlinear Equations" Foundations 2, no. 2: 512-522. https://doi.org/10.3390/foundations2020034
APA StyleArgyros, I. K., Jaiswal, J. P., Saxena, A., & Argyros, M. I. (2022). On the Semi-Local Convergence of a Noor–Waseem-like Method for Nonlinear Equations. Foundations, 2(2), 512-522. https://doi.org/10.3390/foundations2020034
