The Role of Axions in the Formation of the Photoluminescence Spectrum in Dispersive Media
Abstract
:1. Introduction
2. The Bohr Frequency and Its Relation to the Lorentz Harmonic Oscillator Model
2.1. Niels Bohr’s Postulates
2.2. The Bohr Frequency and Its Relation to the Lorentz Harmonic Oscillator Model
2.3. Starting the Analysis of the PL Spectra in the DM
(b) ν > ν21, n(ν) > 1;
(c) ν < ν21, n(ν) >1,
3. Photoluminescence (PL)
4. On the Results of Studies of PL and LG in Holmium-Doped Media
5. Analysis of the Results, Observed in Bismuth-Doped Media
6. Axions in the Optical Range of the Spectrum and Their Lifetime
7. Summing Up
Funding
Data Availability Statement
Conflicts of Interests
References
- Ogluzdin, V.E. Axion N and Photoluminescence. Acta Sci. Med. Sci. 2021, 5, 38–42. [Google Scholar]
- Peccei, R.D. The Strong CP Problem and Axions. Phys. Rev. Lett. 1977, 40, 279. [Google Scholar]
- Wilczek, F.A. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Wilczek, F. Nobel Lecture: Asymptotic freedom: From paradox to paradigm. Rev. Mod. Phys. 2005, 77, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Primakoff, H. Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life of the Neutral Meson. Phys. Rev. 1951, 81, 86–89. [Google Scholar] [CrossRef]
- Ogluzdin, V.E. Axions in optiсal experiments. Inzhenernaya phisika (Eng. Phys.) 2015, 9, 16–22. (In Russian) [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feinman Lectures on Physics; Mir: Moscow, Russia, 1965; Volume 1. [Google Scholar]
- Akhmanov, S.A.; Khokhlov, R.V. Problems of Nonlinear Optics 1962–1963; Institute of Scientific Information: Moscow, Russia, 1964. [Google Scholar]
- Akhmanov, S.A.; Khokhlov, R.V. Parametric amplifiers and generators of light. Sov. Phys. Usp 1966, 9, 210–222. [Google Scholar] [CrossRef]
- Glinca, N.L. Obzhaya Himiya (General Chemistry); Vyscshaya Shkola: Moscow, Russia, 2003. [Google Scholar]
- Bor, N. Atomnaya Fisika I Chelovecheskoe Posnanie (Atomic Physics and Human Cognition); Isd-vo inostrannoi literatury: Moscow, Russia, 1961. [Google Scholar]
- Tolansky, S. Revolution in Optics; Penguin: Moscow, Russia, 1968. [Google Scholar]
- Fermi, E. Notes on Quantum Mechanics. A Course Given by Enrico Fermi at the University of Chicago; The University of Chicago Press: Chicago, IL, USA, 1964. [Google Scholar]
- Ditchburn, R.W. Light; Blackie & son LIMITED: London, UK, 1963. [Google Scholar]
- Korolev, F.A. Teoreticheskaya Optika (Teoretical Optics); Vyscshaya shkola: Moscow, Russia, 1965. [Google Scholar]
- Pol, R.V. Vvedenie v Optiku; State Technical and Theoretical Press: Moscow, Russia, 1947. [Google Scholar]
- Pantell, R.H.; Puthoff, H.E. Fundamentals of Quantum Electronics; Wiley: New-York, NY, USA, 1969. [Google Scholar]
- Karlov, N.V. Lekzii po Kvantovoi Elektronike (Notes on Quantum Electronics); Fizmatlit: Moscow, Russia, 1988. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics; Nauka: Moscow, Russia, 1970. [Google Scholar]
- Akhmanov, S.A.; Kovrigin, A.I.; Maksimov, C.A.; Ogluzdin, V.E. Dispersion of resonant nonlinear susceptibility in potassium vapors. Pis’ma Zh. Eksp. Teor. Fiz. 1972, 15, 180–185. [Google Scholar]
- Anikin, V.I.; Kryuchkov, S.V.; Ogluzdin, V.E. Resonant electron forced raman scattering in potassium vapor. Dispersion near the main doublet and the influence of four-photon processes. Kvantovaya Electron. 1974, 1, 1991–1998. [Google Scholar]
- Ogluzdin, V.E. The role of Bohr frequencies in the scattering, luminescence, and generation of radiation in different media. Physics-Uspekhi 2006, 49, 401–405. [Google Scholar] [CrossRef]
- Ogluzdin, V.E. Direct observation of the shift of the 4P(1/2) electronic level in atomic potassium vapor upon the saturation (redistribution of the population of levels) of the 4S(1/2)-4P(3/2) transition under the conditions for nearly resonant laser pumping. Laser Phys. 2006, 16, 1178–1183. [Google Scholar] [CrossRef]
- Ogluzdin, V.E. On the angular structure of quasi-monochromatic radiation scattered in a resonant medium. Pis’ma Zh. Tech.Fiz. 1975, 1, 563–566. [Google Scholar]
- Ogluzdin, V.E. Vavilov-Cherenkov effect under conditions of near resonant interaction of intense light beams with atomic potassium vapor. Zh. Eksp. Teor. Phyz. 1985, 79, 361–367. [Google Scholar]
- Badalyan, A.M.; Dabagyan, A.A.; Movsesyan, M.E. Investigation of the dynamics of the development of nonlinear resonance processes in potassium vapor. Zh. Eksp. Teor. Phyz. 1976, 70, 1178–1184. [Google Scholar]
- Levshin, V.L. Photoluminescence zhidkich i tverdych veczhestv (Photoluminescence of Liguid and Solid Substances); GITTL Publication: Moscow, Russia, 1951. [Google Scholar]
- Garbuny, M. Optical Physics; Academic Press: London, UK, 1965. [Google Scholar]
- Bennett, U.R. Gasovye Lasery (Gaseous Lasers); Mir: Moscow, Russia, 1964. [Google Scholar]
- Ogluzdin, V.E. Interpretation of PL in the visible region of the spectrum of differently sized silicon nanoparticles suspended in ethanol. using the model of the classical harmonic Lorentz oscillator. Bull. Lebedev Phys. Inst. 2003, 59, 3–17. [Google Scholar]
- Ogluzdin, V.E. Photons traveling at the speed of light in a two-level atomic medium as a source of Cherenkov radiation cones. Physics-Uspekhi 2004, 47, 829–832. [Google Scholar] [CrossRef]
- Vavilov, S.I. Mikrostructurasveta (Microstructure of Light); Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1950. [Google Scholar]
- Ogluzdin, V.E. Interpretation of the visible photoluminescence of inequisized silicon nanoparticles suspended in ethanol. Semiconductors 2005, 39, 884–890. [Google Scholar] [CrossRef]
- Ogluzdin, V.E. Interpretation of the visible photoluminescence of inequisized d in ethanol excited by argon laser radiation. In Book of Abstract 4th International Conference “Amorphous and Microcrystalline Semiconductors”-Section C; Springer International Publishing AG: St.-Petersburg, Russia, 2004. [Google Scholar]
- Meng, P.B. Diode-pumped room temperature single longitudinal mode lasing of Tm,Ho:YLF microchip laser at 2050.5 μm. Laser Phys. 2011, 21, 643. [Google Scholar] [CrossRef]
- Kurkov, A.S.; Sholokhov, E.M.; Medvedkov, O.I.I. All-fiber Yb-Ho pulsed laser. Laser Phys. Lett. 2009, 6, 135–138. [Google Scholar] [CrossRef]
- Kurkov, A.S.; Sholokhov, E.M.; Tsvetkov, V.B.; Marakulin, A.B.; Minashina, L.A.; Medvedkov, O.I.; Kosolapov, A.F. Holmium fiber laser with record quantum efficiency. Quantum Electron. 2011, 41, 492–494. [Google Scholar] [CrossRef]
- Ju, Y.L.; Zhang, C.H.; Chen, F.; Li, G.; Yao, B.Q.; Tian, L.X.; Wang, Y.Z. Room temperature single longitudinal mode Tm,Ho:Yap microchip laser at 2102.6 nm. Laser Phys. 2011, 21, 97–100. [Google Scholar] [CrossRef]
- Li, L.J.; Yao, B.Q.; Wu, D.Y.; Wang, J.; Gang, L.; Wang, Y.Z.; Zhang, Z.G. High efficient double end-pumped b-cut Tm,Ho:YAlO3 laser. Laser Phys. 2011, 21, 446–449. [Google Scholar] [CrossRef]
- Li, L.J.; Yao, B.Q.; Qin, J.P.; Wu, D.Y.; Wang, Y.M.; Wang, J.; He, Z.L.; Liu, W.Y.; Chen, J.J.; Wang, Y.Z.; et al. High power and efficiency of a 2044-nm c-cut Tm, Ho:YAlO3 laser. Laser Phys. 2011, 21, 489–492. [Google Scholar] [CrossRef]
- Ogluzdin, V.E. Photoluminecsence and Generation of Golmium (Ho) Atoms in the Glassfiber and in the Cristall Media. arXiv Prepr. 2011, arXiv:1109.1673. [Google Scholar]
- Seidel, A.N. Tablizy spektral’nych linii (Tables of Spectral Lines); Nauka: Moscow, Russia, 1977. [Google Scholar]
- Yazenko, A.C. Diagrammy Grotriana neutral’nych atomov (Grotrian Diagrams of Neutral Atoms); Nauka: Novosibirsk, Russia, 1993. [Google Scholar]
- Suzuki, N.; Anan, T.; Hatakeyama, H.; Tsuji, M. Low resistance tunnel junctions with type-II heterostructures. Appl. Phys. Lett. 2006, 88, 231103. [Google Scholar] [CrossRef]
- Dianov, E.M.; Firstov, S.V.; Khopin, V.F.; Medvedkov, O.I.; Gur’yanov, A.N.; Bufetov, I.A. Bi-doped fibre lasers operating in the range 1470–1550 nm. Quantum Electron. 2009, 39, 299. [Google Scholar] [CrossRef]
- Dianov, E.M.; Firstov, S.V.; Medvedkov, O.I.; Bufetov, I.A.; Khopin, V.F.; Guryanov, V.N. Luminescence and laser generation in Bi-doped fibers in a spectral region of 1300-1520 nm. In Proceedings of the Name of the Conference (Optical Fiber Communication Conference), San Diego, CA, USA, 22–26 March 2009. [Google Scholar]
- Bulatov, L.I. (Abstract of dissertation of the Faculty of Physical and Mathematical Sciences.) Absorption and Luminescent Properties of Bismuth Centers in Aluminum and Phosphorosilicate Light Guides; MSU: Moscow, Russia, 2009. [Google Scholar]
- Bufetov, I.A.; Dianov, E.M. Bi-doped fiber lasers. Laser Phys. Lett. 2009, 6, 487. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Nakatsuka, M. Infrared Luminescence from Bismuth-Doped Silica Glass. Jpn. J. Appl. Phys. 2001, 40, L279. [Google Scholar] [CrossRef]
- Peng, M.; Qiu, J.; Chen, D.; Meng, X.; Yang, I.; Jiang, X.; Zhu, C. Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification. Opt. Lett. 2004, 29, 1998–2000. [Google Scholar] [CrossRef]
- Peng, M.; Meng, X.; Qiu, J.; Zhao, Q.; Zhu, C. GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence. Chem. Phys. Lett. 2005, 403, 410–414. [Google Scholar] [CrossRef]
- Peng, M.; Qiu, J.; Chen, D.; Meng, X.; Zhu, C. Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses. Opt. Lett. 2005, 30, 2433–2435. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Qiu, J.; Wu, B.; Chen, D. Ultrabroad infrared luminescences from Bi-doped alkaline earth metal germanate glasses. J. Mater. Res. 2007, 22, 1574–1578. [Google Scholar] [CrossRef]
- Meng, X.W.; Qiu, J.-R.; Peng, M.-Y.; Chen, D.-P.; Zhao, Q.-Z.; Jiang, X.-W.; Zhu, C.-S. Near infrared broadband emission of bismuth-doped aluminophosphate glass. Opt. Express 2005, 13, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Denker, B.; Galagan, B.; Osiko, V.; Shulman, I.; Sverchkov, S.; Dianov, E. Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system. Appl. Phys. B 2009, 95, 801–805. [Google Scholar] [CrossRef]
- Krylov, K.I. Osnovy lasernoi tehniki (Fundamentals of Laser Technology); Mashinostroenie: Leningpad, Russia, 1990. [Google Scholar]
- Ogluzdin, V.E. Change energy photons of radiation, stimulating a photoluminescence in glasses and optical fiber, activated by bismuth. arXiv Prepr. 2011, arXiv:1109.1373. [Google Scholar]
- Vladimirov, A.G.; Korovin, S.; Surkov, A.; Kelm, E.; Pustovoy, V.; Borsella, E. Tunable luminecsence of silicon nanoparticles. In Proceedings of the Breakthroughs in Nanoparticles for Bio-Imaging, Frascati, Italy, 8–9 April 2010. [Google Scholar]
- Seidel, A.N. Tehnikaipraktikaspectroskopii (Spectroscopy Technique and Practice); Nauka: Moscow, Russia, 1972. [Google Scholar]
- Davydov, A.S. KvantovayaMekhanika (Quantummechanics); Fizmatgiz: Moscow, Russia, 1965. [Google Scholar]
- Physical Encyclopedic Dictionary; Soviet; Encyclopedia: Moscow, Russia, 1984.
- Sokolov, V.O.; Plotnichenko, V.G.; Koltashev, V.V.; Dianov, E.M. Centres of broadband near-IR luminescence in bismuth-doped glasses. J. Phys. D Appl. Phys. 2009, 42, 095410. [Google Scholar] [CrossRef]
- Krylov, A.A.; Kryukov, P.G.; Dianov, E.M.; Okhotnikov, O.G.; Guina, M. Pulsed bismuth fibre laser with the intracavity-compensated group velocity dispersion. Quantum Electron. 2009, 39, 21. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Melkumov, S.V.; Firstov, K.E.; Ryumkin, K.E.; Shubin, A.V.; Khopin, V.F.; Gur’yanov, A.N.; Dianov, E.M. Bi-doped optical fibers and fiber lasers. Quantum Electron. 2014, 44, 700. [Google Scholar] [CrossRef]
- Laguta, O.V.; Hamzaoui, H.E.; Bouazaoui, M.; Arion, V.B.; Razdobreev, I.M. On the nature of photoluminescence in Bismuth-doped silica glass. Sci. Rep. 2017, 7, 3178. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
Link number in the list literatures | Wavelength corresponding to the maximal valued ordinal curve of PL (LG): λpf (nm) | Wavelength of excitation source PL: −λ (nm) | The result of calculating the wavelength of the transition: −λlm (nm) | Tabular value of the transition wavelength: −λt (nm) |
which is associated with non-radiative relaxation. | ||||
[45] | ~1130 nm | 1058 nm | 994.6 nm | 982.8 nm |
[46,47] | ~720 nm | 514 nm | 399.6 nm | 388.6 nm |
[48,49] | ~750 nm | 500 nm | 374.99 nm | 359.6 nm |
[48,49] | ~1140 nm | 500 nm | 320.2 nm | 323.9 nm |
[48,50] | ~1300 nm | 800 nm | 577.7 nm | 574.2 nm |
[48,51] | ~1315 nm | 808 nm | 583.1 nm | 574.2 nm |
[48,52,53] | ~1310 nm | 808 nm | 584.1 nm | 574.2 nm |
[48,54] | ~1150 nm | 980 nm | 853.8 nm | 854.4 nm |
[48,55] | ~1210 nm | 405 nm | 243.2 nm | 243.3 nm |
[56] | ~1260 nm | 798 nm | 584 nm | 574 nm |
[56] | ~1153.5 nm | 502 nm | 314.9 nm | 306 nm |
[56] | ~1153,5 nm | 525 nm | 339.8 nm | 339.7 nm |
[56] | ~1085.4 nm | 680 nm | 472 nm | 472.2 nm |
[56] | ~1171.6 nm | 738 nm | 540 nm | 555.2 nm |
[56] | ~1260 nm | 798 nm | 584 nm | 527.4 nm |
References | Alloying Material; in Parentheses—Environment of the Test Sample | The Wavelength of the Pump Radiation, nm | Frequency Corresponding to the Maximum Value of Intensity PL, cm−1 | Width of the PL Spectrum at Half-Length, ∆W, cm−1 | Axion Lifetime τ, s |
---|---|---|---|---|---|
[35,36] | Silicon (ethanol) | 488 | ~5480 | ~1160 | ~3.48 × 10−13 |
[63] | Bismuth-Bi (glasscorderite)) | 514 | ~8547 | ~420 (~700) ~1120 | 2.93 × 10−13 |
[64] | Bismuth-Bi (aluminosil-rolled glass T = 77 K | 1075 | ~8880 | ~1213 | 3.64 × 10−13 |
[65] | Bismuth-Bi (phosphorus-silicate glass) | 1240 | ~7463 | ~340 | ~1.02 × 10−13 |
[66] | Bismuth-Bi T = 1.4 K | 375 | ~6803 | ~340 | 1.02 × 10−13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogluzdin, V.E. The Role of Axions in the Formation of the Photoluminescence Spectrum in Dispersive Media. Foundations 2022, 2, 184-198. https://doi.org/10.3390/foundations2010011
Ogluzdin VE. The Role of Axions in the Formation of the Photoluminescence Spectrum in Dispersive Media. Foundations. 2022; 2(1):184-198. https://doi.org/10.3390/foundations2010011
Chicago/Turabian StyleOgluzdin, Valeriy Evgenjevich. 2022. "The Role of Axions in the Formation of the Photoluminescence Spectrum in Dispersive Media" Foundations 2, no. 1: 184-198. https://doi.org/10.3390/foundations2010011
APA StyleOgluzdin, V. E. (2022). The Role of Axions in the Formation of the Photoluminescence Spectrum in Dispersive Media. Foundations, 2(1), 184-198. https://doi.org/10.3390/foundations2010011