Analytical Study of a ϕ− Fractional Order Quadratic Functional Integral Equation
Abstract
:1. Introduction
2. Main Results
- (i)
- is continuous and ;
- (ii)
- satisfy the Carathéodory condition (i.e., measurable in t for all and continuous in x for all ).
- (iii)
- There exist two functions and nonnegative constants such that
- (iv)
- are increasing and absolutely continuous.
- (v)
- are continuous.
- (vi)
- (vii)
- r is a positive solution of the inequality:
2.1. Existence Results of QFIE (2) via Iterative Scheme
2.2. Existence Results of QFIE (2) via the Fixed Point Theorem
3. Special Cases and Remarks
4. Properties of Solutions
4.1. Uniqueness of Solutions of QFIE (2)
- (i*)
- is continuous and ;
- (ii*)
- satisfy the Carathéodory condition (i.e., measurable in t for all and continuous in x for all ).
- (iii*)
- There exist two nonnegative constants such that
- (iv*)
- are increasing and absolutely continuous.
- (v*)
- are continuous.
- (vi*)
- (vii*)
- r is a positive solution of the inequality:
4.2. Maximal and Minimal Solutions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Argyros, I.K. Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. Austral. Math. Soc. 1985, 32, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. On a class of quadratic integral equations with perturbations. Funct. Approx. 1992, 20, 51–63. [Google Scholar]
- Banas, J.; Lecko, M.; El-Sayed, W.G. Existence theorems of some quadratic integral equation. J. Math. Anal. Appl. 1998, 227, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Banaś, J.; Martinon, A. Monotonic Solutions of a quadratic Integral Equation of Volterra Type. Comput. Math. Appl. 2004, 47, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic Solutions of a Class of Quadratic Integral Equations of Volterra Type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Radiative Transfer; Oxford University Press: London, UK, 1950. [Google Scholar]
- El-Sayed, A.M.A.; Mohamed, M.S.; Mohamed, F.F.S. Existence of positive continuous solution of a quadratic integral equation of fractional orders. J. Fract. Calc. Appl. 2011, 1, 1–7. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hashem, H.H.G. On the solution of a generalized fractional order integral equation and some applications. J. Fract. Calc. Appl. 2015, 6, 120–130. [Google Scholar]
- Hashem, H.H.G.; El-Sayed, A.M.A. Existence results for a quadratic integral equation of fractional order by a certain function. Fixed Point Theory 2020, 21, 181–190. [Google Scholar] [CrossRef]
- Hashem, H.H.G.; Zaki, M.S. Carathéodory theorem for quadratic integral equations of ErdyéliKober type. J. Fract. Calc. Appl. 2013, 4, 1–8. [Google Scholar]
- Caballero, J.; Mingarelli, A.B.; Sadarangani, K. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electr. J. Differ. Equ. 2006, 57, 1–11. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G. Carathèodory type theorem for a nonlinear quadratic integral equation. Math. Sci. Res. J. 2008, 12, 71–95. [Google Scholar]
- Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: London, UK; Cambridge, MA, USA, 1977. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Omar, Y.M.Y. Positive continuous solution of a quadratic integral equation of fractional orders. Math. Sci. Lett. 2013, 2, 1–9. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S. Differential and Integral Inequalities; Academic Press: New York, NY, USA; London, UK, 1969; Volume 1. [Google Scholar]
- Rao, M.R. Ordinary Differential Equations; East-West Press Pvt Ltd., New Delhi-Madras: New Delhi, India, 1980. [Google Scholar]
- Banaś, J.; Rzepka, B. Monotonic solutions of a quadratic integral equations of fractional order. J. Math. Anal. Appl. 2007, 332, 1370–1378. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.M.A.; Gaafar, F.M.; Hashem, H.H.G. On the maximal and minimal solutions of arbitrary-orders nonlinear functional integral and differenbtial equations. Math. Sci. Res. J. 2004, 8, 336–348. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G. Existence results for nonlinear quadratic functional integral equations of fractional order. Miskolc Math. Notes 2013, 14, 79–87. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. An Implicit Hybrid Delay Functional Integral Equation: Existence of Integrable Solutions and Continuous Dependence. Mathematics 2021, 9, 3234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical Study of a ϕ− Fractional Order Quadratic Functional Integral Equation. Foundations 2022, 2, 167-183. https://doi.org/10.3390/foundations2010010
El-Sayed AMA, Hashem HHG, Al-Issa SM. Analytical Study of a ϕ− Fractional Order Quadratic Functional Integral Equation. Foundations. 2022; 2(1):167-183. https://doi.org/10.3390/foundations2010010
Chicago/Turabian StyleEl-Sayed, Ahmed M. A., Hind H. G. Hashem, and Shorouk M. Al-Issa. 2022. "Analytical Study of a ϕ− Fractional Order Quadratic Functional Integral Equation" Foundations 2, no. 1: 167-183. https://doi.org/10.3390/foundations2010010
APA StyleEl-Sayed, A. M. A., Hashem, H. H. G., & Al-Issa, S. M. (2022). Analytical Study of a ϕ− Fractional Order Quadratic Functional Integral Equation. Foundations, 2(1), 167-183. https://doi.org/10.3390/foundations2010010