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Abstract: Quadratic integral equations of fractional order have been studied from different views.
Here we shall study the existence of continuous solutions of a ¢— fractional-orders quadratic func-
tional integral equation, establish some properties of these solutions and prove the existence of
maximal and minimal solutions of that quadratic integral equation. Moreover, we introduce some
particular cases to illustrate our results.

Keywords: Carathéodory theorem; ¢— fractional integration; quadratic integral equation; continuous
solution; maximal and minimal solutions

1. Introduction

Quadratic integral equations have gained much attention and many authors studied
the existence of solutions for several classes of nonlinear quadratic integral equations (see
e.g., [1-11]).

Quadratic integral equations have been appeared in many useful application and prob-
lems of the real world. For example, in the theory of radiative transfer, the kinetic theory of
gases, the theory of neutron transport, the queuing theory and the traffic theory [2,5,6,12].

In [13], we generalized the Carathéodory theorem for the nonlinear quadratic inte-
gral equation

w0 = o) + [ flxNds [ glox)ds )

and proved the existence of at least one positive nondecreasing continuous solution to the
Equation (1) under the assumption that the functions f and g satisfy the conditions of the
Caratheodory Theorem [14]. Furthermore, we proved the existence of the maximal and
minimal solutions of the quadratic integral Equation (1).

Let ] = [0, T], ¢1, ¢2 : ] — R be increasing and absolutely continuous and ¢; : | — J,
i = 1,2 be continuous. Leta, p € (0,1] and t € J.

Consider the ¢— fractional-orders quadratic functional integral equation

_ @it = a(e) ! ,

w(t) = a(t)+ [ SR fi(s x(1(5))) () ds
[0 9(s))F !

Jo r'(p)

Now, we shall generalize these results and obtain similar ones for the fractional
quadratic ¢— integral Equation (2), which in turn gives the existence as well as the existence
of many key integral and functional equations that arise in nonlinear analysis and its
applications. Finally, we discuss the existence of maximal and minimal solutions of (2).

fo(s,x(2(s))) ¢a(s) ds, t€ ], o, € (0,1]. (2)
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Now, we shall denote by L}, = L(}, [0, T] the space of all real functions defined on

J. such that ¢/(t) f(t) € L'(J) and f0T| ¢'(t) f(t) | dt < oo. Where ¢ is an increasing
function and absolutely continuous on | and we introduce the norm [9]

T
LFW 1y = [ 19@ @ a te ).

Definition 1 ([9]). The ¢p— fractional integral of order & > 0 of the function f(t) € L}, is
defined as

t _ a—1
g = [ POTEI g gy as

Iy, may be known as the fractional integral of the function f(t) with respect to ¢(t), which is defined
for any monotonic increasing function ¢(t) > 0, with a continuous derivative.

2. Main Results

Consider the functional quadratic ¢ — integral equation of fractional order (2) under
the following assumptions:
(i) a: ] — Ry iscontinuous and sup |a(t)| = k;
te]
(i) f1, fo : ] x R = Ry satisfy the Carathéodory condition (i.e., measurable in ¢ for all
x € R and continuous in x for all t € J).
(iii) There exist two functions my,m, € L! and nonnegative constants by, by such that
|filt, x(0)] < [mi(t)| +bilx], i = 1,2.
(iv) ¢;i: ] — R, i = 1,2 are increasing and absolutely continuous.
(v) ¢;:]—], i=1,2are continuous.
(vi) Igf mi <M;, i =12y <a, 7 <B.
(vii)  is a positive solution of the inequality:

- MM, T F—11-m N by M, rT*HB—72
Fla—m+DIB—712+1) Ta+I(B—"12+1)
N byM; rTAte—m byby r2ToHP

B+ D)ia—m+1) T+ )rg+D ="

With the aim of proving the existence of at least one solution for the Equation (2),
firstly we construct an iterative scheme (as done in the original Carathéodory theorem) and
secondly we apply the Schauder fixed point theorem.

2.1. Existence Results of QFIE (2) via Iterative Scheme

Theorem 1. Let assumptions (i)—(vii) be satisfied, then the functional quadratic integral equation
of fractional order (2) has at least one positive solution x € C(J).

Proof. Consider the ball S, in the space C(]) defined as
Sy ={xeC():|x(t)| <rforte ]}

Define the sequence {x,(t)},t €[0,T — 1]

n

1 1y _ a—1
w) =)+ [P O oo

B (ot + %) — r(s))P1 /
J 2O o (260
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The sequence {x, ()}, t € [0, T — 1] is uniformly bounded

[xa(B)] < ma(s)| + bulxn (1 (s)) |19 (s)ds

| +/ t+% ‘Pl S))ail[

0(

/Of+ (92t + 3(@4’2( D () bl ()[4 ),
L (r(t L) — g (s)) !
I A 0
/t+ ¢2t+ 5))ﬁ1|

0

IA

|m1(s)|¢1(s)ds

my(s)| ¢ (s)ds

B (pr(t+ 1) — ¢a(s))* !

by |xn (1(5)) ¢ (5)ds

J’_
S—

) D)
ma(s)]gh()ds

S—

= 2(5)) ! :
bala (2(5)) |95 (5)ds

J’_
S—

t+1 1(s)) 1

|m1(s) |91 (s)ds

S—

a—1
) O o)l o)

J’_
%

2(s))P ! /
/ ba|xn(2(s)) |2 (s)ds

(4’1( + 1) = i(s)) 1
INCEY
o (ot +5) — ga(s))Pm2 !
‘/0 F(IB — '}'2) (PZ(S)dS
1 1 a—
MMwAH”%U+ﬁ@%®)1%@@
/”rll (pa(t+ ) — da(s))P 7271
0 I'(B—"2)
o (pr(t+ 5) — ga(s)* !
+ szli’/O I—'({X—’)/l)
i +1 p-1
/0t+ (P2t + nl)"( : $2(s)) I (s)ds

1

1y a—1
¥ b1b2r/0 » (et "ﬁ(afbl(s)) ¢! (s)ds
[ o)t
0 T(ﬁ)

IN

k+M1M2/O ¢/ (s)ds

¢3(s)ds

¢1(s)ds

P2 (s)ds

(t+ 1) ™ (pa(t+1))f
a—71+1) T(B-—72+1)

)" (<P (t+3)F

) T(B-—m+1)

)

)

AN
=
z
=

)P (pr(t+ )

. b, b
Ta—q+1) 727

2@+ 2% (ot +1))P
Fa+1) ° 1
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by M, rT* A=

T(a+1) T(B=12+1)

biMy rT* P72

TFla+1DI(B—12+1)

- MM, Té M TB=72

- [a—m+1)T(B-712+1)

N byM; rTP T M byby 2T TP

I'(B+1) T(a—y1+1) T(a+1) T(B+1)
at+p—r1—7

< k+ M Mo T L
Fla=1+DI(B—72+1)

n by My rTPHa—m b1by r2Te+h

T(B+1)l(a—y+1)

Also, the sequence is equi-continuous.
Forty, t, € [0, T — %] such that t; < t;, we have

|[xn(t2) — xu(t1)]

+

la(ta) — a(ty)
/tﬁi (1 (2 +
0

0

o

S—

t1+

)

— ¢1(s))* !

Tat+ DTGB+ =

I'(a)
)

— ¢a(s))P!

fi(s, xn(1(s))) @1 (s)ds

/"‘2+31 (9a(t2 +

/t1+1 (¢1(t +

F(13)

f2(s,xu(p2(5))) ¢ (s)ds

"’“ D (s a (91090 5)ds

(o f1+

¢a2(s)P!

la(t2) — ﬂ(fl)

S—

t1+

t2+1

t2+

fa(s,xn(a(s))) @2 (s)ds|

fir(s,xn(1(s))) @1 (s)ds
fz(sf xn(a(s))) P2 (s)ds

fr(s, xu(1(5))) ¢} (s)ds

fz(S/ X (2(5)) )¢ (s)ds

(91(f2 + ¢1(s))"
(92(t2 + <P2( 5)P~
(91 ( f2+ ¢1(s)*!
i (¢2(t2 + <P2( 5)P~
i (g1t + 4)1( D
(92(f1 + ¢a(s))P !

f1(s, xn(1(5))) 1 (s)ds

fa(s, xn(a(s))) @2 (s)ds|



Foundations 2022, 2 171

IN

la(t2) — a(tr)
t+1 1y _ s))a—1
[t O o) o)

/w (a(ta + 1) — ga(s))P !
0

fa(s, 2n(92(5)) )y (s)ds

f1(Sf xn(1(s))) @ (s)ds

/tl+ (¢1( f2+ ¢1( ))E”
0

/t2+ (¢2( t2+ 4’2( s))P~

t1+

i (¢ ( t2+ 4’1( s))*

t1+

Bt (¢ f1+ 4’2( s))P~

fz(sf xn(2(s)))Pa(s)ds

f1(5, xn(P1(s))) @ (s)ds

+
—

fz(S/ X (2(5)) )¢ (s)ds

S—

t a—1
D) O )t ()

|
S—

144 P
hh (o t1+ PN (o, (pa(s)) P s)ds|

S—

< |ﬂ(f2)—ﬂ(f1)
1y _ a—1
+ /Ot (@rlt2 ¥ ) = ¢1(6)" r(ﬂ)@l(tﬁn) P 5 (5,0 (91 (5)) 9 5)ds
bt (¢ fz+ z(S))ﬁ’l

(s, xu(2(5))) ¢ (s)ds

t 1 s a—1 _ 1y _ s a—1
Lt ) - o) r<a>(¢1(tl+”) D" 4, (5004 5

S—

J’_
S—

H+i 4)2 t + (PZ( )) fz(slxn(wz(s)))qbé(s)ds

S—

it (@ tz+ $1(s)* !

fi(s, 2n(1(5))) ¢} (s)ds

J’_
S—

bt (¢ f2+ 4’2( ))f~
1+l

bt (¢ ( f2+ $1(s)) 1
o)

et (ga(hy + 4’2( ))f~

fz(S/ X (2(5)) )¢ (s)ds

—

fr(s, xu(1(5))) ¢} (s)ds

fz(sr xn(a(s))) P2 (s)ds|

S—

< |ﬂ(t2) *ﬂ(t1)|

o et nr }§¢1(t1+ 2 =P 5 1 5))) 9 ()
[ e SO o s

* /OW Ottt ) =IO ) = O )

W (ga(h + ¢2(s))P!

|f2(s, Xn(2(s))) 92 (s)ds

S—
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1

1
|f1(s, xn (1 (s))) @ (5)|ds

hta (it + 1) — ¢a(s))*
< I(@)

/fﬁi (pa(t2+ 1) — ¢a(s))P~

f1+% F(ﬁ)

1
[f2(s, %u(2(s))) 9 (s)ds

1
|f1(s, xu(1(s))) |91 (5)ds

e O

h+i I'(a)

1
[fa(s, %u(2(s))) 9 (s)ds

/fﬁi (pa(t1 + 5) — ¢a(s))P~

0 r'(B)

1
|f(s, 2n (1(5))) 1 (5)ds

n /tt2+31 (p1(t1 4 %) — P1(s))*™

1+i F(‘X)

1
|f2(5, xn (2(5))) 15 (5)ds.

/t2+3' (p2(ts + 3) — ¢(s))P~

fﬁf% F(,B)

Then we obtain

| xn(t2) — xu(t1) | < |a(ta) — a(ty) |
n /'“*}1 [(pr(t2+ L) —pr()¥ T — (pr(ts + ) — 1 (s))* 1]
0 I'(a)
/f1+3« [(@a(t2 + 2) = ¢2(s))P ! = (¢t + 2) — ¢a(s))P ] :
0 r'(B)
[ My T M bl rT%
* [ T(a—y1+1) + I(a+1)
Mo (pa(t1 + 1) = ot + )12 byr (go(t1 4+ 1) — pa(ta + 1))P
I I(B—1+1) I(g+1)
N My (¢1(t+ 1) — i+ 1))e N bir(pr(ti+3) —dr(ta+ 1))*
I F(a—71+1) F(a+1)
[ My (¢a(ti+ 1) — go(ta + 1)) n by r (ga(h + 3) — a2 + )P
I [(B—72+1) r(g+1) |
N My (¢1(t+ 1) —r(ta+ 2))4 n by (¢r(t+ 1) — r(ta+ L)%
I I'(a—y1+1) I(a+1)
(Mo (2(t1 +3) = ¢a(t) + 1)F Lbr (@t 5) — a2 +3)F
F(B—"2+1) r(g+1) '
This implies

lth—t] = 0 = |xu(t2) —xu(t1)] — O

[m1(s) + byr]¢)(s)ds

my(s) + bor]gh(s)ds

and this proves the equi-continuity of the sequence {x,(t)}. Hence, {x,(t)} is a sequence

of equi-continuous and uniformly bounded functions.
By Arzela—Ascoli Theorem [14], then there exists a subsequence {x,, (t)} of continuous

functions which converges uniformly to a continuous function x as k — co.
Now we show that this limit function is the required solution.

From assumptions (ii) and (iii) we have

|fi(s, 2 (1.(5)))| <

lmi(s)| +b;r € LY,

and the functions f;(s, x, (¥i(s))), i = 1,2 are continuous in the second argument,

Le, fi(s, xu (¥i(s))) — fi(s, x(i(s))) as k — co.



Foundations 2022, 2

173

Fors € (0,t)andt € |

(¢1(f+nik)—4>1(5)) > (¢1(t) —1(s)) = (<l>1(t+%{)—%(S))“‘1 < (pa(t) = ¢a(s)* T,
and

(@2t + ) 2(s)) > (@2(t) =¢2(s)) = (Pa(t + ) ¢2(5))P 1 < (¢a(t) — 2(s))P 7,

therefore the sequences {(¢1(f + nik) —¢1(5)* L fils, xn, (1(5)))},

(po(t + nik) —$2(3))P71 fa(s, 2, (¥2(5))), &, B € (0,1] satisfy the Lebesgue domi-
nated convergence theorem [14].

@t ) = a () :
/0 1 T'(«) 1 f1(s, xn(1(s)))py (s)ds

1 1y p-1
[ PO (ga(e)) s

t _ a—1
= [T B o g ())) i 51

t — b (s))P1
[T B g o g5

Similarly we have

x(t) = hm xnk(t) = a(t)

+ / @it f (s, x(¢1(s))) ¢} (s)ds

p-1
e r(";)( D s () g

which proves the existence of a positive solution x € C(J) of the quadratic integral
Equation (2). O

2.2. Existence Results of QFIE (2) via the Fixed Point Theorem

In this subsection, we shall prove another existence result for the functional quadratic
¢— integral of fractional order (2) by applying the Schauder fixed point.

Theorem 2. Let assumptions (i)—(vii) hold. Then the ¢p— fractional-orders quadratic functional
integral Equation (2) has at least one solution x € C(J).

Proof. Fix a number r > 0 and the ball S, in the space C(J) as defined above.
Let T be the operator defined on S, by the formula

) = at+ [ O F"’l(“’ il X1 (5))) 44(5) s
/O (92(t) r(%)( VP s x(a(5))) @h(s) ds, x € 5, t € .

Then, in view of our assumptions, for x € S, and t € | we obtain
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[ Tx(#)]

IN

IN

IN

IN

t _ S a—1
() + [0 rff( D s () 4+ b () 64 5)s
/(<P2() ¢2(s))P~ [
0 T

2(5) + ba|x(y2(s)) 192 (s)ds,

(o >
t — b (s))B1
ato)] + [ @ gt syas [ OB )i 51
(91(t) — (s >> , (@a(t) — 9a(s))P! /
/O 1 F(;) |b1|x(lP1(s))|¢1(s)dS./O 2 F(ﬁz) ma(s) | (s)ds
— S p-1 _ S a—1
[ PO B byt g ). [ LT s )10 )
t _ a—1 . _ B—1
[ ) |b1|x<w1<s>>|¢1<s>ds. /Ot Lad r("g)“” loalx(92(6)) g (s)ds
E(py(t) — )= )it
k+M1Mz/O ! F(w— / ﬁ 72 ¢3(s)ds
t B—72—1
b2M17’/0 (4)2( ) r(i?)( )) |(P£(S)d8/0 ((Pl( )F(;Pl(,jl); r-1 4)3(5)(15
F@u(t) — a(s)* ! F(@a(t) — 9a(s))P
biba 7 | Sl (s)as. || gl (s)ds
(2(0)*" (pa())P7 (@1()* (@a(t)P
e o DT (-2 D) M T DT -2+ 1)
(@2(0)F (ga()*m (@1()" (p2(1))?
ML) Ty D) T T TG+ D)
k+ MiMT* M TB=72 N by M, rTY TB—72
Ma-—m1D) T 1+l T@i) TE— 1 tD)
byM; rTP TN byby r2T* TP
I'(B+1) T(a—y1+1) T(a+1) T(B+1)
. MM, T*HB—11-72 by My rTHA—72
T A DIB -7 +1) T+ DI — 72+ 1)
byMy rTAHe—m byby r2ToHB

r+1r(a—y1+1) Ta+DIr(B+1) =

Hence, in view of the assumption (vii), we have that T transforms the ball S, into itself.
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Now, for t; and t, € I (without loss of generality assume that t; < t; ), we have
[(Tx)(t2) — (Tx)(t1)] = |a(t

— a(t)

)
- a—1
P2 SO s x50k ()

+
o\ﬁ
PG

t — s))P-1
(‘PZ(tZ) r(g?( )) fz(slx(lpz(s)))(pé(s)ds

f _ a—1
(¢1(t1) F(f)l(S)) fi(s, x(91(5))) ¢} (s)ds

|
S— S5

1 - s))f~1
t (‘Pz(h)r(g( ) Fa(s, x(pa(s)))ph(s)ds|
(t

— a(tl)

a—1
umm)()) Fi(s,x(1(5)) ) (5)ds

S—

|
=

— 10
S

+
S—

* (9alta) Z N (o (o)) )

S—

I'(B)
2 _ s a—1
N CICE G SpyRNPRE
tr _ s))A-1
/0 (¢2(t2)r(§§( ) fa(s,x(pa(s)) )¢ (s)ds
1 _ a—1
B ./ot (¢1(t1)r<i>)1(5)) fi(s, x(1(s))) 1 (s)ds

1 — s))p~1
{20 SR s wlya(s)) el
(t

— ﬂ(t1>

a—1
1<f1>w<>> Fi(s, x(1(5)) 4 (5)ds

S—

IN
=

—~ N
<

_|_
S—

f (g (ty) — <P2(s))/3*1f2(slx(lpz(s)))q)&(s)ds

S—

I'(B)
t — S a—1
+ /o (4’1(t1)r(i7)1()) fr(s (@1 (5))) (o)
2 _ p—1
'/tlt (4’2(t1)r(§£§(5)) fo(sx(a(s)))oh(s)ds
2 _ a—1
+ /t]f (¢1(t2)r<f)1(5)) fr(s 2 (1 () (5)ds

t — s))P-1
(4’2(t1)r(§§( ) Fo(s, x(2(3))) P (5)ds

t _ a—1
(%(n)uf)l(s)) Fils, x(91(5)) 94 (s)ds

1 — s))P1
" at) — 0D (o (5)))955)]

S—

|
S~

S—

I (p)
< a(ty) — a(ty)]
f a—1
v (4’1(“)““)()) (s, x(1(5))) |4 (5)dbs

2 — p-1
1t (¢2(t1)r(g§(5)) fa(s, (2 (s))) | (s)ds

—
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ty a—1

+ /t rlt2) F(Z))l(S)) |fi(s, x(¢1(5))) |1 (s)ds
2 _ s))B1

[ 22T (o)) o)

IN
X
—~
~

)
b [ a9 gt )
[ 0O o)l (o)
By o x40 g )
[0t N )l o)

b [ BO o) o 51

-1
fa(s, x(2(s))) ¢ (5)ds

Then we obtain

[(Tx)(t2) — (Tx)(t)] < |a(ta) — a(t1)]
[ M; T¢ ™ byrT*
T(a—71+1) + F'(a+1)
My (¢2(t1) — ¢a(t2))P~ ”+bzf(¢z(f1)—¢2(fz))ﬁ_
F(B—m72+1) r(g+1) ]
My (¢1(t1) — 4’1(&))“7%+b1r(¢1(f1)—4’1(t2))“_
| Fla—m+1) I(a+1) |
[ My (¢2(t1) — ¢a(t))P +bzr(¢2(f1)—¢2(t2))ﬁ'
My (¢ (t
I(
[ M (¢
(

(¢

)
I(p—12+1) r(p+1)
(¢ )

D= @) by @) — u(t2))"]
a—7y+1) I(a+1) |
(¢2(t1) — ¢2(f2))57”+bzf(¢2(f1)—¢2(f2))ﬁ_
T(B—72+1) r(g+1)

Then
| (Tx)(t2) — (Tx)(f1) | — 0 as tp — f.

This means that the functions from TS, are equi-continuous on J. Then, by the Arzela—
Ascoli Theorem [14], the closure of TS, is compact.

It is clear that the set S, is nonempty, bounded, closed and convex.

Assumptions (ii) and (iv) imply that T: S, — C(]) is a continuous operator in x.

Since all conditions of the Schauder fixed-point theorem hold, then T has a fixed point
inS,. O

3. Special Cases and Remarks

In Section 2, we prove an existence result for the functional quadratic ¢— integral equa-
tion of fractional order (2) which in turn gives the existence as well as the existence of many
key integral and functional equations that arise in nonlinear analysis and its applications.
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Corollary 1. Let the assumptions (i)—(vii) be satisfied with 1 = Py =  then there exists at least
one solution for the functional quadratic ¢— integral equation of fractional order

t _ a—1
w0 = o)+ [ PITPEN s x(pie) i) s

t(ga(t) — a(s))P! /
/ ds, t€].
R A x ) gh) ds, e ]
Corollary 2. Let the assumptions (i)—(vii) be satisfied with 1 = P = ¢, ¢1 = ¢ = ¢ and
« = P then there exists at least one solution for the functional quadratic ¢— integral equation of
fractional order

t £) — ¢y (s))* 1 2
w(0) =a) + [ POTBE g x(pie) o) ds) e,
0 I'(a)
Corollary 3. Let the assumptions (i)—(vii) be satisfied with ¢1(t) = ¢o(t) = ¢(t), Pp1(t) =
Yo (t) = t then there exists at least one solution for the functional quadratic ¢— integral equation of
fractional order

a—1

() = a(t)+ / fi(s,x(s)) ¢/ (s) ds

0(

t ﬁ 1
/0 (p(t) T((l!;() s)) fa(s,x(s)) ¢'(s)ds, t € ].

Corollary 4. Let the assumptions (i)—(vii) be satisfied with 1 (t) = ¢a(t) = t"™, m > 0 then there
exists at least one solution for the Erdélyi-Kober functional quadratic equation of fractional order

t(gm _ gmya—1
w0 = a0+ [ A xin(e) me s
m _ om\B—1
[ psxto) e as e ).
Corollary 5. Let the assumptions (i)—(vii) be satisfied with ¢1(t) = ¢o(t) = ", m > 0 and

U1 (F) = o (f) = t then there exists at least one solution for the Erdélyi-Kober functional quadratic
equation of fractional order

t(pm _ gmya—1
x(t) = a(t) —i—/o (tr(z))fl(s,x(s)) ms™ 1 ds
/Ot W;(S[Z;)ﬁl fa(s,x(s)) ms™ds, t €.

Corollary 6. Let the assumptions (i)—(vii) be satisfied with ¢1(t) = ¢a(t) =t, 1 = Yo = ¢ then
there exists at least one solution for the functional quadratic integral equation of fractional order

—s)*! (t—s)P1
o)+ [ Ul At ds. [ ETI sty s re

The same result is obtained in [15].

Corollary 7. Let the assumptions (i)—(vii) be satisfied with ¢ (t) = ¢a(t) = t,P1(t) = Pa(t) =t
then there exists at least one solution for the functional quadratic integral equation of fractional order

E(t—g)a—1 _g)p1
x(t) = a(t) —i—/o (trm))fl(s,x(s)) ds./ (t F(‘[z) fa(s,x(s)) ds, t €.
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The same result is obtained in [7].
Letting «, B — 1, we obtain

Corollary 8. Let the assumptions (i)—(vii) be satisfied with a, p — 1, and P1(t) = Po(t) =t
and letting o, B — 1, then there exists at least one solution for the functional quadratic integral
equation of fractional order

x(t) = a(t) +/0t fi(s,x(s)) ds. /Ot fa(s, x(s)) ds, t €.

The same result is obtained in [13]. When a(t) = 0, f; = f,, we have

Vrlo) = [ fits, ) ds, e .

4. Properties of Solutions

In this section, we give the sufficient conditions for the uniqueness of the solution of
the quadratic integral Equation (2) and study some of its properties.

4.1. Uniqueness of Solutions of QFIE (2)
Let us assume the following assumptions

(i*) a : ] — Ry iscontinuous and sup |a(t)| = k;
te]
@ii*) f1, f» : ] x R — Ry satisfy the Carathéodory condition (i.e., measurable in ¢ for all
x € Rand continuousin x forall t € J).
(iii*) There exist two nonnegative constants A, A, € L' such that

filt,x) = filt,y)| S Ailx—yl, Vx,yeR, te]

(iv*) ¢; : | = ], i = 1,2 are increasing and absolutely continuous.
(v ;] — ], i=1,2 are continuous.

(Vi*) ml(t) = |fl(t10)|/ Vt S ]/ I;gllml S Mi/ i= 1/2v,)/1 S X, Y2 S ﬁ
(vii*) r is a positive solution of the inequality:

MM, T¥HB—11—m2 N by My rTo P72
T+ DI -2 +1) T+ DI —72+1)
by M, rTPTe—m byby r2 TP
rB+1)I(a—71+1) T(a+1I(B+1)

+ <r.

Theorem 3. Let the assumptions (i)—(vii) be satisfied. If

ApAqrTPH2 M A, T
TR+ )Ia+1l)  Ta—m+)TBL1D)
ApA ¢ TP+ MoA T4 HB—72
T+ DI @+1)  T(B—p+Ta+1)

<1,

then the quadratic integral Equation (2) has a unique positive solution x € C(J).
Proof.

fi(t,x) = fi(£,0)] < Ai[x—0]
Ifitt,x)] < |fi(£,0)] + Ailx]
< om(t) + Alx], mi(t) = |fi(t,0)], VX € R, t € ].
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Equation (2) can be written as

x(t) = ﬂ(f)+1$1f1(f/X(¢1(f)))1£2fz(f/x(llJz(f)))
= a(t) + I, I A (L x(p (D) I I ot x(9a(1))), € ). ®)

Define the operator F by:

t _ S a—1
Pl = o)+ [ POZOE i xin(e) gl o

t(ga(t) — ¢a(s))P /
S, X S s)ds, t e ].
R fals xa(s))) dh(s) s e T
The operator F maps C(J)into itself. For this, let t1, t; € J, 1 < tp such that |t —t1]| <
4, then in similar way as before using the condition (vi) and the relation (3), we can
prove that
| (Fx)(t2) — (Fx)(t1) ] — 0 as i, — f.

Which proves that the operator F is continuous.
Now, we will prove that F is a contraction. Let x, y € C(]), then we have

t _ S a—1
et = pyn) = | [ POZIE 5ty 9) g1 5)

[ O B g gt ghis) s

_ S a—1
- [T sy e) (o) as

t _ B—1
[T B sy ga(s)) () s

o a—1
b [POZ O oy (9)) 91 5)

/t (¢2(t) — pa(s))P!
0 I'(B)

t _ a—1
- OO s (0) i) s

/t (¢a(t) — ¢a(s))F !
0 r(B)

t _ S a—1
[T B s g 9))] i)

f2(s,y(92(s))) ¢5(s) ds

f2(5,y(2(s))) ¢a(s) ds|

IN

-t _ p-1
[0 r(qg)(s” fals, x(2())) — fals, y(92(s))] @h(s) ds
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Then

where

+

IN

IN

IN

IN

IN

ot o a—1
[ r(?;”) 15 x($1(5)) — fils,y(91(5))] @i (s) ds

0

' (ga(t) — ¢a(s)P! ,
L s 2] 9i(s) ds

t _ S a—1
o [ PP s s (9))] 44 ) s

_ -1
[ OB faa(e) — ()] g565) s
_ S a—1
[ PP a1 (6)) — yn (6)) 94) s

t _ -1
[ OB 1 a9 ) s

_ a—1
ol =il [ POZOE s g 0)] 0) as

t — ¢ (s))B1
[

t _ a—1
mllr =yl [ POZBE i) o

_ o (s))B-1
[ OB s a9 45) s

Aallx =yl 7 (@1(8) — g (s))*~ /
T b e Al R g1 ds

_ t _ -1

A11|(|;+ 1y)|| 0 — r((lﬁ)%z)(sw3 |fa(s,y(2(s)))| ¢2(s) ds
MTP|lx —y|| [ T*Arr M T* M

rgp+1) {F(oc +1)  T(a—71+ 1)]
MT*|x —y| { M,TE—7 A TPy ]

Fla+1) [T(B—72+1) T(B+1)

Ao Aqr TP+ MiA TN

{F(ﬁ Tt Ta—m+ DB+l

ApAqrThHe MpA  TeHB—72
D T e D) Y

[Fx(t) = Fy()] < Allx —yll, A€ (0,1),

A AgAyrTHH® LM Ay Té+HB—
CTB+DM(e+1)  T(a—y+DT(B+1)
ApAqrTBHe MoAToHB—2

T+ @+1)  T(F—m+(atl)

Then F is a contraction. Therefore, by the Banach contraction fixed point Theorem [8],
the operator F has a unique fixed point x € C(]) (i.e., the quadratic integral Equation (2)
has a unique solution x € C(J)). which completes the proof. [
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4.2. Maximal and Minimal Solutions

Definition 2 ([16]). Let q(t) be a solution x(t) of (2) Then q(t) is said to be a maximal solution
of (2) if every solution of (2) on ] satisfies the inequality x(t) < q(t), t € J. A minimal solution
s(t) can be defined in a similar way by reversing the above inequality, i.e., x(t) > s(t), t € J.

We need the following lemma to prove the existence of maximal and minimal solutions

of (2).

Lemma 1. Let fi(t,x), i = 1,2 satisfy the assumptions in Theorem 2 and let x(t), y(t) be
continuous functions on | satisfying

=
—~

—
~—

AN

a(t) + I fu(tx(91(6)) I ot x(42(1)))
a(t) + I fi(by(pi (1) 15 ot y(a(t)))

<
—~
~
~—
v

where one of them is strict.
Suppose fi(t, x) is a nondecreasing function in x. Then

x(t) < y(t), te] )
Proof. Let the conclusion (4) be false; then there exists t; such that

x(t) = y(h), H >0

and
x(t) < y(t), 0 <t <t

From the monotonicity of the function f; in x, we obtain

x(t) < alh) + I Al x(i(h) I At x(ga(h)))

< a(t) + I§ At x(gi(h) Iy falt, x(9a(t)))
< y(t).

This contradicts the fact that x(t;) = y(t1);then
x(t) < y(t), te].
O

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Furthermore, if f;, i = 1,2 isa
nondecreasing function in x, then there exist maximal and minimal solutions of (2).

Proof. Firstly, we shall prove the existence of the maximal solution of (2). Let € > 0 be true.
Now consider the fractional-order quadratic functional integral equation

_ S a—1
() = uw+£“%”rﬁﬁ” fie (s, % (1 (5))) ¢4 (5) ds

t — p-1
/O (¢2(t) F(GZZ)(S)) Fo. (5, xe(2(s))) h(s) ds, t € ], )

where
fitt,xe(pi (1)) = filt,xe(pi(t))) + €, i=1,2.

Clearly the functions f;_(t,x¢), i = 1,2 satisfy assumptions (ii), (iv) and

| fi.(txe) | < mi(t) + € + by |x| = mi(t) + b x|
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Therefore, the quadratic integral Equation (5) has a continuous solution x. (¢) according
to Theorem 2.
Let ¢ and e be such that 0 < €5 < €1 < €. Then

xe (1) = alt) + I fi,, (b xe, (01(0) 15, fo,, (b xe, (92(1)),

X () = aw+$J@@mwmtﬂimﬂxdwm»

) + Lo, (fi(t xe (91(2) +€1) , (2t xe, ($2(1))) +€1),

) + Lo, (fa(t, xe, (1 () +€2) , (fa(t xe (¥2(t))) +€2),  (6)
w+%mwmwm>+@w£mumwmm+q» @
Applying Lemma 1, (6) and (7) then we obtain

)
)
)
)

Xe,(t) = a(t

Xe,(t) < xe(t)  forte J.

As shown before in the proof of Theorem 1, the family of functions x.(t) defined by

(5) is uniformly bounded and of equi-continuous functions. Hence by the Arzela—Ascoli

Theorem, there exists a decreasing sequence €, such that €, — 0 as n — oo, and liﬁm Xe, (t)
n—oo

exists uniformly in J. We denote this limit by g(t). From the continuity of the functions fj ¢,
and f, ¢, in the second argument, we obtain

a() = Tim xe, () = a(t) + I filta(pr (D) I, falt, q(92(1)))

which proves that g(t) is a solution of (2).
Finally, we shall show that q(t) is maximal solution of (2). To do this, let x(¢) be any
solution of (1). Then

xe(t) = a(t) + 1§ At xe(1(£)) I, fo. (b xe(a(1)))
> a(t) + I filtxe(i(8) I, falt, xe(2(t)))
x(t) = a(t) + I Al X)) I, fatx(ya(1)))
Applying Lemma 1, we obtain
xe(t) > x(t) fort € .

From the uniqueness of the maximal solution (see [16,17]), it is clear that x.(t) tends
to q(t) uniformly int € J as € — 0.
In a similar way we can prove that there exists a minimal solution of (2). [

5. Conclusions

Fractional integral differential equations have been studied in many studies and
monographs (see [18-21]). Especially quadratic integral equations of fractional order, for
example [7,10,15,18,20].

In this work, we discussed a ¢— fractional order quadratic integral equation. Some
exiting results were established by constructing an iterative scheme in aim of proving the
analogous result for the Carathéodory theorem [14], and by applying Banach contraction
mapping to demonstrate the existence of the unique solution of that equation. Furthermore,
the existence of maximal and minimal solutions of the ¢— fractional order quadratic integral
equation is proved.
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