A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning
Abstract
:1. Introduction
1.1. Outline of the Review Scope
- Identification of the scope of existing voxel model applications in the context of CAD and linked fields, based on existing interdisciplinary approaches and categorization of the identified approaches based on the dominant sub-discipline related to the interdisciplinary field of CAD;
- Analysis of each identified category to identify the existing discipline-specific applications of voxel models that can offer a key utility to the field of knowledge-based computational methods and tools in architecture and urban planning;
- Discussion of novel approaches to voxel models as spatial-knowledge-representation schemata in the context of computational architectural design and urban planning;
- Identification of further research questions based on the outcomes of the semi-systematic literature review.
1.2. Emergence of the “Voxel” Term
1.3. Contemporary Voxel Applications in the CAD Field
1.4. Identification of Key Parameters and Suitable Review Methodology
1.5. Outline of the Review Scope
2. Materials and Methods
2.1. Data Source Description
2.2. Narrative Review Methodology
2.3. Scoping Review Methodology
2.3.1. General Description of the Method Implementation
2.3.2. Description of the AL-Based Classification Component
2.3.3. Description of the Reviewer Evaluation Component
2.3.4. Integrating Results of the AL-Based Screening with the Keyword Co-Occurrence Analysis
2.3.5. Evaluation Metrics and Manual Validation of the AL Component
3. Results
3.1. Results of the Keyword Co-Occurrence Network Analysis
3.2. First Cluster—Intersections between CAD and Computer Graphics
3.3. Second Cluster—Intersections among CAD, Computer Vision, and Urban Planning
3.4. Third Cluster—Intersections among CAD, Geomatics, and Architectural and Spatial Planning
3.5. Fourth Cluster—Intersections among CAD, Materials Science, and Geosciences
3.6. Fifth Cluster—Intersections between CAD and Computer-Aided Manufacturing
4. Discussion
- A useful starting point for developing novel applications of voxel models is the observation that the widely adopted definition of a voxel model as “the 3D conceptual counterpart of a 2D pixel in an image” [21] should be seen in its original context and be complemented with the definition of a voxel model as “spatial-knowledge representation schemata” [4].
- Various applications of voxel models in architectural design developed over time, shifting from human–computer interaction studies towards computational experiments that reflect the generative dynamics of natural systems.
- The growing availability of high-resolution, 3D data capturing urban scenes and large territories has been instrumentalized in spatial planning, where voxel models are used to integrate and enrich the raw data with the outcomes of analysis and simulation.
- In various disciplines, spatio-temporal dynamics of the natural and man-made environment are studied using voxel-based methods. Design approaches addressing the challenges of climate change and sustainable development can benefit from the application of identified voxel-based approaches.
- Applications of voxel models addressing all architectural project phases have been identified. In urban planning projects, identified applications of voxel models are covering initial design phases.
4.1. Existing Voxel Model Defintitions and Their Relevance for Future Research
4.2. Existing Voxel Model Applications in Computer-Aided-Design Studies
4.3. Existing Voxel-Model Applications in Spatial-Planning Studies
4.4. Existing Voxel-Model Applications from the Interdisciplinary Perspective
4.5. Distribution of the Identified Voxel-Model Applications across AiA Project Phases
4.6. Summary of New Questions and Possible New Research Steps
- Focus needs to be placed on the investigation of the possible convergence of user-centered and data-driven, multi-temporal, voxel-based design processes in the context of architectural design. This includes the role of affordances and spatial conflicts and ways of expressing them in a voxelized design space, incorporating stakeholder interactions.
- A second line of inquiry needs to focus on the integration of data-driven, voxel-modeling approaches that incorporate physical-environment constraints into architectural-design process. This can serve to underpin the development and dissemination of expert knowledge related to the data-driven voxel-modeling approaches in architectural design.
- Further focus needs to be placed on the promotion of interdisciplinary collaboration between the disciplines of architectural design, spatial planning, earth sciences and ecology, through the development of interoperable voxel-modeling approaches and the instrumentalization of disciplinary datasets ranging in scale and resolution.
- Finally, it will be useful to undertake systematic studies of voxel-modeling approaches in architectural design and urban planning, addressing each of the AiA Project Phases and possible innovations emerging from the application of identified methods in different project phases or design activities.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lalit Narayan, K.; Mallikarjuna Rao, K.; Sarcar, M.M.M. Computer Aided Design and Manufacturing, 2nd ed.; PHI, Ed.; Private Limited: Delhi, India, 2013. [Google Scholar]
- Granholm, J.W.; Robertson, D.D.; Walker, P.S.; Nelson, P.C. Computer design of custom femoral stem prostheses. IEEE Comput. Graph. Appl. 1987, 7, 26–35. [Google Scholar] [CrossRef]
- Jense, G.J. Voxel-based methods for CAD. Comput.-Aided Des. 1989, 21, 528–533. [Google Scholar] [CrossRef]
- Srihari, S.N. Representation of three-dimensional digital images. ACM Comput. Surv. 1981, 13, 399–424. [Google Scholar] [CrossRef]
- Schillinger, D.; Ruess, M. The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch. Comput. Methods Eng. 2015, 22, 391–455. [Google Scholar] [CrossRef]
- Momeni, F.; Mehdi Hassani, N.S.M.; Liu, X.; Ni, J.X. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Bacciaglia, A.; Ceruti, A.; Liverani, A. A systematic review of voxelization method in additive manufacturing. Mech. Ind. 2019, 20, 630. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Tong, X.; Stilla, U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Autom. Constr. 2021, 126, 103675. [Google Scholar] [CrossRef]
- Olpenda, A.; Stereńczak, K.; Będkowski, K. Modeling solar radiation in the forest using remote sensing data: A review of approaches and opportunities. Remote Sens. 2018, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Bakx, T.R.M.; Koma, Z.; Seijmonsbergen, A.C.; Kissling, W.D. Use and categorization of Light Detection and Ranging vegetation metrics in avian diversity and species distribution research. Divers. Distrib. 2019, 25, 1045–1059. [Google Scholar] [CrossRef] [Green Version]
- Hensel, M.U. Sustainability from a Performance-Oriented Architecture Perspective—Alternative Approaches to Questions Regarding the Sustainability of the Built Environment. Sustain. Dev. 2012, 20, 146–154. [Google Scholar] [CrossRef]
- Hensel, M. Sustainability and Complexity. In Transforming Built Environments: Addressing Resource Awareness in Architectural Design Pedagogy; Auer, T., Santucci, D., Eds.; Technical University Munich: Munich, Germany, 2019; pp. 176–181. ISBN 978-3-941370-83-8. [Google Scholar]
- Greenleaf, J.F.; Tu, J.S.; Wood, E.H. Computer generated three-dimensional oscilloscopic images and associated techniques for display and study of the spatial distribution of pulmonary blood flow. IEEE Trans. Nucl. Sci. 1970, 17, 353–359. [Google Scholar] [CrossRef]
- Artzy, E.; Frieder, G.; Herman, G.T. The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. In Proceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques, Seattle, WA, USA, 14–18 July 1980; Association for Computing Machinery: New York, NY, USA, 1980; pp. 2–9. [Google Scholar] [CrossRef]
- Drebin, R.A.; Carpenter, L.; Hanrahan, P. Volume rendering. SIGGRAPH 1988, 22, 65–74. [Google Scholar] [CrossRef]
- Morgenthaler, D.G. Three-Dimensional Digital Topology; Defense Technical Information Center: Fort Belvoir, VA, USA, 1980. [Google Scholar] [CrossRef]
- Rosenfeld, A. Three-dimensional digital topology. Inf. Control 1981, 50, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, A.; Shimony, E. 3d scan-conversion algorithms for voxel-based graphics. In Proceedings of the 1986 Workshop on Interactive 3D Graphics; Association for Computing Machinery: Chapel Hill, NC, USA, 1987; pp. 45–75. [Google Scholar] [CrossRef]
- Kaufman, A.; Bakalash, R. Memory and processing architecture for 3D voxel-based imagery. IEEE Comput. Grap. Appl. 1988, 8, 10–23. [Google Scholar] [CrossRef]
- Pfister, H.; Kaufman, A. Cube-4-a scalable architecture for real-time volume rendering. In Proceedings of the 1996 Symposium on Volume Visualization, San Francisco, CA, USA, 29 October 1996; pp. 47–54. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, A.; Cohen, D.; Yagel, R. Volume graphics. Computer 1993, 26, 51–64. [Google Scholar] [CrossRef]
- Huijsmans, D.P.; Jense, G.J. Representation of 3D objects, reconstructed from series of parallel 2D slices. In Theoretical Foundations of Computer Graphics and CAD; Earnshaw, R.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 1031–1038. [Google Scholar]
- Hughes, J.F. Computer Graphics: Principles and Practice, 2nd ed.; Addison-Wesley: Upper Saddle River, NJ, USA, 1990. [Google Scholar]
- Hughes, J.F. Computer Graphics: Principles and Practice, 3rd ed.; Addison-Wesley: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Galton, A. Spatial and temporal knowledge representation. Earth Sci. Inform. 2009, 2, 169–187. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Paré, G.; Kitsiou, S. Methods for Literature Reviews. Handbook of Ehealth Evaluation: An Evidence-Based Approach; University of Victoria: Victoria, BC, Canada, 2017. [Google Scholar]
- Ullah, F. A beginner’s guide to developing review-based conceptual frameworks in the built environment. Architecture 2021, 1, 5–24. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Feizizadeh, B.; Ghamari, H. Three decades of research on smart cities: Mapping knowledge structure and trends. Sustainability 2021, 13, 7140. [Google Scholar] [CrossRef]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric analysis on smart cities research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef] [Green Version]
- Shahatha Al-Mashhadani, A.F.; Qureshi, M.I.; Hishan, S.S.; Md Saad, M.S.; Vaicondam, Y.; Khan, N. Towards the development of digital manufacturing ecosystems for sustainable performance: Learning from the past two decades of research. Energies 2021, 14, 2945. [Google Scholar] [CrossRef]
- Sharifi, A. Urban sustainability assessment: An overview and bibliometric analysis. Ecol. Indic. 2021, 121, 107102. [Google Scholar] [CrossRef]
- García-León, R.A.; Gómez-Camperos, J.A.; Jaramillo, H.Y. Scientometric review of trends on the mechanical properties of additive manufacturing and 3D printing. J. Mater. Eng. Perform. 2021, 30, 4724–4734. [Google Scholar] [CrossRef]
- Makabate, C.T.; Musonda, I.; Okoro, C.S.; Chileshe, N. Scientometric analysis of BIM adoption by SMEs in the architecture, construction and engineering sector. Eng. Constr. Archit. Manag. 2022, 29, 179–203. [Google Scholar] [CrossRef]
- Echchakoui, S. Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. J. Mark. Anal. 2020, 8, 165–184. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, S.; Erbis, S.; Isaacs, J.A.; Kamarthi, S. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PLoS ONE 2017, 12, e0172778. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the research trends by co-word analysis based on keywords from funded project. Procedia Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Westgate, M.J. Revtools: An R package to support article screening for evidence synthesis. Res. Synth. Methods 2019, 10, 606–614. [Google Scholar] [CrossRef]
- Van de Schoot, R.; De Bruin, J.; Schram, R.; Zahedi, P.; De Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands, G.; et al. ASReview: Active learning for systematic reviews. Zenodo 2021. [Google Scholar] [CrossRef]
- Syed, S.; Spruit, M. Full-text or abstract? Examining Topic Coherence Scores Using Latent Dirichlet Allocation. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017; pp. 165–174. [Google Scholar] [CrossRef]
- Knoth, P.; Zdrahal, Z. CORE: Three access levels to underpin open access. D-Lib Mag. 2012, 18, 1–13. [Google Scholar] [CrossRef]
- Rathbone, J.; Carter, M.; Hoffmann, T.; Glasziou, P. Better duplicate detection for systematic reviewers: Evaluation of systematic review Assistant-deduplication module. Syst. Rev. 2015, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Hong Kong, China, 2019; pp. 3613–3618. [Google Scholar] [CrossRef]
- Cohn, D.; Atlas, L.; Ladner, R. Improving generalization with active learning. Mach. Learn. 1994, 15, 201–221. [Google Scholar] [CrossRef] [Green Version]
- Rehurek, R.; Sojka, P. Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 45–50. [Google Scholar]
- McCallum, A.K. Mallet: A Machine Learning for Language Toolkit. 2002. Available online: http://mallet.cs.umass.edu (accessed on 26 June 2012).
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 3 June 2020; pp. 38–45. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Honnibal, M.; Montani, I.; Van Landeghem, S.; Boyd, A. spaCy: Industrial-Strength Natural Language Processing in Python. 2020. Available online: https://spacy.io/ (accessed on 20 March 2023). [CrossRef]
- Liu, X.; Xie, N.; Tang, K.; Jia, J. Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graph. Model. 2016, 88, 40–56. [Google Scholar] [CrossRef]
- Andres, J.M.; Davis, M.; Fujiwara, K.; Anderson, J.C.; Fang, T.; Nedbal, M. A geospatially enabled, PC-based, software to fuse and interactively visualize large 4D/5D data sets. Oceans 2009, 2009, 1–9. [Google Scholar] [CrossRef]
- Strehlke, K. xWORLDS, the implementation of a three-dimensional collaborative sketch tool within the context of a third year design course. In Proceedings of the International Conference on Generative Art; Domus Argenia Publisher: Milan, Italy, 1999; p. 115. [Google Scholar]
- De Vries, B.; Achten, H.H. DDDoolz: Designing with modular masses. Des. Stud. 2002, 23, 515–531. [Google Scholar] [CrossRef]
- Savov, A.; Tessmann, O. Introduction to playable voxel-shape grammars. In ACADIA Proceedings: DISCIPLINES & DISRUPTION, Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Cambridge, MA, USA, 2–4 November 2017; ACADIA: Bar Harbor, ME, USA, 2017; pp. 534–543. ISBN 978-0-692-96506-1. [Google Scholar]
- De Klerk, R.; Duarte, A.M.; Medeiros, D.P.; Duarte, J.P.; Jorge, J.; Lopes, D.S. Usability studies on building early stage architectural models in virtual reality. Autom. Constr. 2019, 103, 104–116. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hu, M.-C.; Chu, W.-T.; Chen, J.-C. A real-time sculpting and terrain generation system for interactive content creation. IEEE Access 2021, 9, 114914–114928. [Google Scholar] [CrossRef]
- Fischer, T.; Burry, M.C.; Frazer, J. Triangulation of generative form for parametric design and rapid prototyping. In 21th eCAADe Digital Design Conference Proceedings; eCAADe: Graz, Austria, 2003; pp. 441–448. [Google Scholar]
- Erioli, A.Z. Emergent Reefs, ACADIA 12, Synthetic Digital Ecologies. In Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), San Francisco, CA, USA, 18–21 October 2012; ACADIA: Bar Harbor, ME, USA, 2012; pp. 139–148, ISBN 978-1-62407-267-3. [Google Scholar]
- Susaki, J.; Kubota, S. Automatic assessment of green space ratio in urban areas from mobile scanning data. Remote Sens. 2017, 9, 215. [Google Scholar] [CrossRef] [Green Version]
- Wakita, T.; Susaki, J. Multi-scale based extracion of vegetation from terrestrial LiDAR data for assessing local landscape. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, W4, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Hancock, S.; Casalegno, S.; Griffiths, A.; Griffiths, D.; Sargent, F.; McCallum, J.; Cox, D.; Gaston, K.J. Visualising the urban green volume: Exploring LiDAR voxels with tangible technologies and virtual models. Landsc. Urban Plan. 2018, 178, 248–260. [Google Scholar] [CrossRef]
- Schmohl, S.; Kölle, M.; Frolow, R.; Soergel, U. Towards urban tree recognition in airborne point clouds with deep 3D single-shot detectors. In Pattern Recognition. ICPR International Workshops and Challenges; Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 521–535. [Google Scholar] [CrossRef]
- Guan, H.; Yu, Y.; Yan, W.; Li, D.; Li, J. 3D-CNN based tree species classification using mobile LiDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, W13, 989–993. [Google Scholar] [CrossRef] [Green Version]
- Vonderach, C.; Vögtle, T.; Adler, P.; Norra, S. Terrestrial laser scanning for estimating urban tree volume and carbon content. Int. J. Remote Sens. 2012, 33, 6652–6667. [Google Scholar] [CrossRef]
- Fisher-Gewirtzman, D.; Natapov, A. Different approaches of visibility analyses applied on hilly urban environment. Surv. Rev. 2014, 46, 366–382. [Google Scholar] [CrossRef]
- Morello, E.; Ratti, C. A digital image of the city: 3D isovists in Lynch’s urban analysis. Environ. Plan. B Plan. Des. 2009, 36, 837–853. [Google Scholar] [CrossRef] [Green Version]
- Asmar, K.E.S.; Sareen, H. Machinic Interpolations: A GAN Pipeline for Integrating Lateral Thinking in Computational Tools of Architecture. In Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics, Online, 18–20 November 2020; pp. 60–66. [Google Scholar]
- Cubukcuoglu, C.; Nourian, P.; Tasgetiren, M.F.; Sariyildiz, I.S.; Azadi, S. Hospital layout design renovation as a Quadratic Assignment Problem with geodesic distances. J. Build. Eng. 2021, 44, 102952. [Google Scholar] [CrossRef]
- Gorte, B.; Aleksandrov, M.; Zlatanova, S. Towards egress modelling in voxel building models. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, W9, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.; Breslav, S.; Khan, A. Towards voxel-based algorithms for building performance simulation. In Proceedings of the IBPSA-Canada eSim Conference, Ottawa, ON, Canada, 7 May 2014; pp. 887–900. [Google Scholar]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Model-based detection of progress using D4AR models generated by daily site photologs and building information models. In Proceedings of the EG-ICE 2010—17th International Workshop on Intelligent Computing in Engineering, Nottingham, UK, 30 June–2 July 2010; Tizani, W., Ed.; [Google Scholar]
- Scherer, R.J.; Trung Luu, N.; Katranuschkov, P.; Spieckermann, S.; Habenicht, I.; Protopsaltis, B.; Pappou, T. Towards a multimodel approach for simulation of crowd behaviour under fire and toxic gas expansion in buildings. Winter Simul. Conf. 2018, 2018, 3965–3976. [Google Scholar] [CrossRef]
- Wang, Q.; Zuo, W.; Guo, Z.; Li, Q.; Mei, T.; Qiao, S. BIM voxelization method supporting cell-based creation of a path-planning environment. J. Constr. Eng. Manag. 2020, 146, 04020080. [Google Scholar] [CrossRef]
- Deidda, M.; Pala, A.; Sanna, G. Modelling a cell tower using SFM: Automated detection of structural elements from skeleton extraction on a point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII–B2, 399–406. [Google Scholar] [CrossRef]
- Liu, X.; He, C.; Zhao, H.; Jia, J.; Liu, C. ExteriorTag: Automatic semantic annotation of BIM building exterior via voxel index analysis. IEEE Comput. Graph. Appl. 2021, 41, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cho, Y.K.; Kim, K. Region Proposal Mechanism for Building Element Recognition for Advanced Scan-to-BIM Process; Construction Research Congress; American Society of Civil Engineers: New Orleans, LA, USA, 2018; pp. 221–231. [Google Scholar] [CrossRef]
- Hübner, P.; Weinmann, M.; Wursthorn, S.; Hinz, S. Automatic voxel-based 3D indoor reconstruction and room partitioning from triangle meshes. ISPRS J. Photogramm. Remote Sens. 2021, 181, 254–278. [Google Scholar] [CrossRef]
- Previtali, M.; Díaz-Vilariño, L.; Scaioni, M. Towards automatic reconstruction of indoor scenes from incomplete point clouds: Door and window detection and regularization. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Truong-Hong, L.; Laefer, D.F.; Hinks, T.; Carr, H. Flying voxel method with Delaunay triangulation criterion for façade/feature detection for computation. J. Comput. Civ. Eng. 2012, 26, 691–707. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yi, J.S.K.; Kahoush, M.; Cho, E.S.; Cho, Y.K. Point cloud scene completion of obstructed building facades with generative adversarial inpainting. Sensors 2020, 20, 5029. [Google Scholar] [CrossRef]
- Thariyan, E.B.; Beorkrem, C.; Ellinger, J. Buildable performance envelopes: Optimizing sustainable design in a pre-design phase. In Proceedings of the DISCIPLINES & DISRUPTION 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Cambridge, MA, USA, 2 November 2017; pp. 610–619. [Google Scholar]
- Bremer, M.; Mayr, A.; Wichmann, V.; Schmidtner, K.; Rutzinger, M. A new multi-scale 3D-GIS-approach for the assessment and dissemination of solar income of digital city models. Comput. Environ. Urban Syst. 2016, 57, 144–154. [Google Scholar] [CrossRef]
- Heo, H.K.; Lee, D.K.; Park, C.Y.; Kim, H.G. Sky view factor calculation in complex urban geometry with terrestrial LiDAR. Phys. Geogr. 2021, 42, 374–394. [Google Scholar] [CrossRef]
- Karssenberg, D.; De Jong, K. Dynamic environmental modelling in GIS: 1. Modelling in three spatial dimensions. Int. J. Geogr. Inf. Sci. 2005, 19, 559–579. [Google Scholar] [CrossRef] [Green Version]
- Gebbert, S.; Pebesma, E. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 2014, 53, 1–12. [Google Scholar] [CrossRef]
- Sahlin, J.; Mostafavi, M.A.; Forest, A.; Babin, M.; Lansard, B. 3D geospatial modelling and visualization for marine environment: Study of the marine pelagic ecosystem of the south-eastern Beaufort Sea, Canadian Arctic. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII–4/C26, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Orengo, H.A. Combining terrestrial stereophotogrammetry, DGPS and GIS-based 3D voxel modelling in the volumetric recording of archaeological features. ISPRS J. Photogramm. Remote Sens. 2013, 76, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.R.; Poulsen, S.E.; Pagola, M.A.; Medhus, A.B. Geophysical mapping and 3D geological modelling to support urban planning: A case study from Vejle, Denmark. J. Appl. Geophys. 2020, 180, 104130. [Google Scholar] [CrossRef]
- Nolde, M.; Schwanebeck, M.; Dethlefsen, F.; Duttmann, R.; Dahmke, A. Utilization of a 3D webGIS to support spatial planning regarding underground energy storage in the context of the German energy system transition at the example of the federal state of Schleswig–Holstein. Environ. Earth Sci. 2016, 75, 1284. [Google Scholar] [CrossRef]
- Jjumba, A.; Dragićević, S. Towards a voxel-based geographic automata for the simulation of geospatial processes. ISPRS J. Photogramm. Remote Sens. 2016, 117, 206–216. [Google Scholar] [CrossRef]
- Jjumba, A.; Dragicevic, S. Integrating GIS-based geo-atom theory and voxel automata to simulate the dispersal of airborne pollutants. Trans. GIS 2015, 19, 582–603. [Google Scholar] [CrossRef]
- Jjumba, A.; Dragicevic, S. A development of spatiotemporal queries to analyze the simulation outcomes from a voxel automata model. Earth Sci. Inform. 2016, 9, 343–353. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.E.; Li, H.; Trinder, J. Spatial compactness metrics and Constrained voxel Automata development for analyzing 3D densification and applying to point clouds: A synthetic review. Autom. Constr. 2018, 96, 236–249. [Google Scholar] [CrossRef]
- Graciano, A.; Rueda, A.J.; Feito, F.R. A formal framework for the representation of stack-based terrains. Int. J. Geogr. Inf. Sci. 2018, 32, 1999–2022. [Google Scholar] [CrossRef]
- Nonogaki, S.; Masumoto, S.; Nemoto, T.; Nakazawa, T. Voxel modeling of geotechnical characteristics in an urban area by natural neighbor interpolation using a large number of borehole logs. Earth Sci. Inform. 2021, 14, 871–882. [Google Scholar] [CrossRef]
- Shoaib Khan, M.; Kim, J.; Park, S.; Lee, S.; Seo, J. Methodology for voxel-based earthwork modeling. J. Constr. Eng. Manag. 2021, 147, 04021111. [Google Scholar] [CrossRef]
- Starek, M.J.; Mitasova, H.; Wegmann, K.W.; Lyons, N. Space-time cube representation of stream bank evolution mapped by terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1369–1373. [Google Scholar] [CrossRef]
- Mitasova, H.; Harmon, R.S.; Weaver, K.J.; Lyons, N.J.; Overton, M.F. Scientific visualization of landscapes and landforms. Geomorphology 2012, 137, 122–137. [Google Scholar] [CrossRef]
- Ishutov, S.; Hasiuk, F.J.; Harding, C.; Gray, J.N. 3D printing sandstone porosity models. Interpretation 2015, 3, SX49–SX61. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Tighe, M.K.; Flavel, R.J.; Kaiser, B.N.; Guppy, C.N.; Zhang, X.; Young, I.M. Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics. New Phytol. 2018, 219, 542–550. [Google Scholar] [CrossRef]
- Teramoto, S.; Tanabata, T.; Uga, Y. RSAtrace3D: Robust vectorization software for measuring monocot root system architecture. BMC Plant Biol. 2021, 21, 398. [Google Scholar] [CrossRef]
- SenGupta, A.; Wang, Y.; Meira Neto, A.A.M.; Matos, K.A.; Dontsova, K.; Root, R.; Neilson, J.W.; Maier, R.M.; Chorover, J.; Troch, P.A. Soil lysimeter excavation for coupled hydrological, geochemical, and microbiological investigations. J. Vis. Exp. Jove 2016, 115, e54536. [Google Scholar] [CrossRef]
- Sasaki, T.; Imanishi, J.; Fukui, W.; Morimoto, Y. Fine-scale characterization of bird habitat using airborne LiDAR in an urban park in Japan. Urban For. Urban Green. 2016, 17, 16–22. [Google Scholar] [CrossRef]
- Loraamm, R.; Downs, J.; Anderson, J.; Lamb, D.S. PySTPrism: Tools for voxel-based space–time prisms. SoftwareX 2020, 12, 100499. [Google Scholar] [CrossRef]
- Downs, J.A.; Horner, M.W.; Hyzer, G.; Lamb, D.; Loraamm, R. Voxel-based probabilistic space-time prisms for analysing animal movements and habitat use. Int. J. Geogr. Inf. Sci. 2014, 28, 875–890. [Google Scholar] [CrossRef]
- Loraamm, R.W.; Goodenough, K.S.; Burch, C.; Davenport, L.C.; Haugaasen, T. A time-geographic approach to identifying daily habitat use patterns for Amazonian Black Skimmers. Appl. Geogr. 2020, 118, 102189. [Google Scholar] [CrossRef]
- Peddireddy, D.; Fu, X.; Wang, H.; Joung, B.G.; Aggarwal, V.; Sutherland, J.W.; Byung-Guk Jun, M. Deep learning based approach for identifying conventional machining processes from CAD Data. Procedia Manuf. 2020, 48, 915–925. [Google Scholar] [CrossRef]
- Yousefian, O.; Tarbutton, J.A. Prediction of cutting force in 3-axis CNC milling machines based on voxelization framework for digital manufacturing. Procedia Manuf. 2015, 1, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Quan, L.; Tang, K. A prediction method based on the voxel model and the finite cell method for cutting force-induced deformation in the five-axis milling process. Comput. Methods Appl. Mech. Eng. 2020, 367, 113110. [Google Scholar] [CrossRef]
- Kukreja, A.; Dhanda, M.; Pande, S. Efficient toolpath planning for voxel-based CNC rough machining. Comput.-Aided Des. Appl. 2020, 18, 285–296. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Lyu, M.; Lin, W. Shape deviation generator—A convolution framework for learning and predicting 3-D printing shape accuracy. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Greminger, M. Generative Adversarial Networks with Synthetic Training Data for Enforcing Manufacturing Constraints on Topology Optimization. In Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 11A: 46th Design Automation Conference (DAC), Online, 17–19 August 2020. [Google Scholar] [CrossRef]
- Chi, J.; Zocca, A.; Agea-Blanco, B.; Melcher, J.; Sparenberg, M.; Günster, J. 3D printing of self-organizing structural elements for advanced functional structures. Adv. Mater. Technol. 2018, 3, 1800003. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Yvonnet, J.; Bornert, M.; Chateau, C.; Bilteryst, F.; Steib, E. Large-scale simulations of quasi-brittle microcracking in realistic highly heterogeneous microstructures obtained from micro CT imaging. Extrem. Mech. Lett. 2017, 17, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Taraben, J.; Morgenthal, G. Methods for the automated assignment and comparison of building damage geometries. Adv. Eng. Inform. 2021, 47, 101186. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Yang, G.; Chang, Y.; Liu, Z.; Jiang, B.; Xiaol, J. Deep Neural Network based Visual Inspection with 3D Metric Measurement of Concrete Defects using Wall-climbing Robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 2849–2854. [Google Scholar] [CrossRef]
- Li, H.; Li, N.; Wu, R.; Wang, H.; Gui, Z.; Song, D. GPR-RCNN: An algorithm of subsurface defect detection for airport runway based on GPR. IEEE Robot. Autom. Lett. 2021, 6, 3001–3008. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Kudela, L.; Almac, U.; Kollmannsberger, S.; Rank, E. Direct numerical analysis of historical structures represented by point clouds. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Fink, E., Brumana, R., Patias, P., Doulamis, A., Martins, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 64–75. [Google Scholar] [CrossRef]
- Bitelli, G.; Castellazzi, G.; D’Altri, A.M.; De Miranda, S.; Lambertini, A.; Selvaggi, I. Automated voxel model from point clouds for structural analysis of cultural heritage. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI–B5, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Van De Walle, W.; Claes, S.; Janssen, H. Implementation and validation of a 3D image-based prediction model for the thermal conductivity of cellular and granular porous building blocks. Constr. Build. Mater. 2018, 182, 427–440. [Google Scholar] [CrossRef]
- Maaroufi, M.; Abahri, K.; Hachem, C.E.; Belarbi, R. Characterization of EPS lightweight concrete microstructure by X-ray tomography with consideration of thermal variations. Constr. Build. Mater. 2018, 178, 339–348. [Google Scholar] [CrossRef]
- Vantyghem, G.; Ooms, T.; De Corte, W. VoxelPrint: A Grasshopper plug-in for voxel-based numerical simulation of concrete printing. Autom. Constr. 2021, 122, 103469. [Google Scholar] [CrossRef]
- Leder, S. Voxelcrete Distributed voxelized adaptive formwork. In Proceedings of the 38th eCAADe Conference Anthropologic: Architecture and Fabrication in the Cognitive Age, Berlin, Germany, 16 September 2020; Volume 2, pp. 433–442. [Google Scholar]
- Xiao, K.; Chen, C.; Guo, Z.; Wang, X.; Yan, C. Research on voxel-based aggregation design and its fabrication. In Proceedings of the 25th CAADRIA Conference, Bangkok, Thailand, 5–8 August 2020; Holzer, D., Nakapan, W., Globa, A., Koh, I., Eds.; 2020; pp. 13–22. [Google Scholar]
- Hosny, A.; Jacobson, N.; Seibold, Z. Voxel beam. In Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, Emerging Experience in Past, Present and Future of Digital Architecture, Daegu, Republic of Korea, 20 May 2015; pp. 755–764. [Google Scholar]
- Naboni, R.; Kunic, A. A computational framework for the design and robotic manufacturing of complex wood structures. In Proceedings of the 37th eCAADe and 23rd SIGraDi Conference Architecture in the Age of the 4th Industrial Revolution, Porto, Portugal, 11 September 2019; Volume 3, pp. 189–196. [Google Scholar]
- Michalatos, P.; Payne, A. Working with multi-scale material distributions. In Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) Adaptive Architecture, Cambridge, ON, Canada, 24 October 2013; pp. 43–50. [Google Scholar]
- Michalatos, P.; Payne, A. Monolith: The biomedical paradigm and the inner complexity of hierarchical material design. In Proceedings of the 34th eCAADe Conference Complexity & Simplicity, Oulu, Finland, 22 August 2016; Volume 1, pp. 445–454. [Google Scholar]
- Green, S.D.; Matveev, M.Y.; Long, A.C.; Ivanov, D.; Hallett, S.R. Mechanical modelling of 3D woven composites considering realistic unit cell geometry. Compos. Struct. 2014, 118, 284–293. [Google Scholar] [CrossRef] [Green Version]
- De Schampheleire, S.; De Jaeger, P.; De Kerpel, K.; Ameel, B.; Huisseune, H.; De Paepe, M. How to study thermal applications of open-cell metal foam: Experiments and computational fluid dynamics. Materials 2016, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Baron, P.; Fisher, R.; Tuson, A.; Mill, F.; Sherlock, A. A voxel-based representation for evolutionary shape optimization. Artif. Intell. Eng. Des. Anal. Manuf. 1999, 13, 145–156. [Google Scholar] [CrossRef]
- Mekki, B.S.; Langer, J.; Lynch, S. Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications. Int. J. Heat Mass Transf. 2021, 170, 121002. [Google Scholar] [CrossRef]
- Ambrozkiewicz, O.; Kriegesmann, B. Density-based shape optimization for fail-safe design. J. Comput. Des. Eng. 2020, 7, 615–629. [Google Scholar] [CrossRef]
- Craveiro, F.; Bartolo, H.M.; Gale, A.; Duarte, J.P.; Bartolo, P.J. A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing. Autom. Constr. 2017, 82, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Aage, N.; Andreassen, E.; Lazarov, B.S.; Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature 2017, 550, 84–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, H.G.; Stolterman, E. The Design Way: Intentional Change in an Unpredictable World, 2nd ed.; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Andries, M.; Dehban, A.; Santos-Victor, J. Automatic generation of object shapes with desired affordances using Voxelgrid representation. Front. Neurorobotics 2020, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gurumoorthy, B.; Christie, L. Octree based voxel model for representation of spatial conflicts across multiple design domains. In Product Lifecycle Management in the Digital Twin Era; Fortin, C., Rivest, L., Bernard, A., Bouras, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 14–23. [Google Scholar] [CrossRef]
- Tyc, J.; Sunguroğlu Hensel, D.; Parisi, E.I.; Tucci, G.; Hensel, M.U. Integration of Remote Sensing Data into a Composite Voxel Model for Environmental Performance Analysis of Terraced Vineyards in Tuscany, Italy. Remote Sens. 2021, 13, 3483. [Google Scholar] [CrossRef]
- Tyc, J.; Parisi, E.I.; Tucci, G.; Sunguroğlu Hensel, D.; Hensel, M.U. A data-integrated and performance-oriented parametric design process for terraced vineyards. J. Digit. Landsc. Archit. 2022, 7, 504–521. [Google Scholar] [CrossRef]
- Hensel, D.S.; Tyc, J.; Hensel, M. Data-driven design for Architecture and Environment Integration: Convergence of data-integrated workflows for understanding and designing environments. SPOOL 2022, 9, 19–34. [Google Scholar] [CrossRef]
- Weisser, W.W.; Hensel, M.; Barath, S.; Culshaw, V.; Grobman, Y.J.; Hauck, T.E.; Joschinski, J.; Ludwig, F.; Mimet, A.; Perini, K.; et al. Creating ecologically sound buildings by integrating ecology, architecture and computational design. People Nat. 2022, 5, 4–20. [Google Scholar] [CrossRef]
- Perini, K.; Canepa, M.; Barath, S.; Hensel, M.; Mimet, A.; Uthaya Selvan, S.; Roccotiello, E.; Selami, T.; Sunguroglu Hensel, D.; Tyc, J.; et al. ECOLOPES: A multi-species design approach to building envelope design for regenerative urban ecosystems. In Responsive Cities: Design with Nature Symposium Proceedings 2021; Institut d’Arquitectura Avançada de Catalunya: Barcelona, Spain, 2021; pp. 368–380. [Google Scholar]
- Middleton, W.; Shu, Q.; Ludwig, F. Representing living architecture through skeleton reconstruction from point clouds. Sci. Rep. 2022, 12, 1549. [Google Scholar] [CrossRef]
- Bayer, C.; Michael, G.; Gentry, R.; Surabhi, J. AIA guide to building life cycle assessment in practice. AIA J. Am. Inst. Archit. 2010, 16, 17–60. [Google Scholar]
Datasets, Tools, and Methods | Analysis Types | ||||||
---|---|---|---|---|---|---|---|
Databases Used * | Screening Reported | Deduplication Reported | Software Tools * | Keyword Co-Occurrence | Keyword Burst Analysis | Yearly Publication Trend Analysis | |
Sharifi et al. [30] | WoS | no | no | VOS CS | yes | yes | yes |
Guo et al. [31] | WoS | no | no | VOS CS | yes | yes | yes |
Al-Mashhadani et al. [32] | Sco | yes | yes | VOS | yes | no | yes |
Sharifi [33] | WoS | no | no | VOS SciM | yes | no | yes |
García-León et al. [34] | Sco | no | no | VOS Bibl | yes | yes | yes |
Makabateet et al. [35] | Sco | yes | no | VOS | yes | no | no |
Tyc et al. (this study) | WoS Sco | yes | yes | VOS NLP | yes | yes | yes |
Keywords | Identified Publications |
---|---|
Visualization and volume rendering | Liu et al. [53], Andres et al. [54] |
Human–computer modeling interfaces | Strehlke [55], de Vries and Achten [56], Savov and Tessmann [57] |
Virtual reality | De Klerk et al. [58], Chen et al. [59] |
Cell-based generative-modeling interfaces | Fischer [60], Erioli and Zomparelli [61] |
Keywords | Identified Publications |
---|---|
Urban green spaces | Susaki and Kubota [62], Wakita and Susaki [63], Anderson et al. [64] |
Tree identification and modeling | Schmohl et al. [65], Guan et al. [66], Vonderach et al. [67] |
Urban analysis and simulation | Fisher–Gewirtzman et al. [68], Morello et al. [69] |
Keywords | Identified Publications |
---|---|
Architectural design and planning | Asmar [70], Cubukcuoglu et al. [71], Gorte et al. [72], Goldstein, Breslav and Khan [73] |
Building information modeling (BIM) | Golparvar-Fard et al. [74], Scherer et al. [75], Wang et al. [76], Deidda [77], Liu et al. [78], Chen et al. [79] |
Building interiors | Hübner et al. [80], Previtali et al. [81] |
Building facades | Truong–Hong et al. [82], Chen et al. [83], Thariyan [84] |
Solar analysis | Bremer et al. [85], Heo et al. [86] |
Geographic Information Systems (GIS) | Karssenberg and De Jong [87], Gebbert and Pebesma [88], Sahlin et al. [89], Orengo [90], Andersen et al. [91], Nolde et al. [92] |
Spatio-temporal analysis | Jjumba and Dragićević [93,94,95], Shirowzhan et al. [96] |
Keywords | Identified Publications |
---|---|
Terrain modeling and visualization | Graciano et al. [97], Nonogaki et al. [98], Shoaib Khan et al. [99] |
Scientific visualization of landscapes | Starek et al. [100], Mitasova et al. [101] |
Soil properties and root modeling | Ishutov et al. [102], Rabbi et al. [103], Teramoto, Tanabata and Uga [104], Sengupta et al. [105] |
Habitat modeling | Sasaki et al. [106], Loraamm and Downs [107], Downs et al. [108], Loraamm et al. [109] |
Keywords | Identified Publications |
---|---|
Subtractive manufacturing | Peddireddy et al. [110], Yousefian and Tarbutton [111], Wang et al. [112], Kukreja et al. [113] |
Additive manufacturing | Momeni et al. [6], Bacciaglia et al. [7], Huang et al. [114], Greminger [115], Chi et al. [116] |
Material performance and failure | Nguyen et al. [117], Taraben and Morgenthal [118], Yang et al. [119], Li et al. [120], Barazzetti et al. [121], Kudela et al. [122], Bitelli et al. [123], Van De Walle et al. [124], Maaroufi et al. [125] |
Conventional construction materials such as concrete and wood | Vantyghem et al. [126], Leder [127], Xiao [128], Hosny et al. [129], Naboni and Kunic [130] |
Advanced materials and material performance | Schillinger et al. [5], Michalatos and Payne [131,132], Green et al. [133], De Schampheleire et al. [134] |
Topology optimization and generative design | Baron et al. [135], Mekki et al. [136], Ambrozkiewicz and Kriegesmann [137], Craveiro et al. [138], Aage et al. [139] |
Project Phases | Architectural Design | Urban Planning |
---|---|---|
Pre-design/ Use and Maintenance | Liu et al. [53] Deidda [76] Hübner et al. [80] Previtali et al. [81] Truong–Hong et al. [82] Chen et al. [83] Orengo [90] Shoaib Khan et al. [99] Taraben and Morgenthal [118] Yang et al. [119] | Susaki and Kubota [62] Wakita and Susaki [63] Anderson et al. [64] Schmohl et al. [65] Guan et al. [66] Vonderach et al. [67] Fisher–Gewirtzman et al. [68] Bremer et al. [85] Heo et al. [86] Andersen et al. [91] Nolde et al. [92] Graciano et al. [97] Nonogaki et al. [98] Sasaki et al. [106] Li et al. [120] |
Schematic Design | Strehlke [55] Savov and Tessmann [57] De Klerk et al. [58] Fischer [60] Erioli and Zomparelli [61] Asmar [70] Thariyan [84] Leder [127] Xiao [128] Michalatos and Payne [132] | Morello et al. [69] Mitasova et al. [101] |
Design Development | Cubukcuoglu et al. [71] Gorte et al. [72] Breslav and Khan [73] Wang et al. [77] Baron et al. [135] Mekki et al. [136] Ambrozkiewicz and Kriegesmann [137] Aage et al. [139] | |
Materials and Manufacturing/ Construction | Golparvar-Fard et al. [74] Peddireddy et al. [110] Wang et al. [112] Yousefian and Tarbutton [111] Kukreja et al. [113] Huang et al. [114] Greminger [115] Chi et al. [116] Van De Walle et al. [124] Maaroufi et al. [125] Vantyghem et al. [126] Hosny et al. [129] Naboni and Kunic [130] Michalatos and Payne [131] Green et al. [133] De Schampheleire et al. [134] Craveiro et al. [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyc, J.; Selami, T.; Hensel, D.S.; Hensel, M. A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning. Architecture 2023, 3, 137-174. https://doi.org/10.3390/architecture3020010
Tyc J, Selami T, Hensel DS, Hensel M. A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning. Architecture. 2023; 3(2):137-174. https://doi.org/10.3390/architecture3020010
Chicago/Turabian StyleTyc, Jakub, Tina Selami, Defne Sunguroglu Hensel, and Michael Hensel. 2023. "A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning" Architecture 3, no. 2: 137-174. https://doi.org/10.3390/architecture3020010
APA StyleTyc, J., Selami, T., Hensel, D. S., & Hensel, M. (2023). A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning. Architecture, 3(2), 137-174. https://doi.org/10.3390/architecture3020010