Lime-Based Plaster Reinforced with Hemp Braids as Sustainable Building Product
Abstract
:1. Introduction
2. Properties of Materials
3. Physical Tests
3.1. Imbibition Tests
3.2. Workability Tests
3.3. Nomenclature and Characteristics of Specimens
3.4. Shrinkage
4. Mechanical Experimentation
4.1. Bending Tests
4.2. Compressive Tests
5. Tensile Tests on Hemp Braids
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeler, M.; Burke, B. Fundamentals of Integrated Design for Sustainable Building; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Sanal, I.; Verma, D. Construction Materials Reinforced with Natural Products; EPA: Washington, DC, USA, 2019; pp. 2119–2142. [Google Scholar]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Zakaria, M.; Ahmed, M.; Hoque, M.M.; Islam, S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pickering, K.L.; Beckermann, G.W.; Alam, S.N.; Foreman, N.J. Optimising industrial hemp fibre for composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 461–468. [Google Scholar] [CrossRef]
- Aruan Efendy, M.G.; Pickering, K.L. Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos. Part A Appl. Sci. Manuf. 2014, 67, 259–267. [Google Scholar] [CrossRef]
- Menna, C.; Asprone, D.; Durante, M.; Zinno, A.; Balsamo, A.; Prota, A. Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Constr. Build. Mater. 2015, 100, 111–121. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Kenny, J.M.; Puglia, D.; Santulli, C.; Sarasini, F. Tensile behavior of new zealand flax (phormium tenax) fibers. J. Reinf. Plast. Compos. 2010, 29, 3450–3454. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y. Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites. J. Cent. South Univ. Technol. 2008, 15, 564–567. [Google Scholar] [CrossRef]
- Mustafa, A.E.; Abdollah, M.F.B.; Shuhimi, F.F.; Ismail, N.; Amiruddin, H.; Umehara, N. Selection and verification of kenaf fibres as an alternative friction material using weighted decision matrix method. Mater. Des. 2015, 67, 577–582. [Google Scholar] [CrossRef]
- Goda, K.; Sreekala, M.S.; Gomes, A.; Kaji, T.; Ohgi, J. Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2213–2220. [Google Scholar] [CrossRef]
- Prasad, B.M.; Sain, M.M. Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement. Mater. Res. Innov. 2016, 7, 231–238. [Google Scholar] [CrossRef]
- Fan, M. Characterization and performance of elementary hemp fibres: Factors influencing tensile strength. BioResources 2010, 5, 2307–2322. [Google Scholar] [CrossRef]
- Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Asprone, D.; Durante, M.; Prota, A.; Manfredi, G. Potential of structural pozzolanic matrix–hemp fiber grid composites. Constr. Build. Mater. 2011, 25, 2867–2874. [Google Scholar] [CrossRef]
- Awwad, E.; Mabsout, M.; Hamad, B.; Farran, M.T.; Khatib, H. Studies on fiber-reinforced concrete using industrial hemp fibers. Constr. Build. Mater. 2012, 35, 710–717. [Google Scholar] [CrossRef]
- Le, A.T.; Gacoin, A.; Li, A.; Mai, T.H.; Rebay, M.; Delmas, Y. Experimental investigation on the mechanical performance of starch–hemp composite materials. Constr. Build. Mater. 2014, 61, 106–113. [Google Scholar] [CrossRef]
- Jami, T.; Karade, S.R.; Singh, L.P. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Piot, A.; Béjat, T.; Jay, A.; Bessette, L.; Wurtz, E.; Barnes-Davin, L. Study of a hempcrete wall exposed to outdoor climate: Effects of the coating. Constr. Build. Mater. 2017, 139, 540–550. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation rate of natural fiber in cement composites exposed to various accelerated aging environment conditions. Corros. Sci. 2014, 88, 118–132. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kim, H.-J.; Yu, W.-R. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Polym. 2009, 10, 83–90. [Google Scholar] [CrossRef]
- Silva, F.d.A.; Mobasher, B.; Filho, R.D.T. Cracking mechanisms in durable sisal fiber reinforced cement composites. Cem. Concr. Compos. 2009, 31, 721–730. [Google Scholar] [CrossRef]
- Savastano, H.; Santos, S.F.; Radonjic, M.; Soboyejo, W.O. Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem. Concr. Compos. 2009, 31, 232–243. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1660–1671. [Google Scholar] [CrossRef]
- Thomason, J.L. Why are Natural Fibres Failing to Deliver on Composite Performance? University of Strathclyde: Glasgow, UK, 2016. [Google Scholar]
- Formisano, A.; Davino, A. Tensile testing on hemp stems. In International Conference of Numerical Analysis and Applied Mathematics; ICNAAM: Girne, Turkey, 2020. [Google Scholar]
- Walker, R. A Study of the Properties of Lime-Hemp Concrete with Pozzolans; Trinity College: Dublin, Ireland, 2013. [Google Scholar]
- Eurocodes: UNI EN 459-1 Building Lime. Part 1: Definitions, s.a.c.c; European Commission: Bruxelles, Belgium, 2015.
- Eurocodes: UNI EN 998-1 Specification for Mortar for Masonry. Part 1: Rendering and Plastering Mortar; European Commission: Bruxelles, Belgium, 2016.
- UNI 7044 Determination of the Consistency of Cement Mortars Using a Shaking Table; Italian National Unification Body (UNI): Rome, Italy, 1972.
- Eurocodes: UNI EN 196-1 Test Methods for Concretes. Part 1: Determination of Compressive Strength; European Commission: Bruxelles, Belgium, 2016.
- Eurocodes: UNI EN 771-1 Specification for Masonry Units. Part 1: Clay Masonry Units; European Commission: Bruxelles, Belgium, 2010.
- Eurocodes: UNI EN 772-1 Methods of test for Masonry Units. Part 1: Determination of Compressive Strength; European Commission: Bruxelles, Belgium, 2010.
Day | Initial Weight (g) | Fibre Length (cm) | Fibre Diameter (mm) | Final Weight (g) | ΔWeight Fibre (g) | ΔWeight H2O (%) |
---|---|---|---|---|---|---|
1 | 0.9 | 2 | 1 | 1.70 | 0.8 | 88.89 |
2 | 0.9 | 3 | 1 | 1.80 | 0.9 | 100.00 |
3 | 0.9 | 4 | 1 | 1.88 | 0.98 | 108.89 |
4 | 0.9 | 5 | 1 | 1.94 | 1.04 | 115.56 |
5 | 0.9 | 6 | 1 | 1.97 | 1.07 | 118.89 |
6 | 0.9 | 2 | 1 | 1.97 | 1.07 | 118.89 |
Day | Initial Weight (g) | Fibre Length (cm) | Fibre Diameter (mm) | Final Weight (g) | ΔWeight Fibre (g) | ΔWeight H2O (%) |
---|---|---|---|---|---|---|
1 | 4.92 | 2 | 2.2 | 10.35 | 5.43 | 110.37 |
2 | 4.92 | 2 | 2.2 | 10.66 | 5.74 | 116.67 |
3 | 4.92 | 2 | 2.2 | 10.85 | 5.93 | 120.53 |
4 | 4.92 | 2 | 2.2 | 10.95 | 6.03 | 122.56 |
5 | 4.92 | 2 | 2.2 | 10.98 | 6.06 | 123.17 |
6 | 4.92 | 2 | 2.2 | 10.98 | 6.06 | 123.17 |
Acronym | Braid Length (mm) | Diameter (mm) | Braid Amount (%) | Spread (mm) |
---|---|---|---|---|
Control | / | / | / | 180 |
SP_01 | 20 | 1 | 0.5 | 160 |
SP_02 | 20 | 1 | 1 | 155 |
SP_03 | 20 | 1 | 3 | 110 |
SP_04 | 30 | 1 | 0.5 | 155 |
SP_05 | 30 | 1 | 1 | 155 |
SP_06 | 30 | 1 | 3 | 100 |
CR_01 | 20 | 2.2 | 1 | 155 |
CR_02 | 20 | 2.2 | 3 | 100 |
CR_03 | 30 | 2.2 | 1 | 100 |
Acronym | Premixed Type | Premixed Weight (g) | Water = 20.4% of Premixed Weight (g) | Water Absorbed by Fibres (g) | Fibres (%) | Fibre Length (mm) | Fibre Diameter (mm) |
---|---|---|---|---|---|---|---|
CNTL _01 | KERAKOLL CS II | 454.14 | 92.65 | - | - | - | - |
CNTL _02 | KERAKOLL CS II | 454.14 | 92.65 | - | - | - | - |
CNTL _03 | KERAKOLL CS II | 454.14 | 92.65 | - | - | - | - |
Acronym | Fibre Percentage (%) | Fibre Length (mm) | Fibre Diameter (mm) | Premixed Weight (g) | Water = 20.4% of Premixed Weight (g) | Water Absorbed by Fibres (g) |
---|---|---|---|---|---|---|
SP_01, 0.5%, l = 2 cm, d = 1 | 0.5 | 20 | 1 | 454.14 | 92.65 | 2.70 |
SP_02, 0.5%, l = 2 cm, d = 1 | 0.5 | 20 | 1 | 454.14 | 92.65 | 2.70 |
SP_03, 0.5%, l = 2 cm, d = 1 | 0.5 | 20 | 1 | 454.14 | 92.65 | 2.70 |
SP_04, 0.5%, l = 3 cm, d = 1 | 0.5 | 30 | 1 | 454.14 | 92.65 | 2.70 |
SP_05, 0.5%, l = 3 cm, d = 1 | 0.5 | 30 | 1 | 454.14 | 92.65 | 2.70 |
SP_06, 0.5%, l = 3 cm, d = 1 | 0.5 | 30 | 1 | 454.14 | 92.65 | 2.70 |
SP_01, 1%, l = 2 cm, d = 1 | 1 | 20 | 1 | 454.14 | 92.65 | 5.40 |
SP_02, 1%, l = 2 cm, d = 1 | 1 | 20 | 1 | 454.14 | 92.65 | 5.40 |
SP_03, 1%, l = 2 cm, d = 1 | 1 | 20 | 1 | 454.14 | 92.65 | 5.40 |
SP_04, 3%, l = 2 cm, d = 1 | 3 | 20 | 1 | 454.14 | 92.65 | 16.20 |
SP_05, 3%, l = 2 cm, d = 1 | 3 | 20 | 1 | 454.14 | 92.65 | 16.20 |
SP_06, 3%, l = 2 cm, d = 1 | 3 | 20 | 1 | 454.14 | 92.65 | 16.20 |
SP_01, 1%, l = 3 cm, d = 1 | 1 | 30 | 1 | 454.14 | 92.65 | 5.40 |
SP_02, 1%, l = 3 cm, d = 1 | 1 | 30 | 1 | 454.14 | 92.65 | 5.40 |
SP_03, 1%, l = 3 cm, d = 1 | 1 | 30 | 1 | 454.14 | 92.65 | 5.40 |
SP_04, 3%, l = 3 cm, d = 1 | 3 | 30 | 1 | 454.14 | 92.65 | 16.20 |
SP_05, 3%, l = 3 cm, d = 1 | 3 | 30 | 1 | 454.14 | 92.65 | 16.20 |
SP_06, 3%, l = 3 cm, d = 1 | 3 | 30 | 1 | 454.14 | 92.65 | 16.20 |
CR_01, 1%, l = 2 cm, d = 2.2 | 1 | 20 | 2.2 | 454.14 | 92.65 | 5.59 |
CR_02, 1%, l = 2 cm, d = 2.2 | 1 | 20 | 2.2 | 454.14 | 92.65 | 5.59 |
CR_03, 1%, l = 2 cm, d = 2.2 | 1 | 20 | 2.2 | 454.14 | 92.65 | 5.59 |
CR_04, 3%, l = 2 cm, d = 2.2 | 3 | 20 | 2.2 | 454.14 | 92.65 | 16.78 |
CR_05, 3%, l = 2 cm, d = 2.2 | 3 | 20 | 2.2 | 454.14 | 92.65 | 16.78 |
CR_06, 3%, l = 2 cm, d = 2.2 | 3 | 20 | 2.2 | 454.14 | 92.65 | 16.78 |
CR_01 1%, l = 3 cm, d = 2.2 | 1 | 30 | 2.2 | 454.14 | 92.65 | 5.59 |
CR_02, 1%, l = 3 cm, d = 2.2 | 1 | 30 | 2.2 | 454.14 | 92.65 | 5.59 |
CR_03, 1%, l = 3 cm, d = 2.2 | 1 | 30 | 2.2 | 454.14 | 92.65 | 5.59 |
Acronym | Base (mm) | Height (mm) | Depth (mm) |
---|---|---|---|
CNTL_01 | 40 | 40 | 160 |
CNTL_02 | 40 | 40 | 160 |
CNTL_03 | 40 | 40 | 160 |
Acronym | Base (mm) | Height (mm) | Depth (mm) |
---|---|---|---|
SP_01, 0.5%, l = 2 cm, d = 1 | 40 | 40 | 160 |
SP_02, 0.5%, l = 2 cm, d = 1 | 40 | 40 | 159.5 |
SP_03, 0.5%, l = 2 cm, d = 1 | 40 | 40 | 160 |
SP_04, 0.5%, l = 3 cm, d = 1 | 41 | 40 | 160 |
SP_05, 0.5%, l = 3 cm, d = 1 | 40 | 41 | 160 |
SP_06, 0.5%, l = 3 cm, d = 1 | 40 | 41 | 160 |
SP_01, 1%, l = 2 cm, d = 1 | 40 | 40 | 160.5 |
SP_02, 1%, l = 2 cm, d = 1 | 40 | 41 | 160.6 |
SP_03, 1%, l = 2 cm, d = 1 | 40 | 40.5 | 160 |
SP_04, 3%, l = 2 cm, d = 1 | 40 | 41 | 160 |
SP_05, 3%, l = 2 cm, d = 1 | 40 | 41 | 160 |
SP_06, 3%, l = 2 cm, d = 1 | 40 | 41 | 160 |
SP_01, 1%, l = 3 cm, d = 1 | 40 | 40.5 | 160 |
SP_02, 1%, l = 3 cm, d = 1 | 40 | 40.5 | 159.5 |
SP_03, 1%, l = 3 cm, d = 1 | 40 | 40 | 159.5 |
SP_04, 3%, l = 3 cm, d = 1 | 40 | 41 | 160 |
SP_05, 3%, l = 3 cm, d = 1 | 41 | 40 | 159.5 |
SP_06, 3%, l = 3 cm, d = 1 | 41.5 | 40 | 159.5 |
CR_01, 1%, l = 2 cm, d = 2.2 | 40 | 40 | 159.5 |
CR_02, 1%, l = 2 cm, d = 2.2 | 40 | 40.5 | 160 |
CR_03, 1%, l = 2 cm, d = 2.2 | 40 | 40 | 159.5 |
CR_04, 3%, l = 2 cm, d = 2.2 | 40 | 41 | 160 |
CR_05, 3%, l = 2 cm, d = 2.2 | 40 | 40.5 | 160 |
CR_06, 3%, l = 2 cm, d = 2.2 | 40 | 41 | 160 |
CR_01 1%, l = 3 cm, d = 2.2 | 40 | 41 | 160 |
CR_02, 1%, l = 3 cm, d = 2.2 | 40 | 40.5 | 160 |
CR_03, 1%, l = 3 cm, d = 2.2 | 40 | 40.5 | 160 |
Acronym | F (kN) | σF (MPa) | AVE SD (MPa) | δ (mm) | AVE SD (mm) | Part 1 (g) | Part 2 (g) | Total Weight (g) | ρ (kN/m3) | AVE SD (kN/m3) |
---|---|---|---|---|---|---|---|---|---|---|
CNTL_01 | 0.758 | 1.78 | 1.58 0.15 | 0.281 | 0.27 0.01 | 208.0 | 256.0 | 464.0 | 17.77 | 17.78 0.11 |
CNTL_02 | 0.670 | 1.57 | 0.266 | 231.0 | 230.0 | 461.0 | 17.65 | |||
CNTL_03 | 0.600 | 1.41 | 0.274 | 215.0 | 253.0 | 468.0 | 17.92 |
Acronym | F (kN) | σF (MPa) | AVE ± SD (MPa) | δ (mm) | AVE SD (mm) | Part 1 (g) | Part 2 (g) | Total weight (g) | ρ (kN/m3) | AVE ± SD (kN/m3) |
---|---|---|---|---|---|---|---|---|---|---|
SP_01, 0.5%, l = 2 cm, d = 1 | 0.491 | 1.151 | 1.30 0.13 | 0.491 | 0.45 0.03 | 197.0 | 262.0 | 459.0 | 17.58 | 17.45 0.15 |
SP_02, 0.5%, l = 2 cm, d = 1 | 0.622 | 1.458 | 0.422 | 201.0 | 249.0 | 450.0 | 17.23 | |||
SP_03, 0.5%, l = 2 cm, d = 1 | 0.552 | 1.294 | 0.437 | 232.0 | 226.0 | 458.0 | 17.54 | |||
SP_04, 0.5%, l = 3 cm, d = 1 | 0.714 | 1.673 | 1.38 0.26 | 0.764 | 0.51 0.18 | 246.0 | 219.0 | 465.0 | 17.81 | 17.77 0.08 |
SP_05, 0.5%, l = 3 cm, d = 1 | 0.600 | 1.406 | 0.379 | 239.0 | 222.0 | 461.0 | 17.65 | |||
SP_06, 0.5%, l = 3 cm, d = 1 | 0.447 | 1.048 | 0.377 | 238.0 | 228.0 | 466.0 | 17.85 | |||
SP_01, 1%, l = 2 cm, d = 1 | 0.585 | 1.371 | 1.55 0.18 | 0.349 | 0.48 0.13 | 224.0 | 229.0 | 453.0 | 17.35 | 17.34 0.11 |
SP_02, 1%, l = 2 cm, d = 1 | 0.634 | 1.486 | 0.431 | 208.0 | 241.0 | 449.0 | 17.20 | |||
SP_03, 1%, l = 2 cm, d = 1 | 0.767 | 1.798 | 0.647 | 228.0 | 228.0 | 456.0 | 17.46 | |||
SP_04, 3%, l = 2 cm, d = 1 | 0.675 | 1.582 | 2.13 0.63 | 1.653 | 1.88 0.16 | 244.0 | 186.0 | 430.0 | 16.47 | 16.44 0.02 |
SP_05, 3%, l = 2 cm, d = 1 | 1.283 | 3.007 | 2.008 | 206.0 | 223.0 | 429.0 | 16.43 | |||
SP_06, 3%, l = 2 cm, d = 1 | 0.763 | 1.788 | 1.974 | 211.0 | 218.0 | 429.0 | 16.43 | |||
SP_01, 1%, l = 3 cm, d = 1 | 0.745 | 1.746 | 1.88 0.38 | 1.209 | 1.66 0.42 | 212.0 | 240.0 | 452.0 | 17.31 | 17.14 ± 0.21 |
SP_02, 1%, l = 3 cm, d = 1 | 0.635 | 1.488 | 1.542 | 232.0 | 216.0 | 448.0 | 17.16 | |||
SP_03, 1%, l = 3 cm, d = 1 | 1.021 | 2.393 | 2.220 | 231.0 | 212.0 | 443.0 | 16.97 | |||
SP_04, 3%, l = 3 cm, d = 1 | 1.078 | 2.527 | 2.02 0.37 | 4.185 | 3.04 0.82 | 183.0 | 226.0 | 409.0 | 15.66 | 15.84 0.16 |
SP_05, 3%, l = 3 cm, d = 1 | 0.793 | 1.859 | 2.339 | 207.0 | 206.0 | 413.0 | 15.82 | |||
SP_06, 3%, l = 3 cm, d = 1 | 0.710 | 1.664 | 2.600 | 212.0 | 207.0 | 419.0 | 16.05 | |||
CR_01, 1%, l = 2 cm, d = 2.2 | 0.753 | 1.76 | 1.28 0.64 | 0.499 | 0.51 0.07 | 216.0 | 231.0 | 447.0 | 17.12 | 17.39 0.21 |
CR_02, 1%, l = 2 cm, d = 2.2 | 0.727 | 1.70 | 0.436 | 196.0 | 259.0 | 455.0 | 17.42 | |||
CR_03, 1%, l = 2 cm, d = 2.2 | 0.158 | 0.37 | 0.608 | 230.0 | 230.0 | 460.0 | 17.62 | |||
CR_04, 3%, l = 2 cm, d = 2.2 | 0.442 | 1.04 | 0.85 0.17 | 0.621 | 0.48 0.14 | 192.0 | 185.0 | 377.0 | 14.44 | 14.00 0.36 |
CR_05, 3%, l = 2 cm, d = 2.2 | 0.263 | 0.62 | 0.513 | 191.0 | 163.0 | 354.0 | 13.56 | |||
CR_06, 3%, l = 2 cm, d = 2.2 | 0.385 | 0.90 | 0.296 | 206.0 | 160.0 | 366.0 | 14.02 | |||
CR_01 1%, l = 3 cm, d = 2.2 | 0.565 | 1.32 | 1.27 0.06 | 0.647 | 0.56 0.08 | 212.0 | 203.0 | 415.0 | 15.89 | 15.93 0.11 |
CR_02, 1%, l = 3 cm, d = 2.2 | 0.508 | 1.19 | 0.448 | 231.0 | 189.0 | 420.0 | 16.08 | |||
CR_03, 1%, l = 3 cm, d = 2.2 | 0.548 | 1.28 | 0.591 | 200.0 | 213.0 | 413.0 | 15.82 |
Acronym | N (kN) | σC (MPa) | AVE SD (MPa) | δ (mm) | AVE SD (mm) |
---|---|---|---|---|---|
CNTL _01 | 11.14 | 6.96 | 6.04 0.70 | 0.464 | 0.64 0.23 |
CNTL _02 | 9.83 | 6.14 | 0.652 | ||
CNTL _03 | 8.40 | 5.25 | 1.019 |
Acronym | N (kN) | σC (MPa) | AVE SD (MPa) | δ (mm) | AVE SD (mm) |
---|---|---|---|---|---|
SP_01, 0.5%, l = 2 cm, d = 1 | 6.724 | 4.203 | 4.56 0.26 | 0.65 | 0.73 0.11 |
SP_02, 0.5%, l = 2 cm, d = 1 | 7.547 | 4.717 | 0.90 | ||
SP_03, 0.5%, l = 2 cm, d = 1 | 7.678 | 4.799 | 0.69 | ||
SP_04, 0.5%, l = 3 cm, d = 1 | 8.213 | 5.133 | 4.60 0.55 | 0.97 | 0.79 0.12 |
SP_05, 0.5%, l = 3 cm, d = 1 | 6.224 | 3.890 | 0.74 | ||
SP_06, 0.5%, l = 3 cm, d = 1 | 7.972 | 4.983 | 0.70 | ||
SP_01, 1%, l = 2 cm, d = 1 | 5.840 | 3.650 | 3.47 1.03 | 1.89 | 0.77 0.61 |
SP_02, 1%, l = 2 cm, d = 1 | 8.103 | 5.064 | 0.76 | ||
SP_03, 1%, l = 2 cm, d = 1 | 4.074 | 2.546 | 0.49 | ||
SP_04, 3%, l = 2 cm, d = 1 | 5.361 | 3.351 | 3.54 0.19 | 0.45 | 0.66 0.20 |
SP_05, 3%, l = 2 cm, d = 1 | 5.585 | 3.491 | 0.82 | ||
SP_06, 3%, l = 2 cm, d = 1 | 6.105 | 3.816 | 0.90 | ||
SP_01, 1%, l = 3 cm, d = 1 | 7.381 | 4.613 | 4.24 0.27 | 0.58 | 0.78 0.20 |
SP_02, 1%, l = 3 cm, d = 1 | 6.307 | 3.942 | 0.87 | ||
SP_03, 1%, l = 3 cm, d = 1 | 6.767 | 4.229 | 1.05 | ||
SP_04, 3%, l = 3 cm, d = 1 | 5.502 | 3.439 | 3.35 0.11 | 0.84 | 0.74 0.08 |
SP_05, 3%, l = 3 cm, d = 1 | 5.484 | 3.428 | 0.75 | ||
SP_06, 3%, l = 3 cm, d = 1 | 5.112 | 3.195 | 0.65 | ||
CR_01, 1%, l = 2 cm, d = 2.2 | 7.99 | 4.99 | 4.50 1.03 | 0.698 | 0.55 0.11 |
CR_02, 1%, l = 2 cm, d = 2.2 | 5.41 | 3.38 | 0.438 | ||
CR_03, 1%, l = 2 cm, d = 2.2 | 9.37 | 5.86 | 0.560 | ||
CR_04, 3%, l = 2 cm, d = 2.2 | 3.33 | 2.08 | 2.60 0.57 | 0.705 | 0.68 0.14 |
CR_05, 3%, l = 2 cm, d = 2.2 | 5.52 | 3.45 | 0.882 | ||
CR_06, 3%, l = 2 cm, d = 2.2 | 4.15 | 2.60 | 0.537 | ||
CR_01 1%, l = 3 cm, d = 2.2 | 4.73 | 2.96 | 3.66 0.75 | 0.681 | 0.91 0.30 |
CR_02, 1%, l = 3 cm, d = 2.2 | 7.64 | 4.77 | 1.390 | ||
CR_03, 1%, l = 3 cm, d = 2.2 | 5.89 | 3.68 | 0.913 |
Acronym | d (mm) | A (mm2) | F (N) | σt (MPa) | AVE SD (MPa) | E (MPa) | AVE SD (MPa) |
---|---|---|---|---|---|---|---|
D4_1 | 4.00 | 12.57 | 683.00 | 54.4 | 48.7 4.1 | 1137.1 | 1950.5 937.1 |
D4_2 | 4.00 | 12.57 | 580.00 | 46.2 | 1451.1 | ||
D4_3 | 4.00 | 12.57 | 570.00 | 45.4 | 3263.2 | ||
D3_1 | 3.00 | 7.07 | 197.00 | 27.87 | 27.2 1.0 | 656.4 | 549.1 151.8 |
D3_2 | 3.00 | 7.07 | 182.00 | 25.7 | 334.4 | ||
D3_3 | 3.00 | 7.07 | 197.00 | 27.9 | 656.4 | ||
D2.2_1 | 2.20 | 3.80 | 240.00 | 63.1 | 61.7 1.1 | 1948.6 | 1969.7 60.3 |
D2.2_2 | 2.20 | 3.80 | 230.00 | 60.5 | 1908.7 | ||
D2.2_3 | 2.00 | 3.14 | 234.00 | 61.6 | 2051.9 | ||
D1_1 | 1.00 | 0.79 | 121.00 | 154.1 | 149.0 4.2 | 2362.9 | 2894.8 487.3 |
D1_2 | 1.00 | 0.79 | 113.00 | 143.9 | 3540.3 | ||
D1_3 | 1.00 | 0.79 | 117.00 | 148.9 | 2781.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davino, A.; Meglio, E.; Formisano, A. Lime-Based Plaster Reinforced with Hemp Braids as Sustainable Building Product. Architecture 2022, 2, 135-156. https://doi.org/10.3390/architecture2010008
Davino A, Meglio E, Formisano A. Lime-Based Plaster Reinforced with Hemp Braids as Sustainable Building Product. Architecture. 2022; 2(1):135-156. https://doi.org/10.3390/architecture2010008
Chicago/Turabian StyleDavino, Antonio, Emilia Meglio, and Antonio Formisano. 2022. "Lime-Based Plaster Reinforced with Hemp Braids as Sustainable Building Product" Architecture 2, no. 1: 135-156. https://doi.org/10.3390/architecture2010008
APA StyleDavino, A., Meglio, E., & Formisano, A. (2022). Lime-Based Plaster Reinforced with Hemp Braids as Sustainable Building Product. Architecture, 2(1), 135-156. https://doi.org/10.3390/architecture2010008