Evaluating Leucine, Isoleucine, and Valine Ratios in Mixed Cortical Cell Cultures Following Cortical Trauma: An In Vitro Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. BCAA Concentration Preparation
2.2. Mixed Cortical Culture
2.3. Plating of Cells in 24 Well Plates and Scratch Assay
2.4. Photomicrographs and Scratch Area Quantification
2.5. Statistical Analysis
2.6. Measurement of Accelerated Healing
3. Results
3.1. Wound Healing for the 2:1:1 Ratio of Leucine:Isoleucine:Valine
3.2. Wound Healing for the 4:1:1 Ratio of Leucine:Isoleucine:Valine
3.3. Wound Healing for the 1:1:1 Ratio of Leucine:Isoleucine:Valine
3.4. Differential Wound Closure Response to BCAA Ratios
3.5. Overall Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TBI | Traumatic brain injury |
BCAA | Branched-chain amino acids |
μM | Micromolar |
DI | Deionized |
DMEM | Dulbecco’s modified eagle’s medium |
cDMEM | Complete dulbecco’s modified eagle’s medium |
FBS | Fetal bovine serum |
MCC | Mixed cortical culture |
ANOVA | Analysis of Variance |
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef]
- Dewan, M.C.; Mummareddy, N.; Wellons, J.C., 3rd; Bonfield, C.M. Epidemiology of Global Pediatric Traumatic Brain Injury: Qualitative Review. World Neurosurg. 2016, 91, 497–509.e1. [Google Scholar] [CrossRef]
- Peters, M.E.; Gardner, R.C. Traumatic brain injury in older adults: Do we need a different approach? Concussion 2018, 3, CNC56. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef]
- Gruenbaum, S.E.; Zlotnik, A.; Gruenbaum, B.F.; Hersey, D.; Bilotta, F. Pharmacologic Neuroprotection for Functional Outcomes After Traumatic Brain Injury: A Systematic Review of the Clinical Literature. CNS Drugs 2016, 30, 791–806. [Google Scholar] [CrossRef] [PubMed]
- Haar, C.V.; Peterson, T.C.; Martens, K.M.; Hoane, M.R. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res. 2015, 1640, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Bifari, F.; Nisoli, E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: A pharmacological point of view. Br. J. Pharmacol. 2016, 174, 1366–1377. [Google Scholar] [CrossRef]
- Dickerman, R.D.; Williamson, J.; Mathew, E.; Butt, C.M.; Bird, C.W.; Hood, L.E.; Grimshaw, V. Branched-Chain Amino Acids Are Neuroprotective Against Traumatic Brain Injury and Enhance Rate of Recovery: Prophylactic Role for Contact Sports and Emergent Use. Neurotrauma Rep. 2022, 3, 321–332. [Google Scholar] [CrossRef]
- Cole, J.T.; Mitala, C.M.; Kundu, S.; Verma, A.; Elkind, J.A.; Nissim, I.; Cohen, A.S. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc. Natl. Acad. Sci. USA 2009, 107, 366–371, Correction in: Proc. Natl. Acad. Sci. USA 2010, 107, 2373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeter, C.B.; Hergenroeder, G.W.; Ward, N.H., 3rd; Moore, A.N.; Dash, P.K. Human Mild Traumatic Brain Injury Decreases Circulating Branched-Chain Amino Acids and Their Metabolite Levels. J. Neurotrauma 2013, 30, 671–679. [Google Scholar] [CrossRef]
- Aquilani, R.; Boselli, M.; Boschi, F.; Viglio, S.; Iadarola, P.; Dossena, M.; Pastoris, O.; Verri, M. Branched-Chain Amino Acids May Improve Recovery from a Vegetative or Minimally Conscious State in Patients with Traumatic Brain Injury: A Pilot Study. Arch. Phys. Med. Rehabilitation 2008, 89, 1642–1647. [Google Scholar] [CrossRef]
- Campos-Ferraz, P.L.; Bozza, T.; Nicastro, H.; Lancha, A.H. Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition 2013, 29, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Peng, Y.; Zhang, Y.; Xu, J.; Jiang, S.; Wang, L.; Yin, Y. The biological functions and metabolic pathways of valine in swine. J. Anim. Sci. Biotechnol. 2023, 14, 135. [Google Scholar] [CrossRef]
- Son, S.M.; Park, S.J.; Stamatakou, E.; Vicinanza, M.; Menzies, F.M.; Rubinsztein, D.C. Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat. Commun. 2020, 11, 3148. [Google Scholar] [CrossRef] [PubMed]
- Swendseid, M.E.; Villalobos, J.; Figueroa, W.S.; Drenick, E.J. The Effects of Test Doses of Leucine, Isoleucine or Valine on Plasma Amino Acid Levels. Am. J. Clin. Nutr. 1965, 17, 317–321. [Google Scholar] [CrossRef]
- Hutson, S.M.; Lieth, E.; LaNoue, K.F. Function of Leucine in Excitatory Neurotransmitter Metabolism in the Central Nervous System. J. Nutr. 2001, 131, 846S–850S. [Google Scholar] [CrossRef]
- de Medeiros, B.Z.; Wessler, L.B.; Duarte, M.B.; Lemos, I.S.; Candiotto, G.; Canarim, R.O.; Dos Santos, P.C.L.; Torres, C.A.; Scaini, G.; Rico, E.P.; et al. Exposure to leucine induces oxidative stress in the brain of zebrafish. Metab. Brain Dis. 2022, 37, 1155–1161. [Google Scholar] [CrossRef]
- Khatri, N.; Sumadhura, B.; Kumar, S.; Kaundal, R.K.; Sharma, S.; Datusalia, A.K. The Complexity of Secondary Cascade Consequent to Traumatic Brain Injury: Pathobiology and Potential Treatments. Curr. Neuropharmacol. 2021, 19, 1984–2011. [Google Scholar] [CrossRef]
- Yudkoff, M.; Daikhin, Y.; Nissim, I.; Horyn, O.; Luhovyy, B.; Lazarow, A.; Nissim, I. Brain Amino Acid Requirements and Toxicity: The Example of Leucine. J. Nutr. 2005, 135, 1531S–1538S, Erratum in: J. Nutr. 2005, 135, 2009. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr. Neurol. Neurosci. Rep. 2015, 15, 27. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Iwasawa, Y.; Kishi, T.; Morita, M.; Ikeda, K.; Shima, H.; Sato, T.; Bs, Y.I.; Bs, M.M.; Bs, K.I. Optimal Ratio of Individual Branched-Chain Amino Acids in Total Parenteral Nutrition of Injured Rats. J. Parenter. Enter. Nutr. 1991, 15, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Yudkoff, M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem. Res. 2016, 42, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakamura, K.; Matsumoto, H.; Sakai, R.; Kuwahara, T.; Kadota, Y.; Kitaura, Y.; Sato, J.; Shimomura, Y. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men. SpringerPlus 2014, 3, 35. [Google Scholar] [CrossRef]
- Aquilani, R.; Iadarola, P.; Contardi, A.; Boselli, M.; Verri, M.; Pastoris, O.; Boschi, F.; Arcidiaco, P.; Viglio, S. Branched-Chain Amino Acids Enhance the Cognitive Recovery of Patients with Severe Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2005, 86, 1729–1735. [Google Scholar] [CrossRef]
- Elango, R.; Pencharz, P.B.; Ball, R.O. The Branched-Chain Amino Acid Requirement of Parenterally Fed Neonatal Piglets Is Less than the Enteral Requirement. J. Nutr. 2002, 132, 3123–3129. [Google Scholar] [CrossRef]
- Jana, M.; Jana, A.; Pal, U.; Pahan, K. A Simplified Method for Isolating Highly Purified Neurons, Oligodendrocytes, Astrocytes, and Microglia from the Same Human Fetal Brain Tissue. Neurochem. Res. 2007, 32, 2015–2022. [Google Scholar] [CrossRef]
- Goshi, N.; Morgan, R.K.; Lein, P.J.; Seker, E. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J. Neuroinflammation 2020, 17, 155, Correction in: J. Neuroinflammation 2022, 19, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dittmer, M.; Young, A.; O’hAgan, T.; Eleftheriadis, G.; Bankhead, P.; Dombrowski, Y.; Medina, R.J.; Fitzgerald, D.C. Characterization of a murine mixed neuron-glia model and cellular responses to regulatory T cell-derived factors. Mol. Brain 2018, 11, 25. [Google Scholar] [CrossRef]
- Hernandez, K.; Jones, N.; Ortega, S.B. The efficacy of an allosteric modulator of the alpha 7 nicotinic acetylcholine receptor in a murine model of stroke. Front. Neurosci. 2025, 19, 1525975. [Google Scholar] [CrossRef]
- Ortega, S.B.; Torres, V.O.; Latchney, S.E.; Whoolery, C.W.; Noorbhai, I.Z.; Poinsatte, K.; Selvaraj, U.M.; Benson, M.A.; Meeuwissen, A.J.M.; Plautz, E.J.; et al. B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc. Natl. Acad. Sci. USA 2020, 117, 4983–4993. [Google Scholar] [CrossRef]
- Farooqui, M.; Ortega-Gutierrez, S.; Hernandez, K.; Torres, V.O.; Dajles, A.; Zevallos, C.B.; Quispe-Orozco, D.; Mendez-Ruiz, A.; Manzel, K.; Eyck, P.T.; et al. Hyperacute immune responses associate with immediate neuropathology and motor dysfunction in large vessel occlusions. Ann. Clin. Transl. Neurol. 2022, 10, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Chari, D.; Basit, R.; Wiseman, J.; Chowdhury, F. Simulating traumatic brain injury in vitro: Developing high throughput models to test biomaterial based therapies. Neural Regen. Res. 2022, 18, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arnedo, A.; Figueroa, F.T.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C.; Chirico, G. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef] [PubMed]
- McCullock, T.W.; Kammermeier, P.J. The evidence for and consequences of metabotropic glutamate receptor heterodimerization. Neuropharmacology 2021, 199, 108801. [Google Scholar] [CrossRef]
- Sharma, B.; Lawrence, D.W.; Hutchison, M.G. Branched Chain Amino Acids (BCAAs) and Traumatic Brain Injury: A Systematic Review. J. Head Trauma Rehabil. 2018, 33, 33–45. [Google Scholar] [CrossRef]
- Elkind, J.A.; Lim, M.M.; Johnson, B.N.; Palmer, C.P.; Putnam, B.J.; Kirschen, M.P.; Cohen, A.S. Efficacy, Dosage, and Duration of Action of Branched Chain Amino Acid Therapy for Traumatic Brain Injury. Front. Neurol. 2015, 6, 73. [Google Scholar] [CrossRef]
- Elliott, J.E.; De Luche, S.E.; Churchill, M.J.; Moore, C.; Cohen, A.S.; Meshul, C.K.; Lim, M.M. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice. Sleep 2018, 41, zsx212. [Google Scholar] [CrossRef]
- Lim, M.M.; Elkind, J.; Xiong, G.; Galante, R.; Zhu, J.; Zhang, L.; Lian, J.; Rodin, J.; Kuzma, N.N.; Pack, A.I.; et al. Dietary Therapy Mitigates Persistent Wake Deficits Caused by Mild Traumatic Brain Injury. Sci. Transl. Med. 2013, 5, 215ra173. [Google Scholar] [CrossRef]
- Eiden, M.; Christinat, N.; Chakrabarti, A.; Sonnay, S.; Miroz, J.-P.; Cuenoud, B.; Oddo, M.; Masoodi, M. Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis fluids of traumatic brain injury patients. EBioMedicine 2019, 44, 607–617. [Google Scholar] [CrossRef]
- Shimomura, Y.; Kitaura, Y. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol. Res. 2018, 133, 215–217. [Google Scholar] [CrossRef]
- Goshi, N.; Kim, H.; Girardi, G.; Gardner, A.; Seker, E. Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures. Cells 2023, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, A.; Poole-Warren, L.; Green, R.A. An Improved in vitro Model of Cortical Tissue. Front. Neurosci. 2019, 13, 1349. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.E.; McCulloch, M.; Sorenson, A.; Barnett, S.C.; Seed, B.V.; Griffiths, I.R.; McLaughlin, M. Myelinated, synapsing cultures of murine spinal cord—Validation as an in vitro model of the central nervous system. Eur. J. Neurosci. 2008, 28, 1518–1535. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Ishii, H.; Bai, Z.; Itokazu, T.; Yamashita, T.; Nataf, S. Temporal Changes in Cell Marker Expression and Cellular Infiltration in a Controlled Cortical Impact Model in Adult Male C57BL/6 Mice. PLoS ONE 2012, 7, e41892. [Google Scholar] [CrossRef]
- David, S.; Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 2011, 12, 388–399. [Google Scholar] [CrossRef]
- Lenzlinger, P.M.; Morganti-Kossmann, M.C.; Laurer, H.L.; McIntosh, T.K. The Duality of the Inflammatory Response to Traumatic Brain Injury. Mol. Neurobiol. 2001, 24, 169–181. [Google Scholar] [CrossRef]
- Stoll, G.; Jander, S.; Schroeter, M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv. Exp. Med. Biol. 2002, 513, 87–113. [Google Scholar]
- Nespoli, E.; Hakani, M.; Hein, T.M.; May, S.N.; Danzer, K.; Wirth, T.; Baumann, B.; Dimou, L. Glial cells react to closed head injury in a distinct and spatiotemporally orchestrated manner. Sci. Rep. 2024, 14, 2441. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, J.; Ye, S.; Shan, L.-L.; Xu, S.; Guo, S.-F.; Li, M.-T.; Qiao, T.-C.; Peng, Z.-Y.; Wang, Y.-L.; et al. 3D Visualization of Whole Brain Vessels and Quantification of Vascular Pathology in a Chronic Hypoperfusion Model Causing White Matter Damage. Transl. Stroke Res. 2023, 15, 659–671. [Google Scholar] [CrossRef]
- Khairnar, A.; Ruda-Kucerova, J.; Drazanova, E.; Szabó, N.; Latta, P.; Arab, A.; Hutter-Paier, B.; Havas, D.; Windisch, M.; Sulcova, A.; et al. Late-stage alpha-synuclein accumulation in TNWT-61 mouse model of Parkinson’s disease detected by diffusion kurtosis imaging. J. Neurochem. 2016, 136, 1259–1269. [Google Scholar] [CrossRef]
- Wei, R.; Li, X.; Wang, X.; Wang, Y.; Zhang, X.; Zhang, N.; Wang, J.; Yang, J.; Zhang, X.; Gong, P.; et al. Trypanosoma evansi triggered neutrophil extracellular traps formation dependent on myeloperoxidase, neutrophil elastase, and extracellular signal-regulated kinase 1/2 signaling pathways. Veter-Parasitol. 2021, 296, 109502. [Google Scholar] [CrossRef]
- Poole, E.; Huang, C.J.Z.; Forbester, J.; Shnayder, M.; Nachshon, A.; Kweider, B.; Basaj, A.; Smith, D.; Jackson, S.E.; Liu, B.; et al. An iPSC-Derived Myeloid Lineage Model of Herpes Virus Latency and Reactivation. Front. Microbiol. 2019, 10, 2233. [Google Scholar] [CrossRef]
Concentration (μM) | 2:1:1 vs. Media p-Value | 2:1:1 vs. Vehicle p-Value | 4:1:1 vs. Media p-Value | 4:1:1 vs. Vehicle p-Value |
---|---|---|---|---|
1 | 0.519 | 0.874 | 1.000 | 1.000 |
10 | 0.028 | 0.047 | 0.919 | 1.000 |
30 | 0.011 | 0.018 | 0.031 | 0.031 |
100 | 0.357 | 0.605 | 0.412 | 0.746 |
300 | 0.008 | 0.012 | 0.006 | 0.003 |
1000 | 0.012 | 0.019 | 0.412 | 0.746 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathew, E.; Jones, N.; Hernandez, K.; Ortega, S.B.; Dickerman, R. Evaluating Leucine, Isoleucine, and Valine Ratios in Mixed Cortical Cell Cultures Following Cortical Trauma: An In Vitro Assessment. Int. J. Transl. Med. 2025, 5, 42. https://doi.org/10.3390/ijtm5030042
Mathew E, Jones N, Hernandez K, Ortega SB, Dickerman R. Evaluating Leucine, Isoleucine, and Valine Ratios in Mixed Cortical Cell Cultures Following Cortical Trauma: An In Vitro Assessment. International Journal of Translational Medicine. 2025; 5(3):42. https://doi.org/10.3390/ijtm5030042
Chicago/Turabian StyleMathew, Ezek, Nathan Jones, Katherine Hernandez, Sterling B. Ortega, and Rob Dickerman. 2025. "Evaluating Leucine, Isoleucine, and Valine Ratios in Mixed Cortical Cell Cultures Following Cortical Trauma: An In Vitro Assessment" International Journal of Translational Medicine 5, no. 3: 42. https://doi.org/10.3390/ijtm5030042
APA StyleMathew, E., Jones, N., Hernandez, K., Ortega, S. B., & Dickerman, R. (2025). Evaluating Leucine, Isoleucine, and Valine Ratios in Mixed Cortical Cell Cultures Following Cortical Trauma: An In Vitro Assessment. International Journal of Translational Medicine, 5(3), 42. https://doi.org/10.3390/ijtm5030042