Comparison of the Differing Impacts of Lowered N-Acetylglucosaminyltransferase-Ia/b Activity on Motor and Sensory Function in Zebrafish
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Husbandry, Larva and Embryo Collections
2.2. CRISPR/Cas9 Targets and Production of Purified sgRNA
2.3. Genotyping of Embryos, Larvae, and Adult Fish
2.4. Engineering the mgat1a−/− Mutant Line
2.5. Whole Brain and Brain Region Dissections
2.6. Dissections of Tissue
2.7. Preparation of Homogenates
2.8. Lectin Blots and Coomassie Blue-Stained Gels
2.9. Tail-Coiling Assay
2.10. Swimming Locomotor Activity
2.11. Novel Tank Dive Assay
2.12. Touch-Evoked
2.13. Statistical Analysis
3. Results
3.1. Generating the mgat1a−/− Mutant Line
3.2. Oligomannose N-Glycans Were Increased in the Homozygous mgat1a Mutant
3.3. Comparing Levels of Oligomannose N-Glycans Between mgat1a and mgat1b Mutant Fish
3.4. Motor and Sensory Dysfunction in Embryos and Larvae with Lowered GnT-I Activity
3.5. Adult Fish with Increased Levels of Oligomannosylated Protein Have Deficient Motor Locomotion
3.6. Reduced Terminal N-Glycan Processing Alters Anxiety-like Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNL | Galanthus nivalis lectin |
GnT | N-acetylglucosaminyltransferase |
DPF | Days post-fertilization |
HPF | Hours post-fertilization |
CDG | Congenital disorders of glycosylation |
Wt | Wild-type |
References
- Stanley, P.; Moremen, K.W.; Lewis, N.E.; Taniguchi, N.; Aebi, M. N-Glycans. Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2022. [Google Scholar]
- Sosicka, P.; Ng, B.G.; Freeze, H.H. Chemical Therapies for Congenital Disorders of Glycosylation. ACS Chem. Biol. 2022, 17, 2962–2971. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaeken, J. Congenital disorders of glycosylation. Ann. N. Y. Acad. Sci. 2010, 1214, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Ondruskova, N.; Cechova, A.; Hansikova, H.; Honzik, T.; Jaeken, J. Congenital disorders of glycosylation: Still “hot” in 2020. Biochim. Biophys Acta Gen. Subj. 2021, 1865, 129751. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, P.; Kang, H.; Lee, B. Glycosylation and behavioral symptoms in neurological disorders. Transl. Psychiatry 2023, 13, 154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verheijen, J.; Tahata, S.; Kozicz, T.; Witters, P.; Morava, E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: An update. Genet. Med. 2020, 22, 268–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van de Loo, K.F.E.; van Dongen, L.; Mohamed, M.; Gardeitchik, T.; Kouwenberg, T.W.; Wortmann, S.B.; Rodenburg, R.J.T.; Lefeber, D.J.; Morava, E.; Verhaak, C.M. Socio-emotional Problems in Children with CDG. JIMD Rep. 2013, 11, 139–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, M.; Zhou, X.; Wang, X. Glycosylation: Mechanisms, biological functions and clinical implications. Signal Transduct. Target. Ther. 2024, 9, 194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Z.X.; Zou, T.T.; Liu, H.H.; Jia, H.B.; Zhang, X.Q. Knockout of the fcsk gene in zebrafish causes neurodevelopmental defects. Zool. Res. 2025, 46, 313–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chu, J.; Mir, A.; Gao, N.; Rosa, S.; Monson, C.; Sharma, V.; Steet, R.; Freeze, H.H.; Lehrman, M.A.; Sadler, K.C. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation. Dis. Models Mech. 2013, 6, 95–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanzawa, K.; Suzuki, N.; Natsuka, S. Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology 2017, 27, 228–245. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.K.; Hatchett, C.J.; Shalygin, S.; Azadi, P.; Schwalbe, R.A. Reduction in N-Acetylglucosaminyltransferase-I Activity Decreases Survivability and Delays Development of Zebrafish. Curr. Issues Mol. Biol. 2023, 45, 9165–9180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hatchett, C.J.; Hall, M.K.; Messer, A.R.; Schwalbe, R.A. Lowered GnT-I Activity Decreases Complex-Type N-Glycan Amounts and Results in an Aberrant Primary Motor Neuron Structure in the Spinal Cord. J. Dev. Biol. 2024, 12, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, Z.; Marth, J.D. N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 2004, 14, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, E.; Stanley, P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc. Natl. Acad. Sci. USA 1994, 91, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Selderslaghs, I.W.; Hooyberghs, J.; De Coen, W.; Witters, H.E. Locomotor activity in zebrafish embryos: A new method to assess developmental neurotoxicity. Neurotoxicol. Teratol. 2010, 32, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Khotimah, H.; Ali, M.; Sumitro, S.B.; Widodo, M.A. Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson’s model. Asian Pac. J. Trop. Biomed. 2015, 5, 948–954. [Google Scholar] [CrossRef]
- Sur, A.; Wang, Y.; Capar, P.; Margolin, G.; Prochaska, M.K.; Farrell, J.A. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev. Cell 2023, 58, 3028–3047.e12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkar, M.; Pagny, S.; Unligil, U.; Joziasse, D.; Mucha, J.; Glossl, J.; Schachter, H. Removal of 106 amino acids from the N-terminus of UDP-GlcNAc: Alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I does not inactivate the enzyme. Glycoconj. J. 1998, 15, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.K.; Stanley, P. Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 2006, 416, 159–182. [Google Scholar] [PubMed]
- Hall, M.K.; Burch, A.P.; Schwalbe, R.A. Functional analysis of N-acetylglucosaminyltransferase-I knockdown in 2D and 3D neuroblastoma cell cultures. PLoS ONE 2021, 16, e0259743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burch, A.P.; Kristen Hall, M.; Wease, D.; Schwalbe, R.A. Reduction of N-Acetylglucosaminyltransferase-I Activity Promotes Neuroblastoma Invasiveness and EGF-Stimulated Proliferation In Vitro. Int. J. Transl. Med. 2024, 4, 519–538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- North, S.J.; Huang, H.-H.; Sundaram, S.; Jang-Lee, J.; Etienne, A.T.; Trollope, A.; Chalabi, S.; Dell, A.; Stanley, P.; Haslam, S.M. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J. Biol. Chem. 2010, 285, 5759–5775. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, C.B.; Patterson, J.; Kimmel, R.O. The development and behavioral characteristics of the startle response in the zebra fish. Dev. Psychobiol. 1974, 7, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Saint-Amant, L.; Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 1998, 37, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.W.; Westerfield, M. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming. J. Physiol. 1988, 403, 73–89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, K.S.; Fetcho, J.R. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 1999, 23, 325–335. [Google Scholar] [CrossRef] [PubMed]
- McLean, D.L.; Fan, J.; Higashijima, S.; Hale, M.E.; Fetcho, J.R. A topographic map of recruitment in spinal cord. Nature 2007, 446, 71–75. [Google Scholar] [CrossRef] [PubMed]
- McLean, D.L.; Fetcho, J.R. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. J. Neurosci. 2009, 29, 13566–13577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forlano, P.M.; Kim, S.D.; Krzyminska, Z.M.; Sisneros, J.A. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish Porichthys notatus. J. Comp. Neurol. 2014, 522, 2887–2927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagpal, J.; Herget, U.; Choi, M.K.; Ryu, S. Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell Tissue Res. 2019, 375, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S.; Belden, A.C.; Botteron, K.N.; Harms, M.P.; Barch, D.M. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. J. Abnorm. Psychol. 2015, 124, 817–833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Porter, B.A.; Mueller, T. The Zebrafish Amygdaloid Complex—Functional Ground Plan, Molecular Delineation, and Everted Topology. Front Neurosci. 2020, 14, 608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Issa, F.A.; Mazzochi, C.; Mock, A.F.; Papazian, D.M. Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish. J. Neurosci. 2011, 31, 6831–6841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Issa, F.A.; Hall, M.K.; Hatchett, C.J.; Weidner, D.A.; Fiorenza, A.C.; Schwalbe, R.A. Compromised N-Glycosylation Processing of Kv3.1b Correlates with Perturbed Motor Neuron Structure and Locomotor Activity. Biology 2021, 10, 486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Issa, F.A.; Mock, A.F.; Sagasti, A.; Papazian, D.M. Spinocerebellar ataxia type 13 mutation that is associated with disease onset in infancy disrupts axonal pathfinding during neuronal development. Dis. Models Mech. 2012, 5, 921–929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, M.K.; Hatchett, C.J.; Khan, H.A.; Lewis, H.; Schwalbe, R.A. Comparison of the Differing Impacts of Lowered N-Acetylglucosaminyltransferase-Ia/b Activity on Motor and Sensory Function in Zebrafish. Int. J. Transl. Med. 2025, 5, 36. https://doi.org/10.3390/ijtm5030036
Hall MK, Hatchett CJ, Khan HA, Lewis H, Schwalbe RA. Comparison of the Differing Impacts of Lowered N-Acetylglucosaminyltransferase-Ia/b Activity on Motor and Sensory Function in Zebrafish. International Journal of Translational Medicine. 2025; 5(3):36. https://doi.org/10.3390/ijtm5030036
Chicago/Turabian StyleHall, M. Kristen, Cody J. Hatchett, Haris A. Khan, Hannah Lewis, and Ruth A. Schwalbe. 2025. "Comparison of the Differing Impacts of Lowered N-Acetylglucosaminyltransferase-Ia/b Activity on Motor and Sensory Function in Zebrafish" International Journal of Translational Medicine 5, no. 3: 36. https://doi.org/10.3390/ijtm5030036
APA StyleHall, M. K., Hatchett, C. J., Khan, H. A., Lewis, H., & Schwalbe, R. A. (2025). Comparison of the Differing Impacts of Lowered N-Acetylglucosaminyltransferase-Ia/b Activity on Motor and Sensory Function in Zebrafish. International Journal of Translational Medicine, 5(3), 36. https://doi.org/10.3390/ijtm5030036