Growth Promotion and Economic Benefits of the Probiotic Lactiplantibacillus plantarum in Calves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Probiotics
2.3. Study Protocol for Probiotic Feeding
2.4. Fecal and Blood Samples
2.5. Clinical Observation
2.6. Intestinal Bacteria Culture
2.7. Serum Cytokine
2.8. Peripheral Blood Mononuclear Cell (PBMC) Isolation
2.9. Measurement of Cytokine Gene Expression
2.10. Statistical Analysis
3. Results
3.1. Clinical Follow-Up and Medical Costs
3.2. Comparison of Gut Bacteria Counts
3.3. ILβ and IL6 in Serum
3.4. Cytokine Gene Expression in PBMC 28 Days After LP1 Treatment
3.5. Serum Cytokine Levels on Day 63 After Lp1 Feeding
3.6. Comparison of Cytokine Expression in PBMCs 3 Weeks After the End of LP1 Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortese, V.S. Neonatal Immunology. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Cuttance, E.; Laven, R. Perinatal mortality risk factors in dairy calves. Vet. J. 2019, 253, 105394. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Ishibashi, N.; Shimamura, S. Effect of Administration of Bifidobacteria and Lactic Acid Bacteria to Newborn Calves and Piglets. J. Dairy Sci. 1995, 78, 2838–2846. [Google Scholar] [CrossRef] [PubMed]
- Kimura, N.; Yoshikane, M.; Kobayashi, A.; Mitsuoka, T. An Application of Dried Bifidobacteria Preparation to Scouring Animals. Bifid-Microflora 1983, 2, 41–54. [Google Scholar] [CrossRef]
- Takino, T.; Kato-Mori, Y.; Orihashi, T.; Hagiwara, K. Rotavirus Infection Transiently Affects Intestinal Microbiome Composition in Newborn Calves. J. Vet. Med. Res. 2018, 5, 205–450. [Google Scholar]
- Matty, J.M.; Reddout, C.; Adams, J.; Major, M.; Lalman, D.; Biggs, R.; Salak-Johnson, J.L.; Beck, P.A. The Effects of Respiratory Vaccine Type and Timing on Antibody Titers, Immunoglobulins, and Growth Performance in Pre- and Post-Weaned Beef Calves. Vet. Sci. 2023, 10, 37. [Google Scholar] [CrossRef]
- Sandelin, A.; Härtel, H.; Seppä-Lassila, L.; Kaartinen, L.; Rautala, H.; Soveri, T.; Simojoki, H. Field trial to evaluate the effect of an intranasal respiratory vaccine protocol on bovine respiratory disease incidence and growth in a commercial calf rearing unit. BMC Vet. Res. 2020, 16, 73. [Google Scholar] [CrossRef]
- Erickson, N.E.N.; Berenik, A.; Lardner, H.; Lacoste, S.; Campbell, J.; Gow, S.; Waldner, C.; Ellis, J. Evaluation of bovine respiratory syncytial virus (BRSV) and bovine herpesvirus (BHV) specific antibody responses between heterologous and homologous prime-boost vaccinated western Canadian beef calves. Can. Vet. J. 2021, 62, 37–44. [Google Scholar] [PubMed]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Aly, S.S.; Karle, B.M.; Rossitto, P.V.; Overton, M.W.; Lehenbauer, T.W.; Fadel, J.G. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study. J. Dairy Sci. 2020, 103, 1583–1597. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
- Salminen, S.; Bouley, C.; Boutron, M.-C.; Cummings, J.H.; Franck, A.; Gibson, G.R.; Isolauri, E.; Moreau, M.-C.; Roberfroid, M.; Rowland, I. Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 1998, 80 (Suppl. S1), S147–S171. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Elina, T.; Heikki, A.; Seppo, S. Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Microbiol. 2000, 29, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Perdigón, G.; Galdeano, C.M.; Valdez, J.; Medici, M. Interaction of lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 2002, 56, S21–S26. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.M.; Chua, L.S.; El-Enshasy, H.A.; Majid, F.A.A.; Hanapi, S.Z.; Malik, R.A. Effect of temperature and pH on the probiotication of Punica granatum juice using Lactobacillus species. J. Food Biochem. 2019, 43, e12805. [Google Scholar] [CrossRef]
- Okubo, T.; Takemura, N.; Yoshida, A.; Sonoyama, K. KK/Ta Mice Administered Lactobacillus plantarum Strain No. 14 Have Lower Adiposity and Higher Insulin Sensitivity. Biosci. Microbiota, Food Health 2013, 32, 93–100. [Google Scholar] [CrossRef]
- Nishimura, M.; Ohkawara, T.; Tetsuka, K.; Kawasaki, Y.; Nakagawa, R.; Satoh, H.; Sato, Y.; Nishihira, J. Effects of yogurt containing Lactobacillus plantarum HOKKAIDO on immune function and stress markers. J. Tradit. Complement. Med. 2015, 6, 275–280. [Google Scholar] [CrossRef]
- Park, M.-K.; Ngo, V.; Kwon, Y.-M.; Lee, Y.-T.; Yoo, S.; Cho, Y.-H.; Hong, S.-M.; Hwang, H.S.; Ko, E.-J.; Jung, Y.-J.; et al. Lactobacillus plantarum DK119 as a Probiotic Confers Protection against Influenza Virus by Modulating Innate Immunity. PLoS ONE 2013, 8, e75368. [Google Scholar] [CrossRef]
- Chida, S.; Sakamoto, M.; Takino, T.; Kawamoto, S.; Hagiwara, K. Changes in immune system and intestinal bacteria of cows during the transition period. Vet. Anim. Sci. 2021, 14, 100222. [Google Scholar] [CrossRef]
- Alawneh, J.I.; Barreto, M.O.; Moore, R.J.; Soust, M.; Al-Harbi, H.; James, A.S.; Krishnan, D.; Olchowy, T.W. Systematic review of an intervention: The use of probiotics to improve health and productivity of calves. Prev. Vet. Med. 2020, 183, 105147. [Google Scholar] [CrossRef]
- Kishida, S.; Kato-Mori, Y.; Okamoto, M.; Hagiwara, K. Anti-inflammatory effect a specific Lactiplantibacillus plantarum in an ovalbumin-induced asthma model. Microbiol. Immunol. 2022, 66, 442–452. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S. Gut health, stress, and immunity in neonatal dairy calves: The host side of host-pathogen interactions. J. Anim. Sci. Biotechnol. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-I.; Yoon, K.-J. An overview of calf diarrhea—Infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Peel, D.S. The Effect of Market Forces on Bovine Respiratory Disease. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 497–508. [Google Scholar] [CrossRef]
- Hua, X.; Goedert, J.J.; Pu, A.; Yu, G.; Shi, J. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 2016, 3, 172–179. [Google Scholar] [CrossRef]
- Keijser, B.J.F.; Agamennone, V.; Broek, T.J.v.D.; Caspers, M.; van de Braak, A.; Bomers, R.; Havekes, M.; Schoen, E.; van Baak, M.; Mioch, D.; et al. Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome. BMC Genom. 2019, 20, 65. [Google Scholar] [CrossRef]
- Mitsuoka, T. Establishment of intestinal bacteriology. Biosci. Microbiota Food Health 2014, 33, 99–116. [Google Scholar] [CrossRef]
- Sivieri, K.; Morales, M.L.V.; Adorno, M.A.T.; Sakamoto, I.K.; Saad, S.M.I.; Rossi, E.A. Lactobacillus acidophilus CRL 1014 improved “ gut health” in the SHIME® reactor. BMC Gastroenterol. 2013, 13, 100. [Google Scholar] [CrossRef]
- Klopp, R.N.; Franco, J.F.H.; Hogenesch, H.; Dennis, T.S.; Cowles, K.E.; Boerman, J.P. Effect of medium-chain fatty acids on growth, health, and immune response of dairy calves. J. Dairy Sci. 2022, 105, 7738–7749. [Google Scholar] [CrossRef]
- Kanai, T.; Mikami, Y.; Hayashi, A. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J. Gastroenterol. 2015, 50, 928–939. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef]
- Vaughan, A.; Frazer, Z.A.; Hansbro, P.M.; Yang, I.A. COPD and the gut-lung axis: The therapeutic potential of fibre. J. Thorac. Dis. 2019, 11, S2173–S2180. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; Van Der Veeken, J.; DeRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Beheshtipour, J.; Raeeszadeh, M. Evaluation of interleukin-10 (IL-10) and pro-inflammatory cytokines profile in calves naturally infected with neonatal calf diarrhea syndrome. Arch. Razi Inst. 2020, 75, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Vieira, P.; O’garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2019, 217, e20190418. [Google Scholar] [CrossRef] [PubMed]
- Sheil, B.; MacSharry, J.; O’Callaghan, L.; O’Riordan, A.; Waters, A.; Morgan, J.; Collins, J.K.; O’Mahony, L.; Shanahan, F. Role of interleukin (IL-10) in probiotic-mediated immune modulation: An assessment in wild-type and IL-10 knock-out mice. Clin. Exp. Immunol. 2006, 144, 273–280. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, Y.; Yang, G.; Cui, L.; Wu, Z.; Zeng, X.; Pan, D.; Cai, Z. Structure and Anti-Inflammation Potential of Lipoteichoic Acids Isolated from Lactobacillus Strains. Foods 2022, 11, 1610. [Google Scholar] [CrossRef]
- Yang, J.; Cho, H.; Gil, M.; Kim, K.E. Anti-Inflammation and Anti-Melanogenic Effects of Maca Root Extracts Fermented Using Lactobacillus Strains. Antioxidants 2023, 12, 798. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, X.; Yang, H.; Liu, H.; Yang, X.; Liu, Q.; Tian, H.; Xue, Y.; Ren, P.; Kuang, X.; et al. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol. Res. 2022, 175, 106020. [Google Scholar] [CrossRef]
- Rastogi, S.; Singh, A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front. Pharmacol. 2022, 13, 1042189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osawa, K.; Taharaguti, S.; Ito, C.; Takino, T.; Hagiwara, K. Growth Promotion and Economic Benefits of the Probiotic Lactiplantibacillus plantarum in Calves. Int. J. Transl. Med. 2024, 4, 595-607. https://doi.org/10.3390/ijtm4040041
Osawa K, Taharaguti S, Ito C, Takino T, Hagiwara K. Growth Promotion and Economic Benefits of the Probiotic Lactiplantibacillus plantarum in Calves. International Journal of Translational Medicine. 2024; 4(4):595-607. https://doi.org/10.3390/ijtm4040041
Chicago/Turabian StyleOsawa, Kazumasa, Saya Taharaguti, Chiaki Ito, Tadashi Takino, and Katsuro Hagiwara. 2024. "Growth Promotion and Economic Benefits of the Probiotic Lactiplantibacillus plantarum in Calves" International Journal of Translational Medicine 4, no. 4: 595-607. https://doi.org/10.3390/ijtm4040041