A Systematic Review on the Role of Adrenergic Receptors in Angiogenesis Regulation in Health and Disease
Abstract
:1. Introduction
1.1. Angiogenesis
1.2. Adrenergic Receptors
2. Search Strategy
3. Expression of ARs in Endothelial Cells
4. ARs and Physiological Angiogenesis
4.1. The Evidence on the Role of α ARs in Physiological Angiogenesis Is Limited and Contradictory
4.2. The Role of β ARs in Angiogenesis Regulation Is Better Evidenced Compared to That of α ARs but Contradicting Data Still Exist
5. Role of ARs in Non-Neoplastic Pathological Angiogenesis
5.1. The Role of α1 ARs in Heart Failure and Ischemia and Their Correlation to Angiogenesis
5.2. Involvement of β ARs in Angiogenesis-Related Pathologies—Evidence Supports a Positive Regulation of Angiogenesis by β ARs Stimulation
6. Role of ARs in Cancer Angiogenesis
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.; Foldes, G. It Takes Two: Endothelial-Perivascular Cell Cross-Talk in Vascular Development and Disease. Front. Cardiovasc. Med. 2018, 5, 154. [Google Scholar] [CrossRef]
- Jaipersad, A.S.; Lip, G.Y.; Silverman, S.; Shantsila, E. The Role of Monocytes in Angiogenesis and Atherosclerosis. J. Am. Coll. Cardiol. 2014, 63, A22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewska, A.; Wilkus, K.; Brodaczewska, K.; Kieda, C. Endothelial Cells as Tools to Model Tissue Microenvironment in Hypoxia-Dependent Pathologies. Int. J. Mol. Sci. 2021, 22, 520. [Google Scholar] [CrossRef] [PubMed]
- Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr. Physiol. 2016, 6, 1239–1278. [Google Scholar] [CrossRef] [PubMed]
- Schena, G.; Caplan, M.J. Everything You Always Wanted to Know about β3-AR * (* But Were Afraid to Ask). Cells 2019, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.C.; Swigart, P.M.; Montgomery, M.D.; Simpson, P.C. Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010, 382, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, K.; Gräfe, M.; Dümmler, U.; O’Connor, A.; Regitz-Zagrosek, V.; Kunkel, G.; Auch-Schwelk, W.; Fleck, E. Regulation of beta-adrenergic receptors on endothelial cells in culture. Eur. Heart J. 1993, 14, 173–176. [Google Scholar]
- Tkachuk, V.; Buravkova, L.; Resink, T.J.; Mirzopoiazova, T.Y.; Grigorian, G.Y. Molecular mechanism of the desensitization of beta-adrenergic receptors and adenilate cyclase by hypoxia in human endothelial cells. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova 1997, 83, 94–118. [Google Scholar]
- Grigorian, G.I.; Mirzopoiazova, T.I.; Nikashin, A.V.; Goncharov, N.V.; Danilov, S.M. Identification and characteristics of the beta-adrenergic receptors in the membranes of cultured endothelial cells of the human pulmonary artery. Probl. Endocrinol. 1989, 35, 37–40. [Google Scholar]
- Howell, R.E.; Albelda, S.M.; Daise, M.L.; Levine, E.M. Characterization of beta-adrenergic receptors in cultured human and bovine endothelial cells. J. Appl. Physiol. 1988, 65, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, A.P.; Fox, J.M.; Pullar, C.E. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis. J. Cell. Physiol. 2015, 230, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durieu-Trautmann, O.; Foignant, N.; Strosberg, A.D.; Couraud, P.O. Coexpression of ß1- and ß2-Adrenergic Receptors on Bovine Brain Capillary Endothelial Cells in Culture. J. Neurochem. 1991, 56, 775–781. [Google Scholar] [CrossRef]
- Safi, S.Z.; Qvist, R.; Yan, G.O.S.; Bin Ismail, I.S. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells. BMC Med. Genom. 2014, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinci, M.C.; Bellik, L.; Filippi, S.; Ledda, F.; Parenti, A. Trophic effects induced by α1D-adrenoceptors on endothelial cells are potentiated by hypoxia. Am. J. Physiol. Circ. Physiol. 2007, 293, H2140–H2147. [Google Scholar] [CrossRef]
- Pan, L.; Liu, C.; Kong, Y.; Piao, Z.; Cheng, B. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells. Clin. Hemorheol. Microcirc. 2017, 65, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Lei, X.; Yao, Z.; Chen, C.; Cheng, B. Nonselective alpha-/beta- AR antagonists can inhibit pericyte proliferation, migration, and secretion in vitro. Clin. Hemorheol. Microcirc. 2020, 75, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Keledjian, K.; Garrison, J.B.; Kyprianou, N. Doxazosin inhibits human vascular endothelial cell adhesion, migration, and invasion. J. Cell. Biochem. 2005, 94, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, M.; Santulli, G.; Campanile, A.; Galasso, G.; Cervero, P.; Altobelli, G.G.; Cimini, V.; Pastore, L.; Piscione, F.; Trimarco, B.; et al. Endothelial α1 -adrenoceptors regulate neo-angiogenesis. Br. J. Pharmacol. 2008, 153, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-L.; Guh, J.-H.; Huang, Y.-W.; Chern, J.-W.; Chou, J.-Y.; Teng, C.-M. Identification of apoptotic and antiangiogenic activities of terazosin in human prostate cancer and endothelial cells. J. Urol. 2003, 169, 724–729. [Google Scholar] [CrossRef]
- Muthig, V.; Gilsbach, R.; Haubold, M.; Philipp, M.; Ivacevic, T.; Gessler, M.; Hein, L. Upregulation of Soluble Vascular Endothelial Growth Factor Receptor 1 Contributes to Angiogenesis Defects in the Placenta of α 2B -Adrenoceptor–Deficient Mice. Circ. Res. 2007, 101, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Roskoski, R. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res. 2015, 100, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Pardanaud, L.; Pibouin-Fragner, L.; Dubrac, A.; Mathivet, T.; English, I.; Brunet, I.; Simons, M.; Eichmann, A. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity. Circ. Res. 2016, 119, 607–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaccarino, G.; Ciccarelli, M.; Sorriento, D.; Galasso, G.; Campanile, A.; Santulli, G.; Cipolletta, E.; Cerullo, V.; Cimini, V.; Altobelli, G.G.; et al. Ischemic Neoangiogenesis Enhanced by β2-Adrenergic Receptor Overexpression. Circ. Res. 2005, 97, 1182–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, J.; Feng, Y.-X.; Jansen, S.R.; Friedrich, J.; Lezoualc’H, F.; Schmidt, M.; Wieland, T. Catecholamines facilitate VEGF-dependent angiogenesis via β2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget 2017, 8, 44732–44748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galasso, G.; De Rosa, R.; Ciccarelli, M.; Sorriento, D.; Del Giudice, C.; Strisciuglio, T.; De Biase, C.; Luciano, R.; Piccolo, R.; Pierri, A.; et al. β 2 -Adrenergic Receptor Stimulation Improves Endothelial Progenitor Cell–Mediated Ischemic Neoangiogenesis. Circ. Res. 2013, 112, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Ciccarelli, M.; Sorriento, D.; Cipolletta, E.; Santulli, G.; Fusco, A.; Zhou, R.-H.; Eckhart, A.D.; Peppel, K.; Koch, W.J.; Trimarco, B.; et al. Impaired neoangiogenesis in β2-adrenoceptor gene-deficient mice: Restoration by intravascular human β2-adrenoceptor gene transfer and role of NFκB and CREB transcription factors. Br. J. Pharmacol. 2011, 162, 712–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemmens, S.; Kusters, L.; Bronckaers, A.; Geurts, N.; Hendrix, S. The β2-Adrenoceptor Agonist Terbutaline Stimulates Angiogenesis via Akt and ERK Signaling. J. Cell Physiol. 2017, 232, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Shu, X.-R.; Wu, F.; Hu, Q.-S.; Deng, B.-Q.; Wang, J.-F.; Nie, R.-Q. Overexpression of the β2AR gene improves function and re-endothelialization capacity of EPCs after arterial injury in nude mice. Stem. Cell Res. Ther. 2016, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Banquet, S.; Delannoy, E.; Agouni, A.; Dessy, C.; Lacomme, S.; Hubert, F.; Richard, V.; Muller, B.; Leblais, V. Role of Gi/o-Src kinase-PI3K/Akt pathway and caveolin-1 in β2-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery. Cell Signal 2011, 23, 1136–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Aso, M.; Flacco, N.; Carpena, N.; Montesinos, M.C.; D’Ocon, P.; Ivorra, M.D. β-Adrenoceptors differentially regulate vascular tone and angiogenesis of rat aorta via ERK1/2 and p38. Vasc. Pharmacol. 2014, 61, 80–89. [Google Scholar] [CrossRef]
- Stohl, L.L.; Zang, J.B.; Ding, W.; Manni, M.; Zhou, X.K.; Granstein, R.D. Norepinephrine and adenosine-5′-triphosphate synergize in inducing IL-6 production by human dermal microvascular endothelial cells. Cytokine 2013, 64, 605–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinathan, G.; Milagre, C.; Pearce, O.; Reynolds, L.E.; Hodivala-Dilke, K.; Leinster, D.A.; Zhong, H.; Hollingsworth, R.E.; Thompson, R.G.; Whiteford, J.R.; et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015, 75, 3098–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullar, C.E.; Le Provost, G.S.; O’Leary, A.P.; Evans, S.E.; Baier, B.S.; Isseroff, R.R. β2AR Antagonists and β2AR Gene Deletion Both Promote Skin Wound Repair Processes. J. Investig. Dermatol. 2012, 132, 2076–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Provost, G.S.; Pullar, C.E. β2-Adrenoceptor Activation Modulates Skin Wound Healing Processes to Reduce Scarring. J. Investig. Dermatol. 2015, 135, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.-C.; Chi, C.-S.; Yin, S.-C.; Hwang, B.; Chiu, Y.-T.; Hsu, S.-L. Norepinephrine induces apoptosis in neonatal rat endothelial cells via down-regulation of Bcl-2 and activation of β-adrenergic and caspase-2 pathways. Cardiovasc. Res. 2004, 61, 143–151. [Google Scholar] [CrossRef]
- Tsopanoglou, N.E.; Haralabopoulos, G.C.; Maragoudakis, M.E. Opposing Effects on Modulation of Angiogenesis by Protein Kinase C and cAMP-Mediated Pathways. J. Vasc. Res. 1994, 31, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Favot, L.; Keravis, T.; Holl, V.; Le Bec, A.; Lugnier, C. VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb. Haemost. 2003, 90, 334–343. [Google Scholar] [CrossRef]
- Kim, S.; Bakre, M.; Yin, H.; Varner, J.A. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J. Clin. Investig. 2002, 110, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Baluk, P.; McDonald, D.M. The beta 2-adrenergic receptor agonist formoterol reduces microvascular leakage by inhibiting endothelial gap formation. Am. J. Physiol. Cell. Mol. Physiol. 1994, 266, L461–L468. [Google Scholar] [CrossRef] [PubMed]
- Zink, S.; Rösen, P.; Lemoine, H. Micro- and macrovascular endothelial cells in beta-adrenergic regulation of transendothelial permeability. Am. J. Physiol. Physiol. 1995, 269, C1209–C1218. [Google Scholar] [CrossRef]
- Tonello, C.; Giordano, A.; Cozzi, V.; Cinti, S.; Stock, M.J.; Carruba, M.O.; Nisoli, E. Role of sympathetic activity in controlling the expression of vascular endothelial growth factor in brown fat cells of lean and genetically obese rats. FEBS Lett. 1999, 442, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.P.; Jacob, R.F.; Corbalan, J.J.; Szczesny, D.; Matysiak, K.; Malinski, T. The favorable kinetics and balance of nebivolol-stimulated nitric oxide and peroxynitrite release in human endothelial cells. BMC Pharmacol. Toxicol. 2013, 14, 48. [Google Scholar] [CrossRef] [Green Version]
- Kou, R.; Michel, T. Epinephrine Regulation of the Endothelial Nitric-oxide Synthase. J. Biol. Chem. 2007, 282, 32719–32729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, G.; Lin, K.; Yin, H.; Zhou, C.; Liu, T.; Wu, G.; Qian, G. Rab1 GTPase promotes expression of β-adrenergic receptors in rat pulmonary microvascular endothelial cells. Int. J. Biochem. Cell Biol. 2010, 42, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, L.E.; Alcobia, D.C.; White, C.; Peach, C.; Glenn, J.R.; Zimmerman, K.; Kondrashov, A.; Pfleger, K.; Ohana, R.F.; Robers, M.B.; et al. Complex Formation between VEGFR2 and the β2-Adrenoceptor. Cell Chem. Biol. 2019, 26, 830–841.e9. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Balaji, P.; Pachon, R.; Beniamen, D.M.; Vatner, D.E.; Graham, R.M.; Vatner, S.F. Overexpression of Cardiomyocyte α 1A -Adrenergic Receptors Attenuates Postinfarct Remodeling by Inducing Angiogenesis Through Heterocellular Signaling. Arter. Thromb. Vasc. Biol. 2015, 35, 2451–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wnęk, A.; Andrzejewska, E.; Kobos, J.; Taran, K.; Przewratil, P. Molecular and immunohistochemical expression of apoptotic proteins Bax, Bcl-2 and Caspase 3 in infantile hemangioma tissues as an effect of propranolol treatment. Immunol. Lett. 2017, 185, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Kunimoto, K.; Inaba, Y.; Mikita, N.; Kaminaka, C.; Kanazawa, N.; Yamamoto, Y.; Kakimoto, N.; Suenaga, T.; Takeuchi, T.; et al. Change of serum cytokine profiles by propranolol treatment in patients with infantile hemangioma. Drug Discov. Ther. 2020, 14, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; North, P.E.; Elsey, J.; Bubley, J.; Rao, S.; Jung, Y.; Wu, S.; Zou, M.-H.; Pollack, B.P.; Kumar, J.; et al. Propranolol exhibits activity against hemangiomas independent of beta blockade. NPJ Precis. Oncol. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Chen, S.; Li, K.; Xiao, X.; Zheng, S.; Xu, T. The role of β-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Div. 2013, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, C.E.E.; Hernández, A.G.; Villalón, C.M.; Rodríguez, M.G.; Cancino, B.A.M. β-Adrenoceptor Blockade for Infantile Hemangioma Therapy: Do β3-Adrenoceptors Play a Role? J. Vasc. Res. 2018, 55, 159–168. [Google Scholar] [CrossRef]
- Bhutto, I.A.; McLeod, D.S.; Hasegawa, T.; Kim, S.Y.; Merges, C.; Tong, P.; Lutty, G.A. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp. Eye Res. 2006, 82, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Tahiri, H.; Omri, S.; Yang, C.; Duhamel, F.; Samarani, S.; Ahmad, A.; Vezina, M.; Bussières, M.; Vaucher, E.; Sapieha, P.; et al. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Sci. Rep. 2016, 6, 37391. [Google Scholar] [CrossRef]
- Omri, S.; Tahiri, H.; Pierre, W.C.; DesJarlais, M.; Lahaie, I.; Loiselle, S.-E.; Rezende, F.; Lodygensky, G.; Hebert, T.E.; Ong, H.; et al. Propranolol Attenuates Proangiogenic Activity of Mononuclear Phagocytes: Implication in Choroidal Neovascularization. Investig. Opthalmology Vis. Sci. 2019, 60, 4632–4642. [Google Scholar] [CrossRef]
- Yun, J.-H.; Koh, Y.J.; Jeong, H.-S.; Lee, D.-H.; Lee, E.H.; Cho, C.-H. Propranolol increases vascular permeability through pericyte apoptosis and exacerbates oxygen-induced retinopathy. Biochem. Biophys. Res. Commun. 2018, 503, 2792–2799. [Google Scholar] [CrossRef]
- Martini, D.; Monte, M.D.; Ristori, C.; Cupisti, E.; Mei, S.; Fiorini, P.; Filippi, L.; Bagnoli, P. Antiangiogenic effects of β2-adrenergic receptor blockade in a mouse model of oxygen-induced retinopathy. J. Neurochem. 2011, 119, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Liu, Y.; Yang, Y.; Tang, J.; Cheng, B. Topical 1% propranolol cream promotes cutaneous wound healing in spontaneously diabetic mice. Wound Repair Regen. 2017, 25, 389–397. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Nascimento, A.P.; Monte-Alto-Costa, A. Propranolol improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2009, 611, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J. Clin. Med. 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Zuazo-Gaztelu, I.; Casanovas, O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front. Oncol. 2018, 8, 248. [Google Scholar] [CrossRef]
- Hu, P.; He, J.; Liu, S.; Wang, M.; Pan, B.; Zhang, W. β2-adrenergic receptor activation promotes the proliferation of A549 lung cancer cells via the ERK1/2/CREB pathway. Oncol. Rep. 2016, 36, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Mulcrone, P.L.; Campbell, J.P.; Clément-Demange, L.; Anbinder, A.L.; Merkel, A.; Brekken, R.A.; Sterling, J.A.; Elefteriou, F. Skeletal Colonization by Breast Cancer Cells Is Stimulated by an Osteoblast and β2AR-Dependent Neo-Angiogenic Switch. J. Bone Miner. Res. 2017, 32, 1442–1454. [Google Scholar] [CrossRef]
- Nuevo-Tapioles, C.; Santacatterina, F.; Stamatakis, K.; De Arenas, C.N.; De Cedrón, M.G.; Formentini, L.; Cuezva, J.M. Coordinate β-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nat. Commun. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Bhat, M.; Peters, S.; Mitra, R.; Oberyszyn, T.; Basu, S. Suppression of beta 2 adrenergic receptor actions prevent UVB mediated cutaneous squamous cell tumorigenesis through inhibition of VEGF-A induced angiogenesis. Mol. Carcinog. 2021, 60, 172–178. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Zhang, L.; Hu, X.; Wang, Z.; Ni, H.; Wang, Y.; Qin, J. Activation of β2-Adrenergic Receptor Promotes Growth and Angiogenesis in Breast Cancer by Down-regulating PPARγ. Cancer Res. Treat. 2020, 52, 830–847. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, B.-J.; Ji, S.; Wu, J.-F.; Xu, C.-Q.; Du, Y.-J.; You, X.-F.; Li, B.; Le, J.-J.; Xu, H.-L.; et al. Social defeat stress promotes tumor growth and angiogenesis by upregulating vascular endothelial growth factor/extracellular signal-regulated kinase/matrix metalloproteinase signaling in a mouse model of lung carcinoma. Mol. Med. Rep. 2012, 12, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Xing, Y.; Meng, Q.; Lu, H.; Liu, W.; Yan, S.; Song, Y.; Xu, X.; Huang, J.; Cui, Y.; et al. Mammalian Eps15 homology domain 1 potentiates angiogenesis of non-small cell lung cancer by regulating β2AR signaling. J. Exp. Clin. Cancer Res. 2019, 38, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulsurkar, M.; Li, Z.; Zhang, Y.; Li, X.; Zheng, D.; Li, W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 2017, 36, 1525–1536. [Google Scholar] [CrossRef]
- Zahalka, A.H.; Arnal-Estapé, A.; Maryanovich, M.; Nakahara, F.; Cruz, C.D.; Finley, L.W.S.; Frenette, P.S. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 2017, 358, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Wei, Y.; Li, Z.-Y.; Cai, X.-Y.; Zhang, L.-L.; Dong, X.-R.; Zhang, S.; Zhang, R.-G.; Meng, R.; Zhu, F.; et al. Catecholamines contribute to the neovascularization of lung cancer via tumor-associated macrophages. Brain Behav. Immun. 2019, 81, 111–121. [Google Scholar] [CrossRef]
- Qin, J.-F.; Jin, F.-J.; Li, N.; Guan, H.-T.; Lan, L.; Ni, H.; Wang, Y. Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep. 2015, 48, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Colon-Echevarria, C.B.; Ortiz, T.; Maldonado, L.; Hidalgo-Vargas, M.J.; Pérez-Morales, J.; Aquino-Acevedo, A.N.; Herrera-Noriega, R.; Bonilla-Claudio, M.; Castro, E.M.; Armaiz-Pena, G.N. Zoledronic Acid Abrogates Restraint Stress-Induced Macrophage Infiltration, PDGF-AA Expression, and Ovarian Cancer Growth. Cancers 2020, 12, 2671. [Google Scholar] [CrossRef]
- Léauté-Labrèze, C.; De La Roque, E.D.; Hubiche, T.; Boralevi, F.; Thambo, J.-B.; Taïeb, A. Propranolol for Severe Hemangiomas of Infancy. N. Engl. J. Med. 2008, 358, 2649–2651. [Google Scholar] [CrossRef]
- Saerens, J.; De Leye, H.; Janmohamed, S.R. News on infantile haemangioma. Part 2: Therapy and evaluation. Clin. Exp. Dermatol. 2021, 46, 480–486. [Google Scholar] [CrossRef]
- Cannavo, A.; Koch, W.J. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade. J. Cardiovasc. Pharmacol. 2017, 69, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.W.; Marsch, E.; Treps, L.; Baes, M.; Carmeliet, P. Endothelial cell metabolism in health and disease: Impact of hypoxia. EMBO J. 2017, 36, 2187–2203. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, T.; Li, Y.; Feng, J.; Nie, R.; Wang, X.; Peng, C.; Ke, X. β2AR-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress. J. Hypertens. 2020, 38, 82–94. [Google Scholar] [CrossRef]
- Long, Q.; Liu, X.; Qi, Q.; Guo, S.-W. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor β2. Hum. Reprod. 2016, 31, 2506–2519. [Google Scholar] [CrossRef] [Green Version]
- Uzunlar, O.; Ozyer, S.; Engin-Ustun, Y.; Moraloglu, O.; Gulerman, H.C.; Caydere, M.; Keskin, S.M.; Mollamahmutoglu, L. Effects of repeated propranolol administration in a rat model of surgically induced endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 182, 167–171. [Google Scholar] [CrossRef]
AR | Expression | Signaling Pathway | Effect |
---|---|---|---|
α1 | vascular smooth muscle cells endothelial cells cardiomyocytes prostate smooth muscle cells brain | Gq/PLC/PKC and increased Ca2+ | vasoconstriction migration/proliferation positive inotropy/survival smooth muscle constriction complex cellular responses |
α2 | autonomic ganglia sympathetic neurons central nervous system pancreas platelets kidneys tubular epithelium vascular smooth muscle cells GI smooth muscle cells | Gi/AC/decreased cAMP | neurotransmitter release suppression control of sympathetic flow sympathetic outflow modulation insulin release inhibition aggregation diuresis vasoconstriction decreased GI mobility |
β1 | cardiomyocytes kidney smooth muscle cells adipocytes | Gs/AC/increased cAMP | positive inotropy and chronotropy renin release lipolysis |
β2 | vascular smooth muscle cells endothelial cells GI smooth muscle cells lung smooth muscle cells cardiomyocytes uterus smooth muscle cells bladder smooth muscle cells adipocytes pancreas eyes (ciliary epithelium) liver skeletal muscle | Gs/AC/increased cAMP | vasodilation migration/proliferation decreased contractility bronchodilation increased contractility and heart rate relaxation relaxation lipolysis insulin and glucagon secretion decreased fluid production glycogenolysis/ contraction |
β3 | cardiomyocytes endothelial cells adipocytes, brown adipocytes bladder smooth muscle cells gallbladder retina epithelial cells | Gs/AC/increased cAMP or Gi/AC/decreased cAMP | negative inotropy migration/proliferation lipolysis, thermogenesis relaxation contraction decreased protection |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xanthopoulos, A.; Daskalopoulou, I.; Frountzi, S.; Papadimitriou, E. A Systematic Review on the Role of Adrenergic Receptors in Angiogenesis Regulation in Health and Disease. Int. J. Transl. Med. 2021, 1, 353-365. https://doi.org/10.3390/ijtm1030021
Xanthopoulos A, Daskalopoulou I, Frountzi S, Papadimitriou E. A Systematic Review on the Role of Adrenergic Receptors in Angiogenesis Regulation in Health and Disease. International Journal of Translational Medicine. 2021; 1(3):353-365. https://doi.org/10.3390/ijtm1030021
Chicago/Turabian StyleXanthopoulos, Athanasios, Iliana Daskalopoulou, Sofia Frountzi, and Evangelia Papadimitriou. 2021. "A Systematic Review on the Role of Adrenergic Receptors in Angiogenesis Regulation in Health and Disease" International Journal of Translational Medicine 1, no. 3: 353-365. https://doi.org/10.3390/ijtm1030021
APA StyleXanthopoulos, A., Daskalopoulou, I., Frountzi, S., & Papadimitriou, E. (2021). A Systematic Review on the Role of Adrenergic Receptors in Angiogenesis Regulation in Health and Disease. International Journal of Translational Medicine, 1(3), 353-365. https://doi.org/10.3390/ijtm1030021