An Open-Source Computer-Vision-Based Method for Spherical Microplastic Settling Velocity Calculation
Abstract
1. Introduction
- Development of a YOLOv12n-based AI-vision system designed to detect and track spherical MPs, one at a time, during settling, with high accuracy across different water types (distilled, river, and seawater).
- Calculation of MP settling velocity using an automated method capable of generating reproducible values.
- Quantitative assessment of system performance through comparison with ground-truth settling times measured via stopwatch and frame counts, enabling a rigorous evaluation of model accuracy.
- Creation of a labeled dataset of MP settling videos, which can support future research on AI-based detection and hydrodynamic modeling.
2. Materials and Methods
2.1. Our Previous Work
2.2. Overview of Proposed Method
2.3. Experimental Setup
2.4. Microplastics
2.5. Software Development
2.6. Dataset and Model Training
2.7. Velocity Calculations
2.8. Model Evaluation
3. Results and Analysis
3.1. Model Performance
3.2. Settling Velocity Calculations
3.3. Ground Truth Analysis
3.4. Microplastic Settling Dynamics
3.5. Limitations
3.6. Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Law, K.L.; Thompson, R.C. Microplastics in the seas. Science 2014, 345, 144–145. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of microplastic in the environment. In Microplastics in Terrestrial Environments; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2020; pp. 143–159. [Google Scholar]
- Yu, H.; Zhang, W.; Zheng, L.; Li, T.; Hai, C.; Wang, Y.; Lyu, T. A review of the migration mechanisms of microplastics in terrestrial environments. Environ. Eng. Res. 2024, 29, 230734. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Tang, C. A review of possible pathways of marine microplastics transport in the ocean. Anthr. Coasts 2020, 3, 6–13. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- MacArthur, D.; Waughray, D.; Stuchtey, M.R. The New Plastics Economy: Rethinking the Future of Plastics. World Economic Forum. 2016. Available online: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 30 July 2025).
- Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Occurrence and ecological impacts of microplastics in soil systems: A review. Bull. Environ. Contam. Toxicol. 2019, 102, 741–749. [Google Scholar] [CrossRef]
- Gola, D.; Tyagi, P.K.; Arya, A.; Chauhan, N.; Agarwal, M.; Singh, S.K.; Gola, S. The impact of microplastics on marine environment: A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100552. [Google Scholar] [CrossRef]
- Prata, J.C.; Da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2019, 702, 134455. [Google Scholar] [CrossRef]
- Drummond, J.D.; Nel, H.A.; Packman, A.I.; Krause, S. Significance of hyporheic exchange for predicting microplastic fate in rivers. Environ. Sci. Technol. Lett. 2020, 7, 727–732. [Google Scholar] [CrossRef]
- Kane, I.A.; Clare, M.A. Dispersion, Accumulation, and the Ultimate Fate of Microplastics in Deep-Marine Environments: A review and future directions. Front. Earth Sci. 2019, 7, 457987. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Liu, X.; Singh, V.P. Dispersal and transport of microplastic particles under different flow conditions in riverine ecosystem. J. Hazard. Mater. 2022, 442, 130033. [Google Scholar] [CrossRef] [PubMed]
- Baudena, A.; Kiko, R.; Jalón-Rojas, I.; Pedrotti, M.L. Low-Density Plastic Debris Dispersion beneath the Mediterranean Sea Surface. Environ. Sci. Technol. 2023, 57, 7503–7515. [Google Scholar] [CrossRef]
- De La Fuente, R.; Drótos, G.; Hernández-García, E.; López, C.; Van Sebille, E. Sinking microplastics in the water column: Simulations in the Mediterranean Sea. Ocean Sci. 2021, 17, 431–453. [Google Scholar] [CrossRef]
- Daily, J.; Hoffman, M.J. Modeling the three-dimensional transport and distribution of multiple microplastic polymer types in Lake Erie. Mar. Pollut. Bull. 2020, 154, 111024. [Google Scholar] [CrossRef]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef]
- Khatmullina, L.; Isachenko, I. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 2016, 114, 871–880. [Google Scholar] [CrossRef]
- Kowalski, N.; Reichardt, A.M.; Waniek, J.J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 2016, 109, 310–319. [Google Scholar] [CrossRef]
- Ballent, A.; Pando, S.; Purser, A.; Juliano, M.F.; Thomsen, L. Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon. Biogeosciences 2013, 10, 7957–7970. [Google Scholar] [CrossRef]
- Ballent, A.; Purser, A.; De Jesus Mendes, P.; Pando, S.; Thomsen, L. Physical transport properties of marine microplastic pollution. Biogeosci. Disc. 2012, 9, 18755–18798. [Google Scholar]
- Law, K.L.; Morét-Ferguson, S.; Maximenko, N.A.; Proskurowski, G.; Peacock, E.E.; Hafner, J.; Reddy, C.M. Plastic accumulation in the North Atlantic subtropical gyre. Science 2010, 329, 1185–1188. [Google Scholar] [CrossRef]
- Waldschläger, K.; Schüttrumpf, H. Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions. Environ. Sci. Technol. 2019, 53, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Debroy, A.; George, N.; Mukherjee, G. Role of biofilms in the degradation of microplastics in aquatic environments. J. Chem. Technol. Biotechnol. 2021, 97, 3271–3282. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Fu, W.; Xia, X.; Liu, C.; Min, J.; Zhang, W.; Crittenden, J.C. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling. Water Res. 2019, 161, 486–495. [Google Scholar] [CrossRef]
- Rosal, R. Morphological description of microplastic particles for environmental fate studies. Mar. Pollut. Bull. 2021, 171, 112716. [Google Scholar] [CrossRef]
- Waldschläger, K.; Schüttrumpf, H. Erosion behavior of different microplastic particles in comparison to natural sediments. Environ. Sci. Technol. 2019, 53, 13219–13227. [Google Scholar] [CrossRef]
- Leng, Z.; Cao, L.; Gao, Y.; Hou, Y.; Wu, D.; Huo, Z.; Zhao, X. Prediction of settling velocity of microplastics by multiple Machine-Learning Methods. Water 2024, 16, 1850. [Google Scholar] [CrossRef]
- Dai, C.; Yuan, F.; Wang, D.; Yang, X.; Du, J.; Yu, W.; Zhang, C. Settling velocity of submillimeter microplastic fibers in still water. Sci. Total Environ. 2023, 907, 168054. [Google Scholar] [CrossRef]
- Dittmar, S.; Ruhl, A.S.; Jekel, M. Optimized and Validated Settling Velocity Measurement for Small Microplastic Particles (10–400 μm). ACS EST Water 2023, 3, 4056–4065. [Google Scholar] [CrossRef]
- Nguyen, T. H.; Kieu-Le, T.-C.; Tang, F.H.M.; Maggi, F. Controlling factors of microplastic fibre settling through a water column. Sci. Total Environ. 2022, 838, 156011. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Romero-Ramírez, A.; Fauquembergue, K.; Rossignol, L.; Cachot, J.; Sous, D.; Morin, B. Effects of biofilms and particle physical properties on the rising and settling velocities of microplastic fibers and sheets. Environ. Sci. Technol. 2022, 56, 8114–8123. [Google Scholar] [CrossRef] [PubMed]
- Elagami, H.; Ahmadi, P.; Fleckenstein, J. H.; Frei, S.; Obst, M.; Agarwal, S.; Gilfedder, B.S. Measurement of microplastic settling velocities and implications for residence times in thermally stratified lakes. Limnol. Oceanogr. 2022, 67, 934–945. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A survey. Int. J. Comput. Vis. 2019, 128, 261–318. [Google Scholar] [CrossRef]
- Khan, M. The Art of Seeing: A Computer Vision Journey into Object Detection. Adv. Mach. Learn. Artif. Intell. 2024, 5, 1–7. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, A.; Valero-Mas, J.J.; Gallego, A.J.; Calvo-Zaragoza, J. An experimental study on marine debris location and recognition using object detection. Pattern Recognit. Lett. 2022, 168, 154–161. [Google Scholar] [CrossRef]
- Figueroa, J.; Rivas-Villar, D.; Rouco, J.; Novo, J. Phytoplankton detection and recognition in freshwater digital microscopy images using deep learning object detectors. Heliyon 2024, 10, e25367. [Google Scholar] [CrossRef]
- Lopez-Marcano, S.; Jinks, E. L.; Buelow, C.A.; Brown, C.J.; Wang, D.; Kusy, B.; Ditria, E.M.; Connolly, R.M. Automatic detection of fish and tracking of movement for ecology. Ecol. Evol. 2021, 11, 8254–8263. [Google Scholar] [CrossRef]
- Sarker, M.A.B.; Imtiaz, M.H.; Holsen, T.M.; Baki, A.B.M. Real-Time detection of microplastics using an AI camera. Sensors 2024, 24, 4394. [Google Scholar] [CrossRef]
- See3CAM_CU135—4K USB Camera. Available online: https://www.e-consystems.com/4k-usb-camera.asp (accessed on 14 January 2024).
- Sola Video 2500 Flood. Available online: https://lightandmotion.com/products/sola-video-2500-flood (accessed on 1 February 2024).
- Best Acrylics Long Square Clear Acrylic Plexiglass Tube. Available online: https://a.co/d/3qu1VxC (accessed on 29 May 2025).
- Happy Belly Fine Ground Sea Salt. Available online: https://www.amazon.com/Amazon-Brand-Happy-Ground-Ounces/dp/B07QW1G8MW?th=1 (accessed on 13 June 2025).
- Multifunction TDS/EC/pH/SALT/TEMP Water Quality Tester. Available online: https://www.amazon.com/Quality-Analyzer-Portable-Digital-Backlight/dp/B0CP4F54HX?gQT=1 (accessed on 13 June 2025).
- Sas, W. Water Density Calculator. Available online: https://www.omnicalculator.com/physics/water-density (accessed on 29 July 2025).
- FCXJTU Digital Stopwatch. Available online: https://www.amazon.com/FCXJTU-Stopwatch-Operation-Swimming-Training/dp/B0CP849S3C?th=1 (accessed on 23 June 2025).
- Polymer Spheres. Available online: https://www.cospheric.com/ (accessed on 14 January 2024).
- Plastic Balls. Available online: https://www.plasticballs.com/ (accessed on 14 January 2024).
- Label Studio. Available online: https://labelstud.io (accessed on 2 June 2025).
- Vijayakumar, A.; Vairavasundaram, S. YOLO-based Object Detection Models: A Review and its Applications. Multimed. Tools Appl. 2024, 83, 83535–83574. [Google Scholar] [CrossRef]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2022, 82, 9243–9275. [Google Scholar] [CrossRef]
- Ultralytics. Available online: https://docs.ultralytics.com/models/yolo12/ (accessed on 2 June 2025).
- Brown, P.P.; Lawler, D.F. Sphere drag and settling velocity revisited. J. Environ. Eng. 2003, 129, 222–231. [Google Scholar] [CrossRef]
- Zhang, J.; Choi, C.E. Towards A universal settling model for microplastics with diverse shapes: Machine learning breaking morphological barriers. Water Res. 2024, 272, 122961. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, W.E. Settling velocity of natural particles. Water Resour. Res. 1982, 18, 1615–1626. [Google Scholar] [CrossRef]
- Ijaz, U.; Baki, A.B.M.; Wu, W.; Zhang, W. Settling velocity of microplastics in turbulent open-channel flow. Sci. Total Environ. 2024, 946, 174179. [Google Scholar] [CrossRef] [PubMed]
- Hazzab, A.; Terfous, A.; Ghenaim, A. Measurement and modeling of the settling velocity of isometric particles. Powder Technol. 2007, 184, 105–113. [Google Scholar] [CrossRef]
Size (mm) | Density (kg/m3) | Polymer Type | Color | Shape |
---|---|---|---|---|
3 | 1190 | Acrylic | Green | Spherical |
4 | 1300 | Cellulose Acetate | White | Spherical |
5 | 1050 | Acrylic | Yellow | Spherical |
Size (mm) | Density (kg/m3) | Water Type | Mean (cm/s) | Standard Deviation (cm/s) |
---|---|---|---|---|
3 | 1190 | Distilled | 10.843 | 0.1163 |
3 | 1190 | River | 10.824 | 0.1474 |
3 | 1190 | Saltwater | 9.696 | 0.0730 |
4 | 1300 | Distilled | 16.317 | 0.3085 |
4 | 1300 | River | 16.387 | 0.2376 |
4 | 1300 | Saltwater | 15.299 | 0.2704 |
5 | 1050 | Distilled | 5.897 | 0.5709 |
5 | 1050 | River | 6.114 | 0.4230 |
5 | 1050 | Saltwater | 3.408 | 0.7979 |
Size (mm) | Water Type | Model-Derived Mean (cm/s) | Brown and Lawler (cm/s) | MPE (%) | Zhang and Choi (cm/s) | MPE (%) |
---|---|---|---|---|---|---|
3 | Distilled | 10.843 | 10.628 | 2.023 | 9.495 | 14.199 |
3 | River | 10.824 | 10.637 | 1.754 | 9.496 | 13.980 |
3 | Saltwater | 9.696 | 9.603 | 0.965 | 8.682 | 11.685 |
4 | Distilled | 16.317 | 16.846 | 3.138 | 15.274 | 6.828 |
4 | River | 16.387 | 16.8449 | 2.718 | 15.273 | 7.292 |
4 | Saltwater | 15.299 | 15.797 | 3.151 | 14.206 | 7.693 |
5 | Distilled | 5.897 | 7.225 | 18.380 | 6.378 | 7.538 |
5 | River | 6.114 | 7.245 | 15.613 | 6.388 | 4.287 |
5 | Saltwater | 3.408 | 4.657 | 26.817 | 4.366 | 21.941 |
Size (mm) | Density (kg/m3) | Water Type | Mean (cm/s) | Standard Deviation (cm/s) |
---|---|---|---|---|
3 | 1190 | Distilled | 10.684 | 0.1254 |
4 | 1300 | Distilled | 16.368 | 0.2269 |
5 | 1050 | Distilled | 6.193 | 0.8686 |
Size (mm) | Water Type | MAE (cm/s) | MPE (%) |
---|---|---|---|
3 | Distilled | 0.6166 | 6.101 |
3 | River | 0.6488 | 6.452 |
3 | Saltwater | 0.4908 | 5.355 |
4 | Distilled | 1.1670 | 7.806 |
4 | River | 0.8490 | 5.549 |
4 | Saltwater | 1.1325 | 8.069 |
5 | Distilled | 0.3611 | 6.492 |
5 | River | 0.3372 | 5.950 |
5 | Saltwater | 0.1896 | 6.007 |
Size (mm) | Water Type | Ground Truth | MAE (cm/s) | MPE (%) |
---|---|---|---|---|
3 | Distilled | Stopwatch | 0.5759 | 5.751 |
3 | Distilled | Frame | 0.0717 | 0.6709 |
4 | Distilled | Stopwatch | 0.6345 | 4.121 |
4 | Distilled | Frame | 0.1459 | 0.8973 |
5 | Distilled | Stopwatch | 0.2330 | 3.988 |
5 | Distilled | Frame | 0.0533 | 0.8831 |
Size (mm) | Density (kg/m3) | Water Type | Mean x (cm) | Standard Deviation (cm) |
---|---|---|---|---|
3 | 1190 | Distilled | 0.7469 | 0.2311 |
3 | 1190 | River | 1.105 | 0.3500 |
3 | 1190 | Saltwater | 0.8914 | 0.3919 |
4 | 1300 | Distilled | 0.6450 | 0.1683 |
4 | 1300 | River | 1.138 | 0.4313 |
4 | 1300 | Saltwater | 0.8018 | 0.2892 |
5 | 1050 | Distilled | 0.6719 | 0.2022 |
5 | 1050 | River | 0.7693 | 0.3588 |
5 | 1050 | Saltwater | 0.5375 | 0.2181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stacy, C.L.; Sarker, M.A.B.; Baki, A.B.M.; Imtiaz, M.H. An Open-Source Computer-Vision-Based Method for Spherical Microplastic Settling Velocity Calculation. Microplastics 2025, 4, 75. https://doi.org/10.3390/microplastics4040075
Stacy CL, Sarker MAB, Baki ABM, Imtiaz MH. An Open-Source Computer-Vision-Based Method for Spherical Microplastic Settling Velocity Calculation. Microplastics. 2025; 4(4):75. https://doi.org/10.3390/microplastics4040075
Chicago/Turabian StyleStacy, Catherine L., Md Abdul Baset Sarker, Abul B. M. Baki, and Masudul H. Imtiaz. 2025. "An Open-Source Computer-Vision-Based Method for Spherical Microplastic Settling Velocity Calculation" Microplastics 4, no. 4: 75. https://doi.org/10.3390/microplastics4040075
APA StyleStacy, C. L., Sarker, M. A. B., Baki, A. B. M., & Imtiaz, M. H. (2025). An Open-Source Computer-Vision-Based Method for Spherical Microplastic Settling Velocity Calculation. Microplastics, 4(4), 75. https://doi.org/10.3390/microplastics4040075