Measures to Reduce the Discharge of tire Wear into the Environment
Abstract
:1. Introduction
1.1. Environmental Relevance
1.2. Trends
2. Materials and Methods
2.1. Background—Entry Path
2.2. Factors Influencing the Generation of Tire Wear
3. Tire Wear Measures
- Tires;
- Vehicles;
- Roads;
- Sustainable mobility;
- Emission treatment
3.1. Tires
3.1.1. Test Method and Emission Limits
3.1.2. Disclosure of Ingredients and Reduction of Environmental Risk
- Rubber/Elastomere: natural rubber (NR) (polyisoprene [C5H8]n) and synthetic rubber, e.g., stirene butadiene rubber (SBR) or butadiene rubber (BR);
- Reinforcing agents (Filler): soot/carbon black (C), silica (SiO2) and chalk (CaCO3);
- Softener: consists of oil and resin;
- Textile and metal net;
- Vulcanization agents: sulfur (S) and zinc oxide (ZnO);
- Additives: preservatives (halogenated cyanoalkanes), antioxidants (amines, phenols), desiccants (calcium oxides), plasticizers (aromatic and aliphatic esters), and processing aids (mineral oils, peptizers).
3.1.3. Labelling
3.1.4. Permit Winter Tires in Summer
3.2. Vehicles
3.2.1. Reduction of Vehicle Weight
3.2.2. Wheel Alignment Maintenance
3.2.3. Acceleration Control/Driving Style
3.2.4. Tire Pressure Monitoring
3.2.5. Collecting Tire Wear Particles on the Vehicle
3.3. Roads
3.3.1. Porous Asphalt
3.3.2. Optimized Road Design to the Edge of the Road
3.4. Sustainable Mobility
3.4.1. Speed Limit
3.4.2. Public Awareness
3.4.3. Reduce Vehicle Kilometres Driven
3.5. Emission Treatment
3.5.1. Define Hot Spots and Discharge Points and Implement Monitoring
3.5.2. Road Runoff Treatment
3.5.3. Extended Producer Responsibility (EPR) Compensation and Modulated Fees
3.5.4. Optimized Street Cleaning
3.5.5. Sustainability Hub
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EU Comission-General for Environment: Brochure on EU Action against Microplastic Pollution, 16 October 2023. Available online: https://environment.ec.europa.eu/document/download/aaf66cfa-cf6d-48ec-b10b-4d45cc95bc53_en (accessed on 26 April 2024).
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tire and road wear particles—A calculation of generation, transport and release to water and soil with special regard to German roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, K.; de Lima, J.A.; Wilkinson, T.; Järlskog, I.; Ekstrand, E.; Sköld, Y.A.; Gustafsson, M.; Hassellöv, M. Tire and road wear particles from source to sea. Microplastics Nanoplastics 2023, 3, 14. [Google Scholar] [CrossRef]
- Jung, U.; Choi, S.-S. Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density. Polymers 2022, 14, 1005. [Google Scholar] [CrossRef] [PubMed]
- Unice, K.M.; Weeber, M.P.; Abramson, M.M.; Reid, R.C.D.; Van Gils, J.A.G.; Markus, A.A.; Vethaak, A.D.; Panko, J.M. Characterizing export of land-based microplastics to the estuary—Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Sci. Total Environ. 2019, 646, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Gustafsson, M.; Strömvall, A.M.; Andersson-Sköld, Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environ. Int. 2022, 170, 107618. [Google Scholar] [CrossRef] [PubMed]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Nielsen, A.F.; Polesel, F.; Ahonen, T.; Palmqvist, A.; Baun, A.; Hartmann, N.B. Assessing the Biodegradability of Tire Tread Particles and Influencing Factors. Environ. Toxicol. Chem. 2024, 43, 31–41. [Google Scholar] [CrossRef]
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Jensen, A.; Hansen, T.; Khan, F.R. Tire wear particle and leachate exposures from a pristine and road-worn tire to Hyalella azteca: Comparison of chemical content and biological effects. Aquat. Toxicol. 2021, 232, 105769. [Google Scholar] [CrossRef] [PubMed]
- Wik, A.; Dave, G. Occurrence and effects of tire wear particles in the environment—A critical review and an initial risk assessment. Environ. Pollut. 2008, 157, 1–11. [Google Scholar] [CrossRef]
- Müller, K.; Hübner, D.; Huppertsberg, S.; Knepper, T.P.; Zahn, D. Probing the chemical complexity of tires: Identification of potential tire-borne water contaminants with high-resolution mass spectrometry. Sci. Total Environ. 2022, 802, 149799. [Google Scholar] [CrossRef] [PubMed]
- Boisseaux, P.; Rauert, C.; Dewapriya, P.; Delignette-Muller, M.L.; Barrett, R.; Durndell, L.; Pohl, F.; Thompson, R.; Thomas, K.V.; Galloway, T. Deep dive into the chronic toxicity of tire particle mixtures and their leachates. J. Hazard. Mater. 2024, 466, 133580. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Klauschies, T.; Isanta-Navarro, J. The joint effects of salt and 6PPD contamination on a freshwater herbivore. Sci. Total Environ. 2022, 829, 154675. [Google Scholar] [CrossRef] [PubMed]
- Rauert, C.; Vardy, S.; Daniell, B.; Charlton, N.; Thomas, K.V. Tire additive chemicals, tire road wear particles and high production polymers in surface water at 5 urban centres in Queensland, Australia. Sci. Total Environ. 2022, 852, 158468. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, C.; Helm, P.; Lashuk, B.; Yargeau, V.; Metcalfe, C.D. The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed. Arch. Environ. Contam. Toxicol. 2022, 82, 171–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Challis, J.K.; Popick, H.; Prajapati, S.; Harder, P.; Giesy, J.P.; McPhedran, K.; Brinkmann, M. Occurrences of Tire Rubber-Derived Contaminants in Cold-Climate Urban Runoff. Environ. Sci. Technol. Lett. 2021, 8, 961–967. [Google Scholar] [CrossRef]
- Seiwert, B.; Nihemaiti, M.; Troussier, M.; Weyrauch, S.; Reemtsma, T. Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. Water Res. 2022, 212, 118122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; Huang, Z.; Liu, Y.-H.; Hu, L.-X.; He, L.-Y.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. Occurrence and risks of 23 tire additives and their transformation products in an urban water system. Environ. Int. 2023, 171, 107715. [Google Scholar] [CrossRef]
- Castan, S.; Sherman, A.; Peng, R.; Zumstein, M.T.; Wanek, W.; Hüffer, T.; Hofman, T. Uptake, Metabolism, and Accumulation of Tire Wear Particle-Derived Compounds in Lettuce. Environ. Sci. Technol. 2023, 57, 168–178. [Google Scholar] [CrossRef]
- OECD. Non-Exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Stafoggia, M.; Faustini, A. Chapter 3—Impact on Public Health—Epidemiological Studies: A Review of Epidemiological Studies on Non-Exhaust Particles: Identification of Gaps and Future Needs; Amato, F., Emissions, N.-E., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 67–88. ISBN 9780128117705. [Google Scholar] [CrossRef]
- Mun, S.; Chong, H.; Kim, J.; Jeong, Y.; Lim, Y.; Kwon, S. Analysis of the Volatile Organic Components in Tire-Road-Wear Particles from a Vehicle in Real Road Driving Conditions. Preprints 2023, Version 1, 2023100294. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Wang, D.; Chen, L.; Du, Z.; Wu, Y. Traceability of VOCs in tire inner liner by chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 2021, 29, 9685–9692. [Google Scholar] [CrossRef] [PubMed]
- Wik, A. Toxic components leaching from tire rubber. Bull. Environ. Contam. Toxicol. 2007, 79, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, C.; Liggio, J.; Zhang, X.; Saini, A.; Harner, T. Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution. Atmos. Pollut. Res. 2022, 13, 101533. [Google Scholar] [CrossRef]
- Alonso Raposo, M.; Ciuffo, B.; Alves Dias, P.; Ardente, F.; Aurambout, J.; Baldini, G.; Baranzelli, C.; Blagoeva, D.; Bobba, S.; Braun, R.; et al. The Future of Road Transport; EUR 29748 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-14318-5. [Google Scholar] [CrossRef]
- Sundt, P.; Schulze, P.-E.; Syversen, F. Sources of Microplasticpollution to the Marine Eenvironment; 1032 Norwegian Environment Agency Miljødirektoaret: Trondheim, Norway, 2014. [Google Scholar]
- Swedish Environmental Protection Agency. Mikroplaster—Redovisning av Regeringsuppdrag om Källor Till Mikroplasteroch förslag på åtgärder för Minskade Utsläpp i Sverige [Microplastics—Report on a Government Commission on Sources of Microplastics and Proposals for Measures to Reduce Emissions in Sweden]. Report 6772. 2017. Available online: https://www.naturvardsverket.se/978-91-620-6772-4 (accessed on 25 April 2024).
- Swedish Environmental Protection Agency. Regeringsuppdrag att Föreslå Etappmål om Dagvatten [Government Commission to Propose Intermediate Targets for Stormwater]; Case No: NV-08865-17; Swedish Environmental Protection Agency: Stockholm, Sweden, 2019. [Google Scholar]
- Swedish Environmental Protection Agency. Microplastics in the Environment 2019: Report on a Government Commission; Report 6957; Swedish Environmental Protection Agency: Stockholm, Sweden, 2019. [Google Scholar]
- Johannesson, M.; Lithner, D. Potential Policy Instruments and Measures against Microplastics from Tire and Road Wear: Mapping and Prioritisation; Statens väg-och Transportforskningsinstitut: Linköping, Sweden, 2022. [Google Scholar]
- Gehrke, I.; Schläfle, S.; Bertling, R.; Öz, M.; Gregory, K. Review: Mitigation measures to reduce tire and road wear particles. Sci. Total Environ. 2023, 904, 166537. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, A.J.; de Valk, E. Potential Measures against Microplastic Emissions to Water; RIVM Report 2017-0193; Ministerie van Infrastructuur en Waterstaat: The Hague, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Andersson-Sköld, Y.; Johannesson, M.; Gustafsson, M.; Järlskog, I.; Lithner, D.; Polukarova, M.; Strömvall, A.M. Microplastics from Tire and Road Wear A Literature Review; VTI Rapport 1028A; VTI: Linköping, Sweden, 2020. [Google Scholar] [CrossRef]
- OECD. Policies to Reduce Microplastics Pollution in Water: Focus on Textiles and Tires; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Furuseth, I.S.; Rødland, E.S. Reducing the Release of Microplastic from Tire Wear: Nordic Efforts [Internet]. Copenhagen: Nordisk Ministerråd; 2020. (Nordiske Arbejdspapirer). Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:norden:org:diva-7159 (accessed on 25 April 2024).
- Hitchcock, J.N. Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci. Total Environ. 2020, 734, 139436. [Google Scholar] [CrossRef] [PubMed]
- Boulter, P.G. A Review of Emission Factors and Models for Road Vehicle Nonexhaust Particulate Matter; TRL Limited: Wokingham, UK, 2005. [Google Scholar]
- Truong, X.T.; Muresan, B.; Lumière, L.; Liu, Y.; Cerezo, V. Emission dynamics of tire and road contact particles emitted at the rear of the wheel of a passenger vehicle using on-road experiments on different routes. Transp. Res. Procedia 2023, 72, 2277–2285. [Google Scholar] [CrossRef]
- Pohrt, R. Tire Wear Particle Hot Spots—Review of Influecing Factors. Facta Univ. Ser. Mech. Eng. 2019, 17, 17–27. [Google Scholar] [CrossRef]
- Schläfle, S.; Unrau, H.-J.; Gauterin, F. Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution. Atmosphere 2023, 14, 1780. [Google Scholar] [CrossRef]
- TirewearMapping 2021, Final Report: “Reifenabrieb—Ein Unterschätztes Umweltproblem?” Digitales Planungs-und Entscheidungsinstrument zur Verteilung, Ausbreitung und Quantifizierung von Reifenabrieb in Deutschland. Available online: https://www.umsicht.fraunhofer.de/content/dam/umsicht/de/dokumente/kompetenz/prozesse/tirewearmapping-schlussbericht.pdf (accessed on 25 April 2024).
- Venghaus, D.; Neupert, J.W.; Barjenbruch, M. Tire Wear Monitoring Approach for Hotspot Identification in Road Deposited Sediments from a Metropolitan City in Germany. Sustainability 2023, 15, 12029. [Google Scholar] [CrossRef]
- Leister, G. Fahrzeugräder—Fahrzeugreifen; Springer Vieweg Wiesbaden: Wiesbaden, Germany, 2015. [Google Scholar] [CrossRef]
- European Union. Regulation No 117 of the Economic Commission for Europe of the United Nations (UNECE)—Uniform Provisions Concerning the Approval of Tires with Regard to Rolling Sound Emissions and/or to Adhesion on Wet Surfaces and/or to Rolling Resistance [2016/1350]; European Union: Maastricht, The Netherlands, 2016. [Google Scholar]
- European Commission. LEON-T Low Particle Emissions and Low Noise Tires Grant Agreement ID: 955387; European Commission: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Air Quality Expert Group to the Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; Department of the Environment in Northern Ireland, on Non-Exhaust Emissions from Road Traffic. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1907101151_20190709_Non_Exhaust_Emissions_typeset_Final.pdf (accessed on 25 April 2024).
- ADAC—12/2021/Tire Wear Particles in the Environment/31940 RMU. Available online: https://assets.adac.de/image/upload/v1639663105/ADAC-eV/KOR/Text/PDF/Tire_wear_particles_in_the_environment_zkmd3a.pdf (accessed on 25 April 2024).
- Emission Analytics. Real-World Tire Degradation Particle VOC Analysis Benchmarking Database. 2013. Available online: https://static1.squarespace.com/static/5a9400b37e3c3a8c47522029/t/6401654ea9f21d70a4dc9040/1677813072073/BTAS-website-presentation.pdf (accessed on 25 April 2024).
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, B.; Klöckner, P.; Wagner, S.; Reemtsma, T. Source-related smart suspect screening in the aqueous environment: Search for tire-derived persistent and mobile trace organic contaminants in surface waters. Anal. Bioanal. Chem. 2020, 412, 4909–4919. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, S.; Kroll, L.; Lippert, K.; Seidel, A. A Long-Term Study on the Content of Polycyclic Aromatic Hydrocarbons in Rubber from End-of-Life Tires of Passenger Cars and Trucks. Materials 2022, 15, 7017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Union. COMMISSION REGULATION (EC) No 552/2009 of 22 June 2009 Amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annex XVII; European Union: Maastricht, The Netherlands, 2009. [Google Scholar]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tire Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Khan, F.R.; Rødland, E.S.; Kole, P.J.; Van Belleghem, F.G.; Jaén-Gil, A.; Hansen, S.F.; Gomiero, A. An overview of the key topics related to the study of tire particles and their chemical leachates: From problems to solutions. TrAC Trends Anal. Chem. 2024, 172, 117563. [Google Scholar] [CrossRef]
- Department of Toxic Substances Control. Adopted Priority Product: Motor Vehicle Tires Containing 6PPD. 2023. Available online: https://dtsc.ca.gov/scp/motor_vehicle_tires_containing_6ppd/ (accessed on 25 April 2024).
- European Union. REGULATION (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products; European Union: Maastricht, The Netherlands, 2009. [Google Scholar]
- European Union. REGULATION (EC) No 1222/2009 of the European Parliament and of the Council of 25 November 2009 on the Labelling of Tires with Respect to Fuel Efficiency and Other Essential Parameters; European Union: Maastricht, The Netherlands, 2009. [Google Scholar]
- European Union. REGULATION (EU) 2020/740 of the European Parliament and of the Council of 25 May 2020 on the Labelling of Tires with Respect to Fuel Efficiency and Other Parameters, Amending Regulation (EU) 2017/1369 and Repealing Regulation (EC) No 1222/2009; European Union: Maastricht, The Netherlands, 2020. [Google Scholar]
- European Commission; Directorate-General for Energy; Giesen, R.; Akker, K.; Elsen, M. Study Assessing Consumer Understanding of Tire Labels—Final Report, Publications Office of the European Union. 2023. Available online: https://data.europa.eu/doi/10.2833/210444 (accessed on 25 April 2024).
- UNECE: Terms of Reference of the Task Force on Tires’ Abrasion (TF TA) Based on Document GRBP-75-39 Rev1 as per GRBP Report ECE-TRANS-WP29-GRBP-73 Annex II. Available online: https://wiki.unece.org/download/attachments/228622642/TA-20-02%20TFTA%20ToR%20amendment%20final%2021122023.docx?api=v2 (accessed on 25 April 2024).
- Li, Y.; Zuo, S.; Lei, L.; Yang, X.; Wu, X. Analysis of impact factors of tire wear. J. Vib. Control 2012, 18, 833–840. [Google Scholar] [CrossRef]
- European Parliament. Euro 7 Motor Vehicle Emission Standards. European Parliamentary Research Service. 2023. Available online: https://www.europarl.europa.eu/RegData/etudes/ATAG/2023/754573/EPRS_ATA(2023)754573_EN.pdf (accessed on 25 April 2024).
- The International Council on Clean Transportation—ICCT. European Vehicle Market Statistics—Pocketbook 2023/24; ICCT: Berlin, Germany, 2023; Available online: www.theicct.org (accessed on 25 April 2024).
- Global Fuel Economy Initiative. Heaviest ever SUVs Massively Undermine Climate Benefits of other Vehicle Improvements, Says New GFEI Report. 2023. Available online: https://www.globalfueleconomy.org/news/2023/november/heaviest-ever-suvs-massively-undermine-climate-benefits-of-other-vehicle-improvements-says-new-gfei-report (accessed on 25 April 2024).
- Das, R.K.; Hossain, M.A.M.; Islam, M.T.; Banik, S.C.; Hafez, M.G. 198-Effects of Front Total Toe-In Angle on Tire Wear and Emissions for a Light-Duty Vehicle. J. Eng. 2024, 2024, 5723254. [Google Scholar] [CrossRef]
- European Union. DIRECTIVE 2014/45/EU of the European Parliament and of the Council of 3 April 2014 on Periodic Roadworthiness Tests for Motor Vehicles and Their Trailers and Repealing Directive 2009/40/EC; European Union: Maastricht, The Netherlands, 2024. [Google Scholar]
- Toledo, T. Driving Behaviour: Models and Challenges. Transp. Rev. 2007, 27, 65–84. [Google Scholar] [CrossRef]
- Cettour-Janet, D. European Tire and Rim Technical Organisation—ETRTO: Tire Abrasion How to Develop a Method for Quantitative Assessment. 2021. Available online: https://www.tireandroadwear.com/wp-content/uploads/2021/12/20210614-ETRTO-Abrasion-Test-for-TireTech2021.pdf (accessed on 26 April 2024).
- Breuer, S.; Rohrbach-Kerl, A. Fahrzeugdynamik—Mechanik des bewegten Fahrzeugs; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015. [Google Scholar] [CrossRef]
- Arumugam, S.; Bhargavi, R. A survey on driving behavior analysis in usage based insurance using big data. J. Big Data 2019, 6, 86. [Google Scholar] [CrossRef]
- Leister, G. Untersuchungen zur Reduktion des Reifenabriebs bei E-Fahrzeugen Mobility Agenda April 2024. Mobility Communications UG ISSN 2942-268X (Online). 2024. Available online: https://www.mobility-agenda.de/site/files/MobilityAgenda_202404_LowRes.pdf (accessed on 25 April 2024).
- UNECE. TPMS Motivations Informal Document No. GRRF-62-17 (62nd GRRF, 25–28 September 2007, Agenda Item 9(f)); UNECE: Geneva, Switzerland, 2007. [Google Scholar]
- European Union. REGULATION (EC) No 661/2009 of the European Parliament and of the Council of 13 July 2009 Concerning Type-Approval Requirements for the General Safety of Motor Vehicles, Their Trailers and Systems, Components and Separate Technical Units Intended Therefor; European Union: Maastricht, The Netherlands, 2009. [Google Scholar]
- Gunawardana, C.; Goonetilleke, A.; Egodawatta, P.; Dawes, L.A.; Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 2012, 87, 163–170. [Google Scholar] [CrossRef] [PubMed]
- The Tire Collective. Available online: https://thetirecollective.com (accessed on 26 April 2024).
- Mann+ Hummel Fine Dust Particle Filters: Our Solution for Clean Air and Sustainable Mobility. Available online: https://oem.mann-hummel.com/en/oem-products/fine-dust-filters.html (accessed on 26 April 2024).
- AUDI. Audi Urban Purifier—The Fine Dust Filter for Electric Vehicles. 2022. Available online: https://www.audi-mediacenter.com/en/press-releases/audi-urban-purifier-the-fine-dust-filter-for-electric-vehicles-14949 (accessed on 26 April 2024).
- De Oliveira, T.; Muresan, B.; Ricordel, S.; Lumière, L.; Truong, X.-T.; Poirier, L.; Gasperi, J. Realistic assessment of tire and road wear particle emissions and their influencing factors on different types of roads. J. Hazard. Mater. 2024, 465, 133301. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, M.; Bandara, N.; Medzorian, J.; Chawla, M.; Ulrich, P. Correlation of Tire Wear and Friction to Texture of Concrete Pavements. J. Mater. Civ. Eng. 2000, 12, 46–54. [Google Scholar] [CrossRef]
- Lowne, R.W. The Effect of Road Surface Texture on Tire Wear; Elsevier: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tires: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pitt, R.; Amy, G. Toxic Materials Analysis of Street Surface Constituents; U.S. Environmental Protection Agency: Washington, DC, USA, 1973. [Google Scholar]
- Grottker, M. Runoff quality from a street with medium traffic loading. Sci. Total Environ. 1987, 59, 457–466. [Google Scholar] [CrossRef]
- Luhana, L.; Sokhi, R.; Warner, L.; Mao, H.; Boulter, P.; McCrae, I.; Wright, J.; Osborn, D. Particulates—Characterisation of Exhaust Particulate Emissions from Road Vehicles. Measurement of Non-Exhaust Particulate Matter. European Commission—DG TrEn, 5th Framework Programme Competitive and Sustainable Growth Sustainable Mobility and Intermodality. 2004. Available online: https://www.groundsmartrubbermulch.com/docs/resources/Measurement-of-non-exhaust-particulate-matter.pdf (accessed on 25 April 2024).
- Laszlo Arato—EUrologus None of the European Cities That Lowered the Speed Limit to 30 km/h Regrets It. Available online: https://www.europeandatajournalism.eu/cp_data_news/none-of-the-european-cities-that-lowered-the-speed-limit-to-30-km-h-regrets-it/ (accessed on 26 April 2024).
- Deadly Dust: Raising Awareness on Car Tire Microplastic Pollution. Available online: https://how.studio/work/deadly-dust (accessed on 26 April 2024).
- Wilkinson, T.; Järlskog, I.; de Lima, J.A.; Gustafsson, M.; Mattsson, K.; Andersson Sköld, Y.; Hassellöv, M. Shades of grey—Tire characteristics and road surface influence tire and road wear particle (TRWP) abundance and physicochemical properties. Front. Environ. Sci. 2023, 11, 1258922. [Google Scholar] [CrossRef]
- World Economic Forum. What Makes Copenhagen the World’s Most Bike-Friendly City? Nature and Biodiversity. 2018. Available online: https://www.weforum.org/agenda/2018/10/what-makes-copenhagen-the-worlds-most-bike-friendly-city/ (accessed on 26 April 2024).
- Copenhagenize.com—Bicycle Culture by Design: Bicycle-Friendly Cobblestones. Infrastructure • Cities • Energy. Available online: https://copenhagenize.com/2014/04/bicycle-friendly-cobblestones.html (accessed on 26 April 2024).
- Centre for Public Impact. Green Waves for bicycles in Copenhagen. 2016. Available online: https://www.centreforpublicimpact.org/case-study/green-waves-bicycles-copenhagen (accessed on 26 April 2024).
- European Commission. NEMO—Noise and Emissions Monitoring and Radical Mitigation Grant Agreement ID: 860441; European Commission: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Dierkes, C.; Lucke, T.; Helmreich, B. General Technical Approvals for Decentralised Sustainable Urban Drainage Systems (SUDS)—The Current Situation in Germany. Sustainability 2015, 7, 3031–3051. [Google Scholar] [CrossRef]
- Venghaus, D.; Neupert, J.W.; Barjenbruch, M. Evaluation of a Modular Filter Concept to Reduce Microplastics and Other Solids from Urban Stormwater Runoff. Water 2023, 15, 506. [Google Scholar] [CrossRef]
- Lucke, T.; Nichols, P.; Shaver, E.; Lenhart, J.; Welker, A.; Huber, M. Pathways for the Evaluation of Stormwater Quality Improvement Devices—The Experience of Six Countries. Clean Soil Air Water 2017, 45, 1600596. [Google Scholar] [CrossRef]
- Neupert, J.W.; Lau, P.; Venghaus, D.; Barjenbruch, M. Development of a New Testing Approach for Decentralised Technical Sustainable Drainage Systems. Water 2021, 13, 722. [Google Scholar] [CrossRef]
- Rodgers, T.F.; Wang, Y.; Humes, C.; Jeronimo, M.; Johannessen, C.; Spraakman, S.; Giang, A.; Scholes, R.C. Bioretention Cells Provide a 10-Fold Reduction in 6PPD-Quinone Mass Loadings to Receiving Waters: Evidence from a Field Experiment and Modeling. Sch. Environ. Sci. Technol. Lett. 2023, 10, 582–588. [Google Scholar] [CrossRef] [PubMed]
- DerGrünePunkt Ihre Verkaufsverpackung Lizenzieren. Available online: https://www.gruener-punkt.de/de/verpackungslizenzierung/verkaufsverpackungen (accessed on 26 April 2024).
- European Commission CO₂ Emission Performance Standards for Cars and Vans. Energy, Climate Change, Environment—Climate Action. Available online: https://climate.ec.europa.eu/eu-action/transport/road-transport-reducing-co2-emissions-vehicles/co2-emission-performance-standards-cars-and-vans_en (accessed on 26 April 2024).
- Cho, Y.; Shim, W.J.; Ha, S.Y.; Han, G.M.; Jang, M.; Hong, S.H. Microplastic emission characteristics of stormwater runoff in an urban area: Intra-event variability and influencing factors. Sci. Total Environ. 2023, 866, 161318. [Google Scholar] [CrossRef] [PubMed]
- UIC. The EU Directive on the Weights and Dimensions of Road Vehicles Jeopardises the Greening of Transport. 2024. Available online: https://uic.org/com/enews/article/the-eu-directive-on-the-weights-and-dimensions-of-road-vehicles-jeopardises-the (accessed on 26 April 2024).
- European Parliament. Revision of the Weights and Dimensions Directive. 2023. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/754595/EPRS_BRI(2023)754595_EN.pdf (accessed on 26 April 2024).
- Sverdrup, L.E.; Sogn, T.A.; Källqvist, T.; Halling-Sørensen, B.; Grave, K.; Eggen, T.; Bernhoft, A.; Amundsen, C.; Eriksen, G.S. Risk Assessment of Contaminants in Sewage Sludge Applied on Norwegian Soils. Eur. J. Nutr. Food Saf. 2021, 13, 1–7. [Google Scholar] [CrossRef]
- Manea, E.; Manea, D.; Robescu, D.N. Environmental risks of wastewater sludge disposal. Environ. Eng. Manag. J. 2013, 12, 79–84. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- The Council of the European Communities. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture; Official Journal of the European Communities: Luxembourg, 1986. [Google Scholar]
- Mennekes, D.; Nowack, B. Tire wear particle emissions: Measurement data where are you? Sci. Total Environ. 2022, 830, 154655. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, P.; Abhishek, K. Sampling, separation, and characterization methodology for quantification of microplastic from the environment. J. Hazard. Mater. 2024, 14, 100416. [Google Scholar] [CrossRef]
- Do, T.; Park, Y.; Lim, B.; Kim, S.; Chae, M.Y.; Chun, C.H. Effect of the first-flush phenomenon on the quantification of microplastics in rainwater. Mar. Pollut. Bull. 2023, 187, 114559. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Hao, W.; Liu, C.; Chen, Z.; Ye, Z. Ecotoxicity of tire wear particles to antioxidant enzyme system and metabolic functional activity of river biofilms: The strengthening role after incubation-aging in migrating water phases. Sci. Total Environ. 2024, 914, 169849. [Google Scholar] [CrossRef]
- Trudsø, L.L.; Nielsen, M.B.; Hansen, S.F.; Syberg, K.; Kampmann, K.; Khan, F.R.; Palmqvist, A. The need for environmental regulation of tires: Challenges and recommendations. Environ. Pollut. 2022, 311, 119974. [Google Scholar] [CrossRef]
- Global Platform for Sustainable Natural Rubber GPSNR Transforming the Rubber Industry from within. Available online: https://sustainablenaturalrubber.org/ (accessed on 26 April 2024).
- Llompart, M.; Sanchez-Prado, L.; Lamas, J.P.; Garcia-Jares, C.; Roca, E.; Dagnac, T. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers. Chemosphere 2013, 90, 423–431. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupert, J.W.; Venghaus, D.; Barjenbruch, M. Measures to Reduce the Discharge of tire Wear into the Environment. Microplastics 2024, 3, 305-321. https://doi.org/10.3390/microplastics3020019
Neupert JW, Venghaus D, Barjenbruch M. Measures to Reduce the Discharge of tire Wear into the Environment. Microplastics. 2024; 3(2):305-321. https://doi.org/10.3390/microplastics3020019
Chicago/Turabian StyleNeupert, Johannes Wolfgang, Daniel Venghaus, and Matthias Barjenbruch. 2024. "Measures to Reduce the Discharge of tire Wear into the Environment" Microplastics 3, no. 2: 305-321. https://doi.org/10.3390/microplastics3020019
APA StyleNeupert, J. W., Venghaus, D., & Barjenbruch, M. (2024). Measures to Reduce the Discharge of tire Wear into the Environment. Microplastics, 3(2), 305-321. https://doi.org/10.3390/microplastics3020019