Comparative Review of Instrumental Techniques and Methods for the Analysis of Microplastics in Agricultural Matrices
Abstract
:1. Introduction
2. Instrumental Analysis in Soil and Compost Microplastic Assessment
2.1. Microplastics in Agricultural Matrices
2.2. Visual Inspection
2.3. Microscopy
2.4. Spectroscopy
2.5. Thermal Techniques
3. Microplastics Legislation
4. Conclusions and Future Studies Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Auta, H.; Emenike, C.; Fauziah, S. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Peez, N.; Imhof, W. Quantitative 1 H-NMR spectroscopy as an efficient method for identification and quantification of PVC, ABS and PA microparticles. Analyst 2020, 145, 5363–5371. [Google Scholar] [CrossRef] [PubMed]
- Faltynkova, A.; Johnsen, G.; Wagner, M. Hyperspectral imaging as an emerging tool to analyze microplastics: A systematic review and recommendations for future development. Microplast. Nanoplast. 2021, 1, 13. [Google Scholar] [CrossRef]
- Huang, Y.; Keller, A.A.; Cervantes-Avilés, P.; Nelson, J. Fast multielement quantification of nanoparticles in wastewater and sludge using single-particle ICP-MS. ACS EST Water 2020, 1, 205–213. [Google Scholar] [CrossRef]
- Müller, Y.K.; Wernicke, T.; Pittroff, M.; Witzig, C.S.; Storck, F.R.; Klinger, J.; Zumbülte, N. Microplastic analysis—Are we measuring the same? Results on the first global comparative study for microplastic analysis in a water sample. Anal. Bioanal. Chem. 2020, 412, 555–560. [Google Scholar] [CrossRef]
- Paul, A.; Becker, R.; Wander, L.; Breitfeld, S.; Koegler, M.; Sauer, A.; Braun, U. An alternative spectroscopic approach for the monitoring of microplastics in environmental samples. In Proceedings of the 16th International Conference on Chemistry and the Environment, Oslo, Norway, 18–22 June 2017; Available online: https://www.mn.uio.no/kjemi/english/research/projects/ICCE2017/monday19.06/helgaengauditorium-1/Hr.-11%3A00/ (accessed on 25 March 2023).
- Arkatkar, A.; Arutchelvi, J.; Bhaduri, S.; Uppara, P.V.; Doble, M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int. Biodeterior. Biodegrad. 2009, 63, 106–111. [Google Scholar] [CrossRef]
- Briassoulis, D.; Babou, E.; Hiskakis, M.; Kyrikou, I. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ. Sci. Pollut. Res. 2015, 22, 2584–2598. [Google Scholar] [CrossRef]
- Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 2015, 99, 8857–8874. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.H.; Murphy, F.; Amigo, J.M.; Stedmon, C.; Strand, J. Classification and quantification of microplastics (<100 μm) using a focal plane array–fourier transform infrared imaging system and machine learning. Anal. Chem. 2020, 92, 13724–13733. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Qu, J.; Yu, Z.; Chen, D.; Zhou, C.; Hong, P.; Sun, S.; Li, C. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes-Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Environ. Pollut. 2019, 255, 113283. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, H.; Fu, C.; Zhou, Y.; Dai, Z.; Li, Y.; Tu, C.; Luo, Y. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 2018, 322, 201–208. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Mendoza Vega, J.; Ku Quej, V.; Chi JD, L.A.; Sanchez del Cid, L.; Chi, C.; Segura, G.E.; Gertsen, H.; Salánki, T.; van der Ploeg, M.; et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Li, Z.; Yang, L.; Liu, X. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic. Chemosphere 2019, 231, 308–314. [Google Scholar] [CrossRef]
- Li, W.; Wufuer, R.; Duo, J.; Wang, S.; Luo, Y.; Zhang, D.; Pan, X. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci. Total Environ. 2020, 749, 141420. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Xue, W.; Xu, L.; Ding, W.; Zhao, M.; Liu, S.; Zou, G.; Chen, Y. Microplastics pollution in soil increases dramatically with long-term application of organic composts in a wheat–maize rotation. J. Clean. Prod. 2022, 356, 131889. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616, 1056–1065. [Google Scholar] [CrossRef]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Wander, L.; Becker, R.; Goedecke, C.; Braun, U. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environ. Sci. Pollut. Res. 2019, 26, 7364–7374. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, P.; Ni, F.; Cizdziel, J.; Wu, D.; Zhao, Q.; Zhou, Y. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar. Pollut. Bull. 2019, 145, 153–160. [Google Scholar] [CrossRef]
- Watteau, F.; Dignac, M.-F.; Bouchard, A.; Revallier, A.; Houot, S. Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front. Sustain. Food Syst. 2018, 2, 81. [Google Scholar] [CrossRef]
- Braun, M.; Mail, M.; Krupp, A.E.; Amelung, W. Microplastic contamination of soil: Are input pathways by compost overridden by littering? Sci. Total Environ. 2023, 855, 158889. [Google Scholar] [CrossRef] [PubMed]
- Sholokhova, A.; Ceponkus, J.; Sablinskas, V.; Denafas, G. Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania. Environ. Sci. Pollut. Res. 2021, 29, 20665–20674. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Liu, S.; Liao, H.; Du, J.; Cai, Y.; Liao, C.; Shi, H.; Lin, Y.; Junaid, M.; Yue, X.; et al. Application of hyperspectral imagining technology in the rapid identification of microplastics in farmland soil. Sci. Total Environ. 2022, 807, 151030. [Google Scholar] [CrossRef]
- Tophinke, A.H.; Joshi, A.; Baier, U.; Hufenus, R.; Mitrano, D.M. Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics. Environ. Pollut. 2022, 311, 119933. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Liu, Q.; Zhao, Q.; Xiong, X.; Wu, C. Used disposable face masks are significant sources of microplastics to environment. Environ. Pollut. 2021, 285, 117485. [Google Scholar] [CrossRef]
- Liu, X.; Lin, H.; Xu, S.; Yan, Y.; Yu, R.; Hu, G. Occurrence, distribution, and characteristics of microplastics in agricultural soil around a solid waste treatment center in southeast China. J. Soils Sediments 2022, 23, 936–946. [Google Scholar] [CrossRef]
- Shan, J.; Zhao, J.; Zhang, Y.; Liu, L.; Wu, F.; Wang, X. Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology. Anal. Chim. Acta 2019, 1050, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, M.; Huang, Q.; Khan, S.; Khan, M.A.; Liu, Y.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the soil environment: A critical review. Environ. Technol. Innov. 2022, 27, 102408. [Google Scholar] [CrossRef]
- Samanta, P.; Dey, S.; Kundu, D.; Dutta, D.; Jambulkar, R.; Mishra, R.; Ghosh, A.R.; Kumar, S. An insight on sampling, identification, quantification and characteristics of microplastics in solid wastes. Trends Environ. Anal. Chem. 2022, 36, e00181. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Pinas, F.; Rosal, R. Microplastics identification and quantification in the composted organic fraction of municipal solid waste. Sci. Total Environ. 2022, 813, 151902. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, Y.; Cai, Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ. Pollut. 2020, 257, 113570. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Radford, F.; Zapata-Restrepo, L.M.; Horton, A.A.; Hudson, M.D.; Shaw, P.J.; Williams, I.D. Developing a systematic method for extraction of microplastics in soils. Anal. Methods 2021, 13, 1695–1705. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, M.; Wang, J.; Bassi, A. Current research trends on microplastic pollution from wastewater systems: A critical review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 207–230. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Peez, N.; Becker, J.; Ehlers, S.M.; Fritz, M.; Fischer, C.B.; Koop, J.H.E.; Winkelmann, C.; Imhof, W. Quantitative analysis of PET microplastics in environmental model samples using quantitative 1H-NMR spectroscopy: Validation of an optimized and consistent sample clean-up method. Anal. Bioanal. Chem. 2019, 411, 7409–7418. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; E Redondo-Hasselerharm, P.; Nor, N.H.M.; Kooi, M. Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environ. Sci. Technol. 2020, 54, 12307–12315. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.M.; Kärrman, A.; Rotander, A.; Hassellöv, M. Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environ. Sci. Pollut. Res. 2020, 27, 5559–5571. [Google Scholar] [CrossRef] [PubMed]
- Chouchene, K.; Nacci, T.; Modugno, F.; Castelvetro, V.; Ksibi, M. Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS. Environ. Pollut. 2022, 303, 119016. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhou, X.; Ding, W.; Wang, X.; Zhao, M.; Li, H.; Zou, G.; Chen, Y. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat–maize rotation. Sci. Total Environ. 2023, 866, 161123. [Google Scholar] [CrossRef]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2016, 9, 1384–1391. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, M.; Wang, L.; Lou, Y.; Shi, L.; Jiang, S. Sorption of three synthetic musks by microplastics. Mar. Pollut. Bull. 2018, 126, 606–609. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Rani, M.; Lee, J.; Shim, W.J. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 2015, 93, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hu, B.; Wang, H. Analytical methods for microplastics in the environment: A review. Environ. Chem. Lett. 2022, 21, 383–401. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Wang, Z.-M.; Ghosal, S.; Rochman, C.; Gassel, M.; Wall, S. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Anal. Methods 2017, 9, 1479–1490. [Google Scholar] [CrossRef]
- Gratzl, J.; Seifried, T.M.; Stolzenburg, D.; Grothe, H. A fluorescence approach for an online measurement technique of atmospheric microplastics. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine plastic litter: The unanalyzed nano-fraction. Environ. Sci. Nano 2016, 3, 346–350. [Google Scholar] [CrossRef]
- Pizzoferrato, R.; Li, Y.; Nicolai, E. Quantitative Detection of Microplastics in Water through Fluorescence Signal Analysis. Photonics 2023, 10, 508. [Google Scholar] [CrossRef]
- Dowarah, K.; Patchaiyappan, A.; Thirunavukkarasu, C.; Jayakumar, S.; Devipriya, S.P. Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet. Mar. Pollut. Bull. 2020, 153, 110982. [Google Scholar] [CrossRef] [PubMed]
- El Hayany, B.; El Fels, L.; Quénéa, K.; Dignac, M.F.; Rumpel, C.; Gupta, V.K.; Hafidi, M. Microplastics from lagooning sludge to composts as revealed by fluorescent staining-image analysis, Raman spectroscopy and pyrolysis-GC/MS. J. Environ. Manag. 2020, 275, 111249. [Google Scholar] [CrossRef] [PubMed]
- Tirkey, A.; Upadhyay, L.S.B. Microplastics: An overview on separation, identification and characterization of microplastics. Mar. Pollut. Bull. 2021, 170, 112604. [Google Scholar] [CrossRef] [PubMed]
- David, J.; Steinmetz, Z.; Kučerík, J.; Schaumann, G.E. Quantitative analysis of Poly(ethylene terephthalate) microplastics in soil via thermogravimetry–Mass spectrometry. Anal. Chem. 2018, 90, 8793–8799. [Google Scholar] [CrossRef] [PubMed]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.-J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef] [PubMed]
- Reichel, J.; Graßmann, J.; Letzel, T.; Drewes, J.E. Systematic development of a simultaneous determination of plastic particle identity and absorbed organic compounds by thermodesorption–pyrolysis GC/MS (TD-Pyr-GC/MS). Molecules 2020, 25, 4985. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Gao, L.; Li, D. Limitations for microplastic quantification in the ocean and recommendations for improvement and standardization. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–49. [Google Scholar]
- Fries, E.; Dekiff, J.H.; Willmeyer, J.; Nuelle, M.-T.; Ebert, M.; Remy, D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process. Impacts 2013, 15, 1949–1956. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef]
- Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine Coast. Shelf Sci. 2013, 130, 54–61. [Google Scholar] [CrossRef]
- Tiwari, M.; Rathod, T.; Ajmal, P.; Bhangare, R.; Sahu, S. Distribution and characterization of microplastics in beach sand from three different Indian coastal environments. Mar. Pollut. Bull. 2019, 140, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Basri, S. Microplastics in Terrestrial Soils: Occurrence, Analysis, and Remediation. In Energy, Environment, and Sustainability; Singh, S., Agarwal, A.K., Gupta, T., Malivekkal, S.M., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Fu, W.; Min, J.; Jiang, W.; Li, Y.; Zhang, W. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci. Total Environ. 2020, 721, 137561. [Google Scholar] [CrossRef] [PubMed]
- Elert, A.M.; Becker, R.; Duemichen, E.; Eisentraut, P.; Falkenhagen, J.; Sturm, H.; Braun, U. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 2017, 231, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Vitali, C.; Janssen, H.-G.; Ruggeri, F.S.; Nielen, M.W.F. Rapid single particle atmospheric solids analysis probe-mass spectrometry for multimodal analysis of microplastics. Anal. Chem. 2022, 95, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, I.; Enebro, J.; Yarahmadi, N. Challenges in the search for nanoplastics in the environment—A critical review from the polymer science perspective. Polym. Test. 2020, 93, 106953. [Google Scholar] [CrossRef]
- Primpke, S.; Fischer, M.; Lorenz, C.; Gerdts, G.; Scholz-Böttcher, B.M. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Anal. Bioanal. Chem. 2020, 412, 8283–8298. [Google Scholar] [CrossRef] [PubMed]
- Sarijan, S.; Azman, S.; Said, M.I.M.; Jamal, M.H. Microplastics in freshwater ecosystems: A recent review of occurrence, analysis, potential impacts, and research needs. Environ. Sci. Pollut. Res. 2020, 28, 1341–1356. [Google Scholar] [CrossRef]
- Shabaka, S.H.; Marey, R.S.; Ghobashy, M.; Abushady, A.M.; Ismail, G.A.; Khairy, H.M. Thermal analysis and enhanced visual technique for assessment of microplastics in fish from an Urban Harbor, Mediterranean Coast of Egypt. Mar. Pollut. Bull. 2020, 159, 111465. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Yu, K.; Li, N.; Liu, Y.; Liu, X.; Zhang, H.; Yang, B.; Wu, W.; Gao, J.; et al. Rapid monitoring approach for microplastics using portable pyrolysis-mass spectrometry. Anal. Chem. 2020, 92, 4656–4662. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’connell, B.; Healy, M.G.; O’connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef]
- Tagg, A.S.; Sapp, M.; Harrison, J.P.; Ojeda, J.J. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging. Anal. Chem. 2015, 87, 6032–6040. [Google Scholar] [CrossRef] [PubMed]
- Wenning, M.; Seiler, H.; Scherer, S. Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl. Environ. Microbiol. 2002, 68, 4717–4721. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.G.; Gautam, A. A procedure for measuring microplastics using PRESSURIZED Fluid Extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed]
- Cabernard, L.; Roscher, L.; Lorenz, C.; Gerdts, G.; Primpke, S. Comparison of raman and fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ. Sci. Technol. 2018, 52, 13279–13288. [Google Scholar] [CrossRef] [PubMed]
- Akhbarizadeh, R.; Dobaradaran, S.; Torkmahalleh, M.A.; Saeedi, R.; Aibaghi, R.; Ghasemi, F.F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.P.; Paço, A.; Santos, P.S.; Duarte, A.C.; Rocha-Santos, T. Microplastics in soils: Assessment, analytics and risks. Environ. Chem. 2018, 16, 18–30. [Google Scholar] [CrossRef]
- Birch, Q.T.; Potter, P.M.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization. Talanta 2021, 224, 121743. [Google Scholar] [CrossRef] [PubMed]
- Sana, S.S.; Dogiparthi, L.K.; Gangadhar, L.; Chakravorty, A.; Abhishek, N. Effects of microplastics and nanoplastics on marine environment and human health. Environ. Sci. Pollut. Res. 2020, 27, 44743–44756. [Google Scholar] [CrossRef]
- Scopetani, C.; Chelazzi, D.; Mikola, J.; Leiniö, V.; Heikkinen, R.; Cincinelli, A.; Pellinen, J. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci. Total Environ. 2020, 733, 139338. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Primpke, S.; Cross, R.K.; Mintenig, S.M.; Simon, M.; Vianello, A.; Gerdts, G.; Vollertsen, J. Toward the systematic identification of microplastics in the environment: Evaluation of a new independent software tool (siMPle) for spectroscopic ANALYSIS. Appl. Spectrosc. 2020, 74, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Fortin, S.; Song, B.; Burbage, C. Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Mar. Pollut. Bull. 2019, 149, 110579. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Atwood, E.C.; Falcieri, F.M.; Piehl, S.; Bochow, M.; Matthies, M.; Franke, J.; Carniel, S.; Sclavo, M.; Laforsch, C.; Siegert, F. Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: Comparing remote sensing and hydrodynamic modelling with in-situ sample collections. Mar. Pollut. Bull. 2019, 138, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Pakhomova, S.; Berezina, A.; Lusher, A.L.; Zhdanov, I.; Silvestrova, K.; Zavialov, P.; van Bavel, B.; Yakushev, E. Microplastic variability in subsurface water from the Arctic to Antarctica. Environ. Pollut. 2022, 298, 118808. [Google Scholar] [CrossRef] [PubMed]
- Wander, L.; Lommel, L.; Meyer, K.; Braun, U.; Paul, A. Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy. Meas. Sci. Technol. 2022, 33, 075801. [Google Scholar] [CrossRef]
- Zhu, C.; Kanaya, Y.; Nakajima, R.; Tsuchiya, M.; Nomaki, H.; Kitahashi, T.; Fujikura, K. Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments. Environ. Pollut. 2020, 263, 114296. [Google Scholar] [CrossRef]
- Karlsson, T.M.; Grahn, H.; van Bavel, B.; Geladi, P. Hyperspectral imaging and data analysis for detecting and determining plastic contamination in seawater filtrates. J. Near Infrared Spectrosc. 2016, 24, 141–149. [Google Scholar] [CrossRef]
- Fiore, L.; Serranti, S.; Mazziotti, C.; Riccardi, E.; Benzi, M.; Bonifazi, G. Classification and distribution of freshwater microplastics along the Italian Po river by hyperspectral imaging. Environ. Sci. Pollut. Res. 2022, 29, 48588–48606. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Shan, J.; Zhao, J.; Zhang, W.; Liu, L.; Wu, F. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish. Environ. Sci. Technol. 2019, 53, 5151–5158. [Google Scholar] [CrossRef] [PubMed]
- Serranti, S.; Palmieri, R.; Bonifazi, G.; Cózar, A. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag. 2018, 76, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Fadare, O.O.; Wan, B.; Guo, L.-H.; Zhao, L. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere 2020, 253, 126787. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.K.; Bochow, M.; Imhof, H.K.; Oswald, S.E. Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy—Study of an urban watercourse traversing the city of Berlin, Germany. Environ. Pollut. 2018, 239, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Schönlau, C.; Karlsson, T.M.; Rotander, A.; Nilsson, H.; Engwall, M.; van Bavel, B.; Kärrman, A. Microplastics in sea-surface waters surrounding Sweden sampled by manta trawl and in-situ pump. Mar. Pollut. Bull. 2020, 153, 111019. [Google Scholar] [CrossRef] [PubMed]
- Dümichen, E.; Barthel, A.-K.; Braun, U.; Bannick, C.G.; Brand, K.; Jekel, M.; Senz, R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015, 85, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Dümichen, E.; Eisentraut, P.; Bannick, C.G.; Barthel, A.-K.; Senz, R.; Braun, U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 2017, 174, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Duemichen, E.; Eisentraut, P.; Celina, M.; Braun, U. Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products. J. Chromatogr. A 2019, 1592, 133–142. [Google Scholar] [CrossRef]
- Nuelle, M.-T.; Dekiff, J.H.; Remy, D.; Fries, E. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014, 184, 161–169. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci. Total Environ. 2020, 708, 134841. [Google Scholar] [CrossRef]
- Zambrano-Pinto, M.V.; Tinizaray-Castillo, R.; Riera, M.A.; Maddela, N.R.; Luque, R.; Díaz, J.M.R. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. Sci. Total Environ. 2023, 908, 168244. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Scholz-Böttcher, B.M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography–Mass spectrometry. Environ. Sci. Technol. 2017, 51, 5052–5060. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.J.; Buchman, J.T.; Qiu, T.A.; Zhi, B.; Lyons, T.Y.; Landy, K.M.; Rosenzweig, Z.; Haynes, C.L.; Fairbrother, D.H. Release, detection and toxicity of fragments generated during artificial accelerated weathering of CdSe/ZnS and CdSe quantum dot polymer composites. Environ. Sci. Nano 2018, 5, 1694–1710. [Google Scholar] [CrossRef]
- Coffin, S. The emergence of microplastics: Charting the path from research to regulations. Environ. Sci. Adv. 2023, 2, 356–367. [Google Scholar] [CrossRef]
- Lam, C.-S.; Ramanathan, S.; Carbery, M.; Gray, K.; Vanka, K.S.; Maurin, C.; Bush, R.; Palanisami, T. A Comprehensive analysis of plastics and microplastic legislation worldwide. Water Air Soil Pollut. 2018, 229, 345. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, J.; Sohn, J.; Kim, C. Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med. J. 2023, 64, 301–308. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Q.; Yin, N.; Tu, C.; Luo, Y. Uptake and accumulation of microplastics in an edible plant. Chin. Sci. Bull. 2019, 64, 928–934. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Haider, A.; Mohyuddin, A.; Fatima, R.; Salman, M.; Shaheen, A.; Ahmad, H.M.; Al-Hazmi, H.E.; Othman, M.H.D.; Aziz, F.; et al. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. J. Environ. Manag. 2023, 346, 118971. [Google Scholar] [CrossRef]
- New South Wales Environmental Protection Authority (NSW-EPA). Plastics Microbeads in Products and the Environment. 2016. Available online: https://www.epa.nsw.gov.au/~/media/EPA/Corporate%20Site/resources/waste/plastic-microbeads-160306.ashx/ (accessed on 5 October 2023).
- Fred-Ahmadu, O.H.; Bhagwat, G.; Oluyoye, I.; Benson, N.U.; Ayejuyo, O.O.; Palanisami, T. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 2019, 706, 135978. [Google Scholar] [CrossRef] [PubMed]
- Kane, I.A.; Clare, M.A.; Miramontes, E.; Wogelius, R.; Rothwell, J.J.; Garreau, P.; Pohl, F. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 2020, 368, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Diab, H.; Thompson, J. Microplastic Pollution: Chemical Characterization and Impact on Wildlife. Int. J. Environ. Res. Public Health 2023, 20, 1745. [Google Scholar] [CrossRef] [PubMed]
- Jahan, S.; Strezov, V.; Weldekidan, H.; Kumar, R.; Kan, T.; Sarkodie, S.A.; He, J.; Dastjerdi, B.; Wilson, S.P. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Sci. Total Environ. 2019, 695, 133924. [Google Scholar] [CrossRef] [PubMed]
- Xanthos, D.; Walker, T.R. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review. Mar. Pollut. Bull. 2017, 118, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Gruber, E.S.; Stadlbauer, V.; Pichler, V.; Resch-Fauster, K.; Todorovic, A.; Meisel, T.C.; Trawoeger, S.; Hollóczki, O.; Turner, S.D.; Wadsak, W.; et al. To waste or not to waste: Questioning potential health risks of micro- and nanoplastics with a focus on their ingestion and potential carcinogenicity. Expo. Health 2023, 15, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Batool, F.; Mohyuddin, A.; Amjad, A.; ul Hassan, A.; Nadeem, S.; Javed, M.; Othman, M.H.; Chew, K.W.; Rauf, A.; Kurniawan, T.A. Removal of Cd (II) and Pb (II) from synthetic wastewater using Rosa damascena waste as a biosorbent: An insight into adsorption mechanisms, kinetics, and thermodynamic studies. Chem. Eng. Sci. 2023, 280, 119072. [Google Scholar] [CrossRef]
- Das, R.K.; Sanyal, D.; Kumar, P.; Pulicharla, R.; Brar, S.K. Science-society-policy interface for microplastic and nanoplastic: Environmental and biomedical aspects. Environ. Pollut. 2021, 290, 117985. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Razis, A.F.A.; Shaari, K.; Azmai, M.N.A.; Saad, M.Z.; Isa, N.M.; Nazarudin, M.F. The burden of microplastics pollution and contending policies and regulations. Int. J. Environ. Res. Public Health 2022, 19, 6773. [Google Scholar] [CrossRef]
- New York Times. Single-Use Plastic Ban Overturned by Canadian Court. Available online: https://www.nytimes.com/2023/11/18/world/canada/canada-single-use-plastics-ban.html (accessed on 5 October 2023).
- KPMG. Plastic Tax. Reduce, Reuse, Recycle. Available online: https://kpmg.com/xx/en/home/insights/2021/09/plastic-tax.html (accessed on 5 October 2023).
- Wikipedia. Plastic Bag Bans in the United States. Available online: https://en.m.wikipedia.org/wiki/Plastics_bag_bans_in_the_United_States (accessed on 5 October 2023).
- United Nations Environmental Protection (UNEP). The Regulatory Landscape for Single-Use Plastics Show Widespread Momentum with Mixed Results. 2018. Available online: https://www.unep.org/news-and-stories/press-release/regulatory-landscape-single-use-plastics-shows-widespread-momentum (accessed on 5 October 2023).
- Girão, A.V. SEM/EDS and optical microscopy analysis of microplastics. In Handbook of Microplastics in the Environment; Springer International Publishing: Cham, Switzerland, 2022; pp. 57–78. [Google Scholar]
Separation Method | Extracting Solution | Extraction | Repeat | Clean up | Instrumental Analysis | Quantification | Ref. |
---|---|---|---|---|---|---|---|
Stir for 30 min, ultrasound for 2 min, settling for 24 h | NaCl (1.19 g/L) | DF | 3 times | H2O2 (30%) | Microscopy—VI, µ-FTIR | Counting | [14] |
Floatation, filtration, ultrasound for 2 h, heating | DW | Floatation | >4 times | Filtration | Microscopy—VI | Weighing | [21] |
Stir for 30 min, settling for 24 h | NaCl (1.19 g/L) | DF | 3 times | H2O2 (30%) | Microscopy—VI, µ-FTIR | Counting | [15] |
Ultrasound treatment for 20 min | NaI (1.8 g/L) | DF | >2 times | H2O2 (35%), NaOH (0.5 M) | Microscopy—VI | Counting | [2] |
Stir and centrifuge | DW, NaCl (1.20 g/L), ZnCl2 (1.55 g/L) | DF | 3 times | Stereomicroscope—VI | Counting | [22] | |
Sedimentation cylinder method, use of MP separator, stir for 10 min, then centrifuge for 30 min | NaCl (1.2 g/L), CaCl2 (1.5 g/L) | DF | 3 or 4 times | KCIO (13%) NaOH (50%) H2SO4 (96%) HNO3 (65%) H2O2 (30%) | Raman Spectrometry, FTIR | Weighing | [3] |
Stir, centrifuge, and floatation | NaCl, NaOH | Floatation | NIR spectroscopy | Weighing | [23] |
Matrix | Separation Method | Extracting Solution | Extraction | Repeat | Clean Up | Instrumental Analysis | Quantification | Ref. |
---|---|---|---|---|---|---|---|---|
Spiked soil | Overnight drying | HNO3 (10%), C2H6O | TGA-FTIR spectroscopy | [24] | ||||
Soil + MSW Compost | Shaking and sieving, sedimentation and siphoning, centrifugation | Water | WF | 8 | HF | TED-EDX—VI, Pyr/GC/MS | Weighing | [25] |
Soil + Compost | ZnCl2 | DS | Microscopy—VI | Counting | [26] | |||
Soil + Manure | Ultrasonic for 10 min, stir for 30 min, settling for 24 h, centrifuged for 30 min | H2O2 (30%) | DS | 3 | SEM—VI | [20] | ||
Treated Compost | KCOOH | DS | Fenton’s reagent | VI, FTIR spectrometry, Fluorescence microscopy, Nile Red Dye Staining | [27] | |||
Soil, compost | Centrifuged, sieving | Methanol, water, liquid nitrogen | WF | H2O2 | TED/GC/MS, NIR spectrometry | [9] | ||
Soil | Sieving | ZnCl2 (1.58 g/L) | DS | FTIR, Hyperspectral imaging | [28] | |||
Spiked soil, soil | Filtration, sieving | NaBr (1.55 g/L) | DS/LS, Filtration | Fenton’s reagent | Microscopy visual identification, Nile Red staining, ICP-MS, ATR-FTIR | Weighing | [29] | |
Farmland soil | Stir for 15 min, settle for 30 min | NaCl (1.2 g/L) | DS | KOH (10%) | SEM, ATR-FTIR spectroscopy, Pyr-GC-MS, ICP-MS | [30] | ||
Soil around waste facility | Stir for 10 min, settling for 24 h | NaCl (1.2 g·cm−3) | DS | 3 times | H2O2 (30%) | Microscope—VI, Raman micro-spectroscopy, SEM-EDS | Weighing | [31] |
Soil | Stir for 30 min, settle for 12 h until suspension is clear | NaCl | DS | 3 or 4 times | Deionized water | Hyperspectral imaging | [32] |
Technique | Analyzable Sample Size | Cost | Time | Advantage | Disadvantage |
---|---|---|---|---|---|
Visual (naked eye) | Large particle size | Cheap | Fast | Fast and easy technique to use | Inability to verify polymer structure. Higher chance of misidentification. Unable to detect particles < 100 μm). |
Microscopy, SEM | Down to micron (μm) range | Less expensive, Expensive | Fast (Optical microscope), Less fast (SEM) | Easy identification of physical features. The abundance of MPs can also be carried out using this technique. It is non-destructive. | Cannot determine composition. Might need additional technological software to increase efficiency, e.g., SEM-EDS. Requires pretreatment, especially for non-conductive MPs |
FTIR | Larger particle size can be analyzed from >500 mm by ATR-FTIR while micro-FTIR (μ-FTIR) can analyze as low as 20 mm | Expensive | Less fast | FTIR (μ-FTIR, ATR-FTIR, and focal plane array FTIR (FPA-FTIR)) allows a great detection limit of MPs to 5–10 μm. FPA-FTIR can swiftly and automatically scan sample filters to obtain spectral information and provide images. Detailed analysis of identification, quantification, and characterization. Has a comprehensive polymer library. Non-invasive. Non-destructive. | Ineffectively analyze wet samples. Refractive error causes unexplained spectra from reading shape irregularities of MPs. Takes time and expertise to operate. The probe makes contact and pressures the sample particles and can damage them in the process, leading to loss of MP. Requires pretreatment to reduce spectral error or noise. Weathered plastic particles increase interference. |
Raman Spectrometry | When coupled with microscopy method, Raman spectrometry method can analyze up to >1 μm plastic particle size | Expensive | Less fast | Efficient in detecting particles < 1 μm and the spatial resolution < 1 μm and even 500 nm sometimes. Analyzes both dry and wet samples, and simultaneously identifies pigments. Can be used for chemical mapping. Spectral unaffected by UV degradation, and shape of sample. | Organic/inorganic contaminations can cause interference with fluorescence that affects spectra and identification. It is time consuming. Automatic mapping by μ-Raman spectrometry is still being developed. Requires pretreatment for increased efficiency and removal of impurities. |
Mass Spectrometry (Pyr/GC/MS, TGA-GC-MS, TED-GC-MS) | All particle size | Expensive | Less fast | Usually does not require pretreatment thermal removes impurities including OM before analyzing the sample. No limitation, MP particle size is manually placed into the pyrolysis tube. GC/MS have several mass spectral libraries especially if using electron ionization. More detailed information on the components in the particle sample. Ability to distinguish polymers from additives. | Sample must be volatile before GC/MS analysis. MS requires highly skilled personnel to run analysis to finish. Cannot simultaneously analyze multiple particles. Destructive, leads to loss of sample. Unable to obtain the robust data of samples being analyzed as they lost. |
Hyperspectral Imaging | Might be unable to detect MP particles of less than 100 μm | fewer expensive | Very fast | Visual selection of the removed samples. Little sample pretreatment required. Cheaper than FTIR and Raman. Analyzes large sample size. | Large redundant data Requires complex data analysis. No standardized spectral matching model, still being developed. |
Country/Organization | Policy/Legislation | Plastic Category | Aim |
---|---|---|---|
United States | Microbead-free Waters Act 2015 | Aquatic MPs | Ban—production and sales of wash-off cosmetic products |
The Break Free from Plastic Pollution Act 2023 | Plastics | To shift financial responsibility of plastic waste management to producers of plastics. Ban single use of plastic products. Prohibit export of plastic waste. | |
France | Circular Economy Law (Waste Prevention and Management) 2018 (modified—2020) | Aquatic MPs | Ban cosmetics products containing plastic particles. |
Draft Law on Combating Plastic Pollution (adopted 2022) | Microfibres, microbeads | To regulate loss and leakage of industrial granules, prohibit intentional usage of microbeads in detergent, and provide impact assessment on textile industry of plastic fibers | |
European Union | The Packaging and Packaging Waste Directive (Plastic tax) | Reduce plastic waste | |
Canada | Microbeads in Toiletries Regulations (2017) | Aquatic MPs | Reduce the amount of plastic microbeads entering Canadian freshwater and marine environments. |
Single-use Plastics Prohibition Regulations (2022) | Larger plastics | To prohibit manufacture, importation, and distribution of single-use plastic products | |
Kenya | Plastic Bag Control and Management Regulations (2018) The Wildlife Conservation and Management Act 2020 | Larger plastics | Reduce usage, manufacture, and importation of plastic bags. Ban on single-use plastic products. |
Australia | The Plastic Reduction and Circular Economy Act 2021 | Aquatic MPs | Ban—distribution of wash-off personal care product |
New Zealand | Waste Minimization Act through Waste Minimization (Microbeads) Regulations 2017 | Aquatic MPs | Prohibited plastic beads as an ingredient in personal care products |
United Kingdom | Environmental Permitting Regulations 2018 | Aquatic MPs | Banned cosmetics and cleaning products containing microbeads. Charge levies on single-use carrier bags Ban single-use plastics |
Larger plastics | |||
Northern Ireland | The Environmental Protection (microbeads) (Northern Ireland) Regulations 2018 | Aquatic MPs | Prohibited the use of plastic beads |
China | 2019 Industrial Catalogue | Aquatic MPs | Ban—production and sales of cosmetics containing microbeads |
EU | The Single-use Plastics Directive 2019 | Aquatic MPs | Target eradicating 10 most common single-use plastics found on Europe’s beaches and seas |
The Ocean CleanUp | Clean up | Aquatic plastics | Developing technologies to reduce plastics in ocean by 90% by 2040 |
Thailand | Thailand Ministry of Public Health (2019) through Roadmap on Plastic Waste Management (2018—2030) | Aquatic MPs | Ban the production, sales, and distribution of cosmetics with microbeads as an ingredient. |
Larger plastics | Ban single use of plastics. | ||
World Wildlife (WWF) | Regulations | Larger plastics | Establish a globally legally binding agreement to end plastic pollution |
The Netherlands | Environmental Management Act (The Commodities Act Decree) | Plastics waste | To control packaging and consumer products Regulate single-use plastic |
Ireland | The Microbeads (Prohibition) Act 2019 | Aquatic MPs | Ban the use of plastic beads in households and industrial cleaning products |
India | Plastic Waste Management (Amendment) 2022 | Larger plastics | Phase out single-use plastic |
Germany | The Germane Ordinance on Single-use Plastics 2021 | Larger plastics | Reduce impact of plastic waste on the environment Ban some single-use plastic products |
South Africa | The National Environmental Management Waste Act 2008 (amended 2014) through National Waste Management Strategy 2020 | Larger plastics | Reduce production of single-use plastics destroying marine environment |
Wales, Ireland, Scotland | Tax/levies on single-use plastics | Larger plastics | Discourage the single use of plastic products to reduce waste |
Berkeley, California | The Single-use Foodware and Litter Reduction Ordinance (2022) | Larger plastics | Reduce plastic waste in the environment |
United States (15 States and territories) | Banned disposable plastic bags | Larger plastics | Reduction of plastic waste |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adelugba, A.; Emenike, C. Comparative Review of Instrumental Techniques and Methods for the Analysis of Microplastics in Agricultural Matrices. Microplastics 2024, 3, 1-21. https://doi.org/10.3390/microplastics3010001
Adelugba A, Emenike C. Comparative Review of Instrumental Techniques and Methods for the Analysis of Microplastics in Agricultural Matrices. Microplastics. 2024; 3(1):1-21. https://doi.org/10.3390/microplastics3010001
Chicago/Turabian StyleAdelugba, Adeola, and Chijioke Emenike. 2024. "Comparative Review of Instrumental Techniques and Methods for the Analysis of Microplastics in Agricultural Matrices" Microplastics 3, no. 1: 1-21. https://doi.org/10.3390/microplastics3010001
APA StyleAdelugba, A., & Emenike, C. (2024). Comparative Review of Instrumental Techniques and Methods for the Analysis of Microplastics in Agricultural Matrices. Microplastics, 3(1), 1-21. https://doi.org/10.3390/microplastics3010001