Uncovering Key Transcription Factors Driving Chilling Stress Tolerance in Rice Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. RNA-Seq and Data Processing
2.3. Searching for TFs
3. Results
3.1. Differentially Expressed Genes in Chilling-Tolerant Genotype
3.2. Differentially Expressed Genes in Chilling Sensitive Genotype
3.3. Common Genes Differentially Expressed in Chilling-Tolerant and -Sensitive Genotypes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, K.P.; Pushpam, R.; Manonmani, S.; Raveendran, M.; Santhiya, S.; Senthil, A. Enhancing Stress Resilience in Rice (Oryza sativa L.) through Profiling Early-Stage Morpho-Physiological and Molecular Responses to Multiple Abiotic Stress Tolerance. Front. Plant Sci. 2024, 15, 1342441. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Jiang, Y.; Cui, W.; Jin, Q.; Zhang, Y.; Bu, D.; Fu, J.; Wang, R.; Zhou, F.; Shen, W. Hydrogen Enhances Adaptation of Rice Seedlings to Cold Stress via the Reestablishment of Redox Homeostasis Mediated by MiRNA Expression. Plant Soil 2017, 414, 53–67. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Chong, K.; Xu, Y. Chilling Tolerance in Rice: Past and Present. J. Plant Physiol. 2022, 268, 153576. [Google Scholar] [CrossRef]
- Shahzad, N.; Nabi, H.G.; Qiao, L.; Li, W. The Molecular Mechanism of Cold-Stress Tolerance: Cold Responsive Genes and Their Mechanisms in Rice (Oryza sativa L.). Biology 2024, 13, 442. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ou, S.; Mao, B.; Tang, J.; Wang, W.; Wang, H.; Cao, S.; Schläppi, M.R.; Zhao, B.; Xiao, G.; et al. Early Selection of BZIP73 Facilitated Adaptation of Japonica Rice to Cold Climates. Nat. Commun. 2018, 9, 3302. [Google Scholar] [CrossRef]
- Cruz, R.P.d.; Milach, S.C.K. Cold Tolerance at the Germination Stage of Rice: Methods of Evaluation and Characterization of Genotypes. Sci. Agric. 2004, 61, 1–8. [Google Scholar] [CrossRef]
- Da Cruz, R.P.; Kothe Milach, S.C.; Federizzi, L.C. Rice Cold Tolerance at the Reproductive Stage in a Controlled Environment. Sci. Agric. 2006, 63, 255–261. [Google Scholar] [CrossRef]
- Andres, A.; Theisen, G.; Teló, G.M.; Concenço, G.; Parfitt, J.M.B.; Galon, L.; Martins, M.B. Weed Management in Sprinkler-Irrigated Rice: Experiences from Southern Brazil. In Advances in International Rice Research; Intechopen: Rijeka, Croatia, 2017; pp. 19–32. [Google Scholar]
- Shakiba, E.; Edwards, J.D.; Jodari, F.; Duke, S.E.; Baldo, A.M.; Korniliev, P.; McCouch, S.R.; Eizenga, G.C. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis. PLoS ONE 2017, 12, e0172133. [Google Scholar] [CrossRef] [PubMed]
- Akter, N.; Biswas, P.S.; Syed, M.A.; Ivy, N.A.; Alsuhaibani, A.M.; Gaber, A.; Hossain, A. Phenotypic and Molecular Characterization of Rice Genotypes’ Tolerance to Cold Stress at the Seedling Stage. Sustainability 2022, 14, 4871. [Google Scholar] [CrossRef]
- Viana, V.E.; Carlos da Maia, L.; Busanello, C.; Pegoraro, C.; Costa de Oliveira, A. When Rice Gets the Chills: Comparative Transcriptome Profiling at Germination Shows WRKY Transcription Factor Responses. Plant Biol. 2021, 23, 100–112. [Google Scholar] [CrossRef]
- Summat, P.; Tongmark, K.; Chakhonkaen, S.; Sangarwut, N.; Panyawut, N.; Pinsupa, S.; Thanananta, T.; Muangprom, A. Investigating Cold Tolerance Mechanisms in Rice Seedlings: Alternative Splicing, Promoter Analysis, and Their Applications for Marker Development. Plant Stress 2024, 13, 100530. [Google Scholar] [CrossRef]
- da Maia, L.C.; Cadore, P.R.B.; Benitez, L.C.; Danielowski, R.; Braga, E.J.B.; Fagundes, P.R.R.; Magalhães, A.M.; Costa de Oliveira, A. Transcriptome Profiling of Rice Seedlings under Cold Stress. Funct. Plant Biol. 2017, 44, 419. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell Differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- do Amaral, M.N.; Arge, L.W.P.; Benitez, L.C.; Danielowski, R.; da Silveira Silveira, S.F.; da Rosa Farias, D.; Deuner, S.; de Oliveira, A.C.; Braga, E.J.B.; da Maia, L.C. Differential Expression of Photosynthesis-Related Genes and Quantification of Gas Exchange in Rice Plants under Abiotic Stress. Acta Physiol. Plant. 2016, 38, 153. [Google Scholar] [CrossRef]
- Anders, S.; McCarthy, D.J.; Chen, Y.; Okoniewski, M.; Smyth, G.K.; Huber, W.; Robinson, M.D. Count-Based Differential Expression Analysis of RNA Sequencing Data Using R and Bioconductor. Nat. Protoc. 2013, 8, 1765–1786. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Tian, F.; Yang, D.-C.; Meng, Y.-Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a Central Hub for Transcription Factors and Regulatory Interactions in Plants. Nucleic Acids Res. 2017, 45, D1040–D1045. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2. Use R! Springer: Cham, Switzerland, 2016. [Google Scholar]
- Hiltemann, S.; Rasche, H.; Gladman, S.; Hotz, H.R.; Larivière, D.; Blankenberg, D.; Jagtap, P.D.; Wollmann, T.; Bretaudeau, A.; Goué, N.; et al. Galaxy Training: A Powerful Framework for Teaching! PLoS Comput. Biol. 2023, 19, e1010752. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A Free, Open-Source System for Microarray Data Management and Analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, M.; Hu, D.; Yang, Z.; Ma, S.; Li, X.; Xiong, L. The OsMYb30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression1[OPEN]. Plant Physiol. 2017, 173, 1475–1491. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Dai, X.; Zhang, W.H. A R2R3-Type MYB Gene, OsMYB2, Is Involved in Salt, Cold, and Dehydration Tolerance in Rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, Y.; Quan, C.; Li, Y.; Yang, S.; Ma, C.; Mo, Y.; Zheng, S.; Wang, W.; Xu, Z.; et al. C2H2-Type Zinc Finger OsZFP15 Accelerates Seed Germination and Confers Salinity and Drought Tolerance of Rice Seedling through ABA Catabolism. Environ. Exp. Bot. 2022, 199, 104873. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, L.; Liu, Y.; Wang, Y.; Zhang, A.; Tan, M.; Jiang, M. The C2H2-Type Zinc Finger Protein ZFP182 Is Involved in Abscisic Acid-Induced Antioxidant Defense in Rice. J. Integr. Plant Biol. 2012, 54, 500–510. [Google Scholar] [CrossRef]
- Huang, J.; Yang, X.; Wang, M.M.; Tang, H.J.; Ding, L.Y.; Shen, Y.; Zhang, H.S. A Novel Rice C2H2-Type Zinc Finger Protein Lacking DLN-Box/EAR-Motif Plays a Role in Salt Tolerance. Biochim. Biophys. Acta-Gene Struct. Expr. 2007, 1769, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.J.; Min, M.K.; Kim, J.A.; Kim, D.Y.; Yoon, I.S.; Kwon, T.R.; Byun, M.O.; Kim, B.G. Ectopic Expression of OsDREB1G, a Member of the OsDREB1 Subfamily, Confers Cold Stress Tolerance in Rice. Front. Plant Sci. 2019, 10, 297. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Wen, F.; Yao, D.; Wang, L.; Guo, J.; Ni, L.; Zhang, A.; Tan, M.; Jiang, M. A Novel Rice C2H2-Type Zinc Finger Protein, ZFP36, Is a Key Player Involved in Abscisic Acid-Induced Antioxidant Defence and Oxidative Stress Tolerance in Rice. J. Exp. Bot. 2014, 65, 5795–5809. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Oh, N.; Chung, P.J.; Kim, Y.S.; Choi, Y.D.; Kim, J.K. Overexpression of OsNAC14 Improves Drought Tolerance in Rice. Front. Plant Sci. 2018, 9, 310. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, Y.; Zhao, Z.; Liu, W.; Jiang, C.; Li, J.; Zhang, Z.; Zhang, H.; Zhang, Y.; Wang, X.; et al. RRS1 Shapes Robust Root System to Enhance Drought Resistance in Rice. New Phytol. 2023, 238, 1146–1162. [Google Scholar] [CrossRef]
- Baek, D.; Hong, S.; Kim, H.J.; Moon, S.; Jung, K.H.; Yang, W.T.; Kim, D.H. OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis. Int. J. Mol. Sci. 2024, 25, 2209. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, H.; Zhou, T.; Gu, B.; Huang, X.; Shangguan, Y.; Zhu, J.; Li, Y.; Zhao, Y.; Wang, Y.; et al. An-1 Encodes a Basic Helix-Loop-Helix Protein That Regulates Awn Development, Grain Size, and Grain Number in Rice. Plant Cell 2013, 25, 3360–3376. [Google Scholar] [CrossRef]
- Geng, P.; Zhang, S.; Liu, J.; Zhao, C.; Wu, J.; Cao, Y.; Fu, C.; Han, X.; He, H.; Zhao, Q. MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation1[OPEN]. Plant Physiol. 2020, 182, 1272–1283. [Google Scholar] [CrossRef]
- Khong, G.N.; Pati, P.K.; Richaud, F.; Parizot, B.; Bidzinski, P.; Mai, C.D.; Bès, M.; Bourrié, I.; Meynard, D.; Beeckman, T.; et al. OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice. Plant Physiol. 2015, 169, 2935–2949. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Shen, H.; Chen, L.; Xing, Y.Y.; Wang, Z.Y.; Zhang, J.L.; Hong, M.M. The OsEBP-89 Gene of Rice Encodes a Putative EREBP Transcription Factor and Is Temporally Expressed in Developing Endosperm and Intercalary Meristem. Plant Mol. Biol. 2002, 50, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xu, H.; Su, C.; Wang, X.; Wang, L. Rice CIRCADIAN CLOCK ASSOCIATED 1 Transcriptionally Regulates ABA Signaling to Confer Multiple Abiotic Stress Tolerance. Plant Physiol. 2022, 190, 1057–1073. [Google Scholar] [CrossRef]
- Ochiai, K.; Shimizu, A.; Okumoto, Y.; Fujiwara, T.; Matoh, T. Suppression of a NAC-like Transcription Factor Gene Improves Boron-Toxicity Tolerance in Rice. Plant Physiol. 2011, 156, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, H.; Li, D.; Huang, L.; Hong, Y.; Ding, X.S.; Nelson, R.S.; Zhou, X.; Song, F. Functions of Rice NAC Transcriptional Factors, ONAC122 and ONAC131, in Defense Responses against Magnaporthe Grisea. Plant Mol. Biol. 2013, 81, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Lan, A.; Huang, J.; Zhao, W.; Peng, Y.; Chen, Z.; Kang, D. A Salicylic Acid-Induced Rice (Oryza sativa L.) Transcription Factor OsWRKY77 Is Involved in Disease Resistance of Arabidopsis Thaliana. Plant Biol. 2013, 15, 452–461. [Google Scholar] [CrossRef]
- Rongjun Chen Isolation of a Novel MYB Transcription Factor OsMyb1R from Rice and Analysis of the Response of This Gene to Abiotic Stresses. Afr. J. Biotechnol. 2012, 11, 3731–3737. [CrossRef]
- Liu, Y.; Wu, Q.; Qin, Z.; Huang, J. Transcription Factor OsNAC055 Regulates GA-Mediated Lignin Biosynthesis in Rice Straw. Plant Sci. 2022, 325, 111455. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, B.; Lu, G.; Han, B. Overexpression of a NAC Transcription Factor Enhances Rice Drought and Salt Tolerance. Biochem. Biophys. Res. Commun. 2009, 379, 985–989. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, Y.S.; Baek, K.H.; Jung, H.; Ha, S.H.; Choi, Y.D.; Kim, M.; Reuzeau, C.; Kim, J.K. Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiol. 2010, 153, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Távora, F.T.P.K.; Meunier, A.C.; Vernet, A.; Portefaix, M.; Milazzo, J.; Adreit, H.; Tharreau, D.; Franco, O.L.; Mehta, A. CRISPR/Cas9-Targeted Knockout of Rice Susceptibility Genes OsDjA2 and OsERF104 Reveals Alternative Sources of Resistance to Pyricularia Oryzae. Rice Sci. 2022, 29, 535–544. [Google Scholar] [CrossRef]
- Cerise, M.; Giaume, F.; Galli, M.; Khahani, B.; Lucas, J.; Podico, F.; Tavakol, E.; Parcy, F.; Gallavotti, A.; Brambilla, V.; et al. OsFD4 Promotes the Rice Floral Transition via Florigen Activation Complex Formation in the Shoot Apical Meristem. New Phytol. 2021, 229, 429–443. [Google Scholar] [CrossRef]
- Li, H.; Liang, W.; Hu, Y.; Zhu, L.; Yin, C.; Xu, J.; Dreni, L.; Kater, M.M.; Zhang, D. Rice MADS6 Interacts with the Floral Homeotic Genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in Specifying Floral Organ Identities and Meristem Fate. Plant Cell 2011, 23, 2536–2552. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, M.; Liang, R.; Shi, X.; Chen, L.; Hu, X.; Wang, S.; Dai, X.; Qu, H.; Li, H.; et al. OsWRKY21 and OsWRKY108 Function Redundantly to Promote Phosphate Accumulation through Maintaining the Constitutive Expression of OsPHT1;1 under Phosphate-Replete Conditions. New Phytol. 2021, 229, 1598–1614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Li, F.; Liu, H.; Yang, W.; Chong, K.; Xu, Y. OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance. Dev. Cell 2017, 43, 731–743.e5. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.T.; Baek, D.; Yun, D.J.; Hwang, W.H.; Park, D.S.; Nam, M.H.; Chung, E.S.; Chung, Y.S.; Yi, Y.B.; Kim, D.H. Overexpression of OsMYB4P, an R2R3-Type MYB Transcriptional Activator, Increases Phosphate Acquisition in Rice. Plant Physiol. Biochem. 2014, 80, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A Review of Plants Strategies to Resist Biotic and Abiotic Environmental Stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, L.; Jiang, W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 893. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, L. WRKY Transcription Factor Responses and Tolerance to Abiotic Stresses in Plants. Int. J. Mol. Sci. 2024, 25, 6845. [Google Scholar] [CrossRef] [PubMed]
- Maryan, K.E.; Farrokhi, N.; Lahiji, H.S. Cold-Responsive Transcription Factors in Arabidopsis and Rice: A Regulatory Network Analysis Using Array Data and Gene Coexpression Network. PLoS ONE 2023, 18, e0286324. [Google Scholar] [CrossRef]
- Deng, C.; Ye, H.; Fan, M.; Pu, T.; Yan, J. The Rice Transcription Factors OsICE Confer Enhanced Cold Tolerance in Transgenic Arabidopsis. Plant Signal. Behav. 2017, 12, 2–6. [Google Scholar] [CrossRef]
- Cao, S.; Wang, Y.; Li, X.; Gao, F.; Feng, J.; Zhou, Y. Characterization of the AP2/ERF Transcription Factor Family and Expression Profiling of DREB Subfamily under Cold and Osmotic Stresses in Ammopiptanthus nanus. Plants 2020, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Shi, Q.; Ma, Q.; Wang, X.; Chen, X.; Han, P.; Luo, Y.; Hu, H.; Fei, X.; Wei, A. Genome-Wide Analysis of AP2/ERF Transcription Factors That Regulate Fruit Development of Chinese Prickly Ash. BMC Plant Biol. 2024, 24, 565. [Google Scholar] [CrossRef]
- Tang, W.; Thompson, W.A. OsmiR528 Enhances Cold Stress Tolerance by Repressing Expression of Stress Response-Related Transcription Factor Genes in Plant Cells. Curr. Genom. 2019, 20, 100–114. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Q.; Wang, S.; Hong, Y.; Wang, Z. Rice and Cold Stress: Methods for Its Evaluation and Summary of Cold Tolerance-Related Quantitative Trait Loci. Rice 2014, 7, 24. [Google Scholar] [CrossRef]
- Fan, X.; Chen, J.; Wu, Y.; Teo, C.; Xu, G.; Fan, X. Genetic and Global Epigenetic Modification, Which Determines the Phenotype of Transgenic Rice? Int. J. Mol. Sci. 2020, 21, 1819. [Google Scholar] [CrossRef] [PubMed]
Family | n of TF Genes Within the Oryza sativa L. japonica Genome | Chilling-Sensitive Genotype (Tio Taka) | Chilling-Tolerant Genotype (Oro) | Both Cultivars | % * |
---|---|---|---|---|---|
AP2 | 22 | 3 | 2 | 0 | 22.73 |
ARF | 48 | 4 | 1 | 1 | 12.50 |
ARR-B | 11 | 0 | 1 | 0 | 9.09 |
B3 | 65 | 5 | 2 | 0 | 10.77 |
BBR-BPC | 7 | 0 | 0 | 0 | 0.00 |
BES1 | 6 | 1 | 0 | 2 | 50.00 |
bHLH | 211 | 23 | 8 | 24 | 26.07 |
bZIP | 140 | 17 | 11 | 13 | 29.29 |
C2H2 | 135 | 12 | 6 | 10 | 20.74 |
C3H | 74 | 8 | 2 | 8 | 24.32 |
CAMTA | 7 | 4 | 0 | 1 | 71.43 |
CO-like | 21 | 1 | 4 | 3 | 38.10 |
CPP | 20 | 2 | 0 | 0 | 10.00 |
DBB | 13 | 2 | 2 | 4 | 61.54 |
Dof | 37 | 6 | 3 | 0 | 24.32 |
E2F/DP | 10 | 2 | 1 | 3 | 60.00 |
EIL | 11 | 1 | 0 | 0 | 9.09 |
ERF | 163 | 11 | 13 | 10 | 20.86 |
FAR1 | 133 | 6 | 0 | 1 | 5.26 |
G2-like | 62 | 8 | 0 | 6 | 22.58 |
GATA | 32 | 5 | 0 | 5 | 31.25 |
GeBP | 13 | 0 | 0 | 0 | 0.00 |
GRAS | 69 | 8 | 2 | 3 | 18.84 |
GRF | 19 | 2 | 0 | 0 | 10.53 |
HB-other | 17 | 1 | 0 | 2 | 17.65 |
HB-PHD | 1 | 0 | 0 | 0 | 0.00 |
HD-ZIP | 61 | 11 | 2 | 6 | 31.15 |
HRT-like | 1 | 1 | 0 | 0 | 100.00 |
HSF | 38 | 6 | 3 | 2 | 28.95 |
LBD | 39 | 2 | 1 | 2 | 12.82 |
LFY | 2 | 0 | 0 | 0 | 0.00 |
LSD | 12 | 2 | 1 | 1 | 33.33 |
MIKC_MADS | 61 | 6 | 2 | 2 | 16.39 |
M-type_MADS | 35 | 1 | 0 | 0 | 2.86 |
MYB | 130 | 18 | 15 | 11 | 33.85 |
MYB_related | 106 | 10 | 5 | 7 | 20.75 |
NAC | 170 | 20 | 5 | 8 | 19.41 |
NF-X1 | 2 | 0 | 0 | 0 | 0.00 |
NF-YA | 25 | 2 | 1 | 2 | 20.00 |
NF-YB | 16 | 1 | 1 | 1 | 18.75 |
NF-YC | 19 | 2 | 0 | 3 | 26.32 |
Nin-like | 15 | 0 | 1 | 2 | 20.00 |
RAV | 4 | 0 | 1 | 1 | 50.00 |
S1Fa-like | 2 | 0 | 1 | 0 | 50.00 |
SBP | 29 | 3 | 2 | 0 | 17.24 |
SRS | 6 | 1 | 0 | 0 | 16.67 |
STAT | 1 | 1 | 0 | 0 | 100.00 |
TALE | 45 | 0 | 3 | 4 | 15.56 |
TCP | 23 | 2 | 3 | 4 | 39.13 |
Trihelix | 40 | 2 | 3 | 5 | 25.00 |
VOZ | 2 | 1 | 0 | 0 | 50.00 |
Whirly | 2 | 0 | 1 | 1 | 100.00 |
WOX | 17 | 1 | 0 | 0 | 5.88 |
WRKY | 128 | 13 | 7 | 10 | 23.44 |
YABBY | 15 | 3 | 0 | 1 | 26.67 |
ZF-HD | 15 | 7 | 1 | 1 | 60.00 |
Total | 2408 | 248 | 117 | 170 | 22.22 |
Upregulated Genes—Oro (Chilling-Tolerant) | |||||
---|---|---|---|---|---|
ID | Family | Gene Name | Log2FC | Function | Reference |
Os02g0624300 | MYB | OsMYB30 | 6.11718 | Confers cold stress sensibility | [22] |
Os03g0315400 | MYB | OsMYB2 | 5.786032 | Confers cold stress tolerance | [23] |
Os03g0820400 | C2H2 | OsZFP15 | 5.316598 | Confers salinity and drought tolerance | [24] |
Os03g0820300 | C2H2 | OsZFP182 | 4.623318 | Abscisic acid-induced antioxidant defense | [25] |
Confers salt stress tolerance | [26] | ||||
Upregulated in cold stress | [26] | ||||
Os02g0677300 | ERF | OsDREB1G | 3.986341 | Confers cold stress tolerance | [27] |
Os03g0437200 | C2H2 | OsZFP36 | 3.736962 | Abscisic acid-induced antioxidant defense and oxidative stress tolerance | [28] |
Os08g0386200 | WRKY | OsWRKY69 | 2.697006 | Uncharacterized | - |
Os01g0675800 | NAC | OsNAC14 | 2.608557 | Confers drought tolerance | [29] |
Os01g0863300 | MYB | OsMYBR17 | 2.538865 | Uncharacterized | - |
Os01g0313300 | ERF | - | 2.473578 | Uncharacterized | - |
Downregulated genes—Oro (chilling-tolerant) | |||||
Os12g0208900 | ZF-HD | OsZHD3 | −2.20005 | Uncharacterized | - |
Os04g0594100 | MYB | OsMYB58/63, OsRRS1 | −2.14425 | Confers drought tolerance | [30] |
Negatively regulates plant growth and development | [31] | ||||
Os04g0350700 | bHLH | OsAN1 | −1.99325 | Awn development, grain size, and grain number | [32] |
Os09g0532900 | MYB | Os2R_MYOsB85 | −1.91861 | Phenylalanine and lignin biosynthesis | [33] |
Os08g0112700 | MIKC_MADS | OsMADS26 | −1.80766 | Negatively regulates pathogen resistance and drought tolerance | [34] |
Os03g0182800 | ERF | OsEBP-89 | −1.8059 | Ethylene-dependent seed maturation and shoot development of rice | [35] |
Os08g0437300 | MYB | Os2R_MYOsB78 | −1.62563 | Uncharacterized | - |
Os12g0102300 | WRKY | OsWRKY57 | −1.41296 | Uncharacterized | - |
Os05g0103000 | bHLH | OsBHLH083 | −1.33475 | Uncharacterized | - |
Os08g0157600 | MYB_related | OsCCA1 | −1.32875 | Confers tolerance to salinity, osmotic, and drought stresses | [36] |
Upregulated genes—Tio Taka (chilling-sensitive) | |||||
Os03g0620400 | B3 | - | 6.865871 | - | - |
Os04g0477300 | NAC | OsBET1 | 5.745444 | Suppression improves boron toxicity tolerance in rice | [37] |
Os04g0508500 | MYB | Os2R_MYB45 | 5.300596 | - | - |
Os12g0123700 | NAC | OsNAC131 | 5.104718 | Rice blast disease resistance | [38] |
Os01g0584900 | WRKY | OsWRKY77 | 5.095596 | Involved in disease resistance | [39] |
Os02g0685200 | MYB_related | OsMYB1R | 4.960256 | Response to abiotic stresses | [40] |
Os04g0619000 | NAC | OsNAC083 | 4.957849 | Negatively regulates rice immunity against Magnaporthe oryzae | [24] |
Os03g0109000 | NAC | OsNAC055 | 4.938849 | Regulates GA-mediated lignin biosynthesis in rice straw | [41] |
Os11g0127600 | NAC | OsONAC045 | 4.891635 | Confers drought and salt tolerance | [42] |
Os11g0126900 | NAC | OsNAC10 | 4.841549 | Confers drought tolerance and grain yield | [43] |
Downregulated genes—Tio Taka (chilling-sensitive) | |||||
Os08g0474000 | ERF | OsERF104 | −4.51795 | Susceptibility to Pyricularia oryzae | [44] |
Os08g0549600 | bZIP | OsFD4, OsbZIP69 | −3.67118 | Promotes the rice floral transition | [45] |
Os05g0203800 | MIKC_MADS | OsMADS58 | −3.59836 | Specifies floral organ identities and meristem fate | [46] |
Os10g0403800 | bHLH | OsbHLH174 | −3.43713 | - | - |
Os01g0821300 | WRKY | OsWRKY108 | −2.9151 | Promotes phosphate accumulation | [47] |
Os07g0589200 | GRAS | OsGRAS-37 | −2.78553 | - | - |
Os05g0586300 | bHLH | OsbHLH051 | −2.67864 | - | - |
Os11g0523700 | bHLH | OsbHLH002 | −2.59665 | Positive regulation of chilling tolerance | [48] |
Os09g0457900 | ERF | OsERF102 | −2.53898 | - | - |
Os11g0558200 | MYB | OsMYB4P | −2.50756 | Increases phosphate acquisition in rice | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, V.E.; Pegoraro, C.; da Luz, V.K.; Costa de Oliveira, A.; da Maia, L.C. Uncovering Key Transcription Factors Driving Chilling Stress Tolerance in Rice Germination. DNA 2024, 4, 582-598. https://doi.org/10.3390/dna4040038
Viana VE, Pegoraro C, da Luz VK, Costa de Oliveira A, da Maia LC. Uncovering Key Transcription Factors Driving Chilling Stress Tolerance in Rice Germination. DNA. 2024; 4(4):582-598. https://doi.org/10.3390/dna4040038
Chicago/Turabian StyleViana, Vívian Ebeling, Camila Pegoraro, Viviane Kopp da Luz, Antonio Costa de Oliveira, and Luciano Carlos da Maia. 2024. "Uncovering Key Transcription Factors Driving Chilling Stress Tolerance in Rice Germination" DNA 4, no. 4: 582-598. https://doi.org/10.3390/dna4040038
APA StyleViana, V. E., Pegoraro, C., da Luz, V. K., Costa de Oliveira, A., & da Maia, L. C. (2024). Uncovering Key Transcription Factors Driving Chilling Stress Tolerance in Rice Germination. DNA, 4(4), 582-598. https://doi.org/10.3390/dna4040038