Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. HZSM-5 Catalyst Preparation
2.3. Experimental and Analytical Setup
2.3.1. Experimental Setup
2.3.2. Analytical Setup for Pyrolytic Products
3. Results
3.1. Catalyst Characterisation Results
3.2. Defining Optimal Conditions for Pyrolysis Reaction
3.3. Effect of HZSM-5 Catalyst Use on Pyrolytic Product Distribution
3.4. Effect of Varying the Fixed-Bed Reactor Temperature on the Catalytic Pyrolytic Liquid and Gas Products
3.4.1. Analysis of the Carboxylic Acid Evolution with Rising Catalytic Fixed-Bed Reactor Temperature
3.4.2. Principal Component Analysis (PCA) of the Pyrolytic Oils Obtained at Different Catalytic Fixed-Bed Reactor Temperatures
3.4.3. Stability of the Catalyst During Continuous Pyrolysis Reaction
3.4.4. Gas Product Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Detailed Composition of the Bio-Oil in Different Cases
Name | Conc. (mg/mL) | Formula |
---|---|---|
Propanoic acid, anhydride | 0.05696848 | C6H10O3 |
1,2,3-Propanetriol, 1-acetate | 0.157665431 | C5H10O4 |
Acetic acid, 1-methylethyl ester | 1.1150756 | C5H10O2 |
2-Propanol, 1,1-dimethoxy-, acetate | 0.022405046 | C7H14O4 |
Cyclobutene, 2-propenylidene | 0.072427252 | C7H8 |
2-Propanol | 0.02001388 | C3H8O |
Propanoic acid | 0.039777747 | C3H6O2 |
3-Penten-2-one, 4-methyl- | 0.020135457 | C3H4O2 |
Cyclopentanone | 0.029802766 | C5H8O |
Methane, isocyanato- | 0.01918618 | C2H3NO |
1,2,3-Propanetriol, monoacetate | 0.032753012 | C5H10O4 |
1,2,3-Propanetriol, diacetate | 0.036080879 | C7H12O5 |
Butyramide, 2,2,3,3-tetramethyl- | 0.22577449 | C8H17NO |
Butanoic acid, pentyl ester | 0.05561872 | C9H18O2 |
3-Ethoxycarbonyl-5-hydroxytetrahydropyran-2-one | 0.023443187 | C8H12O5 |
2-Hexanone, 4-hydroxy-5-methyl- | 0.049436952 | C7H14O2 |
3-Cyclopentyl-1-propanol | 0.01962652 | C8H16O |
2-Cyclopenten-1-one | 0.031693789 | C5H6O |
Furfural | 0.03993002 | C5H4O2 |
2-Pentanone, 4-hydroxy-4-methyl- | 0.024279481 | C6H12O2 |
Cyclobutanemethanol | 0.02099842 | C5H10O |
2-Furanmethanol | 0.040587 | C5H6O2 |
Propane-1,1-diol diacetate | 0.020340311 | C7H12O4 |
2-Butynamide, N-methyl- | 0.23169856 | C5H7NO |
1,4-Dioxane, 2-ethyl-5-methyl- | 0.03172624 | C7H14O2 |
Acetylfuran | 0.32278454 | C6H6O2 |
2-Cyclopenten-1-one, 2-hydroxy- | 0.019380296 | C5H6O2 |
Levoglucosenone | 0.05762254 | C6H6O3 |
1,1-Bicyclohexyl-1,1-diol | 0.04907126 | C12H22O2 |
2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | 0.020890618 | C6H8O2 |
n-Butyric acid 2-ethylhexyl ester | 0.026979851 | C12H24O2 |
2-Cyclopenten-1-one, 3,4-dimethyl- | 0.028779242 | C7H10O |
2(5H)-Furanone | 0.028754278 | C4H4O2 |
Cyclohexanone, 2-(hydroxymethyl)- | 0.023979913 | C7H12O2 |
1,3-Cyclopentanedione, 2-methyl- | 0.020297723 | C6H8O2 |
1-Hydroxymethyl-2-methyl-1-cyclohexene | 0.019337908 | C8H14O |
2-Cyclopenten-1-one, 2,3,4-trimethyl- | 0.018693786 | C8H12O |
2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- | 0.021421103 | C7H10O2 |
Phenol | 0.1323347 | C6H6O |
2-Cyclopenten-1-one, 2,3-dimethyl- | 0.01953008 | C7H10O |
2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- | 0.036549287 | C7H10O2 |
Maltol | 0.01959962 | C6H6O3 |
Phenol, 2,5-dimethyl- | 0.02755256 | C8H10O |
2,5-Furandicarboxaldehyde | 0.021066138 | C6H4O3 |
Phenol, 2-methyl- | 0.05927378 | C7H8O |
Phenol, 3-ethyl-5-methyl- | 0.0998888 | C9H12O |
Cinnamaldehyde, beta-methyl- | 0.02060191 | C10H10O |
4,7-Methano-1H-indene-1,8-dione, 3a,4,7,7a-tetrahydro- | 0.022425904 | C10H8O2 |
Phenol, 3,5-dimethyl- | 0.02751962 | C8H10O |
2-Ethyl-2-hydroxy-1,3-dimethylcyclopentanecarboxylic acid, ethyl ester | 0.052890251 | C12H22O3 |
Phenol, 2,4,6-trimethyl- | 0.03430526 | C9H12O |
Phenol, 2,4-dimethyl- | 0.02475266 | C8H10O |
Phenol, 4-ethyl- | 0.03064892 | C8H10O |
Phenol, 2-ethyl- | 0.02794784 | C8H10O |
Phenol, 3,4,5-trimethyl- | 0.06945224 | C9H12O |
2,3-Anhydro-d-galactosan | 0.0543331 | C6H8O4 |
Phenol, 2,3,5-trimethyl- | 0.02518088 | C9H12O |
Phenol, 2,3,5-trimethyl- | 0.0494906 | C9H12O |
Phenol, 2-methyl-5-(1-methylethyl)- | 0.03048422 | C10H14O |
1H-Inden-1-one, 2,3-dihydro-2-methyl- | 0.019236753 | C10H10O |
2-(1-Cyclopentenyl)furan | 0.32740209 | C9H10O |
Resorcinol (1,3-Benzenediol) | 0.02078322 | C6H6O2 |
Benzene, 1-methoxy-4-(1-methylpropyl)- | 0.13543352 | C11H16O |
Benzene, 3-ethyl-1,2,4,5-tetramethyl- | 0.016637476 | C12H18 |
2-Methyl-5-hydroxybenzofuran | 0.36329039 | C9H8O2 |
2-Allyl-4-methylphenol | 0.0279149 | C10H12O |
1,2-Benzenediol, 4-methyl- | 0.04285198 | C7H8O2 |
2,5-Dimethylhydroquinone | 0.020235313 | C8H10O2 |
1,2-Diethoxy-4-ethylbenzene | 0.023552716 | C12H18O2 |
1,4-Benzenediol, 2,6-dimethyl- | 0.02052498 | C8H10O2 |
1,5-Dihydroxy-1,2,3,4-tetrahydronaphthalene | 0.015180556 | C10H12O2 |
1,3-Benzenediol, 4-ethyl- | 0.01908852 | C8H10O2 |
2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-1-methoxy- | 0.020672183 | C11H16O2 |
3-Penten-2-one,4-(6,7,7-trimethyl-2,3-dioxabicyclo [2.2.2]oct-5-en-tyl) | 0.019686105 | C14H20O3 |
2,5-Dimethoxyphenethylamine | 0.22472554 | C10H15NO2 |
Levoglucosan | 0.21422338 | C6H10O5 |
Appendix A.2. Conversion and Production Rate
Chemical Families | Conversion (“−” Sign) and Production (“+” Sign) Rate (%) | ||||
---|---|---|---|---|---|
t = 10 min | t = 20 min | t = 35 min | t = 60 min | t = 120 min | |
Carboxylic acids | −88 | −79 | −63 | −51 | −12 |
Alkanes | −74 | −56 | −25 | +6 | +219 |
Aromatics | −92 | −89 | −82 | −82 | −48 |
Alcohols | −92 | −89 | −83 | −81 | −52 |
Aldehydes | −84 | −78 | −63 | −49 | +9 |
Amides | −91 | −90 | −86 | −86 | −54 |
Ketones | −84 | −77 | −66 | −73 | −27 |
Esters | −93 | −89 | −81 | −61 | −22 |
Furans | −85 | −76 | −58 | −63 | −5 |
Guaiacols | −87 | −80 | −60 | −47 | +48 |
Phenols | −91 | −90 | −83 | −81 | −43 |
Carbohydrates | −98 | −97 | −91 | −87 | −59 |
Chemical Families | Conversion (“−” Sign) and Production (“+” Sign) Rate (%) | ||||
---|---|---|---|---|---|
t = 10 min | t = 20 min | t = 35 min | t = 60 min | t = 120 min | |
Carboxylic acids | −85 | −53 | −43 | −35 | −23 |
Alkanes | −85 | −55 | −50 | −26 | −33 |
Aromatics | −92 | −78 | −76 | −67 | −65 |
Alcohols | −92 | −82 | −76 | −70 | −62 |
Aldehydes | −91 | −70 | −61 | −45 | −36 |
Amides | −92 | −46 | −65 | −17 | −45 |
Ketones | −89 | −69 | −64 | −42 | −37 |
Esters | −92 | −78 | −74 | −43 | −43 |
Furans | −75 | −15 | −16 | −32 | −31 |
Guaiacols | −87 | −52 | −36 | +3 | +50 |
Phenols | −94 | −76 | −73 | −65 | −50 |
Carbohydrates | −99 | −93 | −89 | −80 | −76 |
Appendix A.3. The Evolution of the Composition of Chemical Families in Time (vol.%)
Bio-Oil Composition (mol. %) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed-Bed Reactor Temperature | No Catalyst | 425 °C | 450 °C | 500 °C | ||||||||||||
Time in Reaction (min) | - | 10 | 20 | 35 | 60 | 120 | 10 | 20 | 35 | 60 | 120 | 10 | 20 | 35 | 60 | 120 |
Carboxylic acids | 47.44 | 60.83 | 61.11 | 61.66 | 55.01 | 55.28 | 50.57 | 56.94 | 59.11 | 62.56 | 53.30 | 48.10 | 54.73 | 52.37 | 53.45 | 58.25 |
Alkanes | 0.36 | 1.47 | 1.42 | 1.34 | 1.55 | 1.18 | 1.59 | 1.72 | 1.69 | 1.90 | 2.70 | - | 0.28 | 0.38 | 0.38 | 0.35 |
Aromatics | 3.64 | 2.54 | 2.13 | 1.92 | 2.10 | 1.85 | 3.27 | 2.82 | 2.67 | 2.14 | 2.97 | 3.68 | 2.53 | 2.73 | 2.59 | 2.03 |
Alcohols | 10.38 | 6.78 | 4.89 | 5.39 | 5.18 | 5.56 | 7.07 | 5.89 | 5.32 | 4.65 | 5.68 | 4.51 | 3.77 | 4.91 | 4.37 | 4.39 |
Aldehydes | 1.74 | 1.43 | 1.54 | 1.71 | 1.86 | 1.85 | 2.54 | 2.23 | 2.17 | 2.39 | 2.40 | 2.60 | 1.29 | 2.09 | 2.16 | 2.33 |
Amides | 0.25 | 0.57 | 1.22 | 0.66 | 1.21 | 0.68 | 0.62 | 0.44 | 0.38 | 0.30 | 0.47 | 0.75 | 0.51 | 0.56 | 0.69 | 1.18 |
Ketones | 7.45 | 7.28 | 6.81 | 6.57 | 8.37 | 7.64 | 12.64 | 11.92 | 10.17 | 6.43 | 8.25 | 10.81 | 9.39 | 9.27 | 8.47 | 8.09 |
Esters | 6.10 | 5.83 | 4.92 | 4.86 | 8.50 | 7.11 | 4.20 | 4.13 | 4.31 | 6.81 | 6.48 | 12.39 | 8.25 | 8.30 | 6.27 | 3.11 |
Furans | 1.04 | 2.21 | 2.35 | 1.95 | 1.23 | 1.06 | 1.46 | 1.53 | 1.57 | 1.10 | 1.32 | 3.66 | 3.87 | 2.62 | 2.62 | 1.81 |
Guaiacols | 1.02 | 1.31 | 1.55 | 1.75 | 2.20 | 2.71 | 1.30 | 1.27 | 1.46 | 1.52 | 2.02 | - | 0.66 | 1.31 | 1.54 | 2.19 |
Phenols | 13.12 | 9.18 | 10.79 | 10.46 | 10.39 | 12.68 | 14.06 | 10.21 | 9.79 | 8.66 | 12.06 | 13.50 | 14.22 | 14.01 | 15.88 | 14.59 |
Carbohydrates | 7.45 | 0.57 | 1.28 | 1.73 | 2.39 | 2.39 | 0.68 | 0.91 | 1.35 | 1.54 | 2.35 | - | 0.50 | 1.44 | 1.58 | 1.68 |
References
- Jerzak, W.; Acha, E.; Li, B. Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis. Energies 2024, 17, 5082. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Khoja, A.H.; Ali, I.; Naqvi, M.; Noor, T.; Ahmad, A.; Luque, R.; Amin, N.A.S. Recent progress in catalytic deoxygenation of biomass pyrolysis oil using microporous zeolites for green fuels production. Fuel 2023, 333, 126268. [Google Scholar] [CrossRef]
- He, Q.; Huang, S.; Luo, W.; Su, Y.; Xia, M.; Zhou, N.; Zhou, Z. Study on the difference between in-situ and ex-situ catalytic pyrolysis of oily sludge. Environ. Sci. Pollut. Res. 2021, 28, 50500–50509. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Lovell, E.; Kan, T.; Weldekidan, H.; He, J.; Jahan, S.; Dastjerdi, B.; Scott, J. Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. J. Anal. Appl. Pyrolysis 2019, 140, 148–160. [Google Scholar] [CrossRef]
- Rahman, N.A.A.; Cardenas-Lizana, F.; Sanna, A. Lithium–Sodium Fly Ash-Derived Catalyst for the In Situ Partial Deoxygenation of Isochrysis sp Microalgae Bio-Oil. Catalysts 2023, 13, 1122. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, J.; Xu, A.; Li, X.; Cai, Y. In-situ catalytic pyrolysis of cellulose with lithium-ion battery ternary cathodes and ex-situ upgrading over Ru/HZSM-5 for bio-aromatics. J. Anal. Appl. Pyrolysis 2024, 177, 106373. [Google Scholar] [CrossRef]
- Hubble, A.H.; Childs, B.A.; Pecchi, M.; Sudibyo, H.; Tester, J.W.; Goldfarb, J.L. Role of in situ (in contact with biomass) and ex situ (in contact with pyrolysis vapors) transition metal catalysts on pyrolysis of cherry pits. Fuel 2023, 352, 129062. [Google Scholar] [CrossRef]
- Luan, P.; Chen, J.; Liu, T.; Wang, J.; Yan, B.; Li, N.; Cui, X.; Chen, G.; Cheng, Z. Ex-situ catalytic fast pyrolysis of waste polycarbonate for aromatic hydrocarbons: Utilizing HZSM-5/modified HZSM-5. J. Anal. Appl. Pyrolysis 2024, 182, 106667. [Google Scholar] [CrossRef]
- Ruddy, D.A.; Schaidle, J.A.; Ferrell, J.R., III; Wang, J.; Moens, L.; Hensley, J.E. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds. Green Chem. 2014, 16, 454–490. [Google Scholar] [CrossRef]
- Xu, M.; Shi, Z.; Zhu, X.; Lai, Y.; Xia, A.; Huang, Y.; Jiang, X.; He, J.; Zhou, M.; Zhu, X.; et al. Ex-situ catalytic upgrading of biomass pyrolysis volatiles over thermal-decomposition products of spent lithium-ion batteries for bio-oil deoxygenation and hydrogen-rich syngas production. Int. J. Hydrogen Energy 2024, 52, 83–96. [Google Scholar] [CrossRef]
- Liu, T.L.; Cao, J.-P.; Zhao, X.-Y.; Wang, J.-X.; Ren, X.-Y.; Fan, X.; Zhao, Y.-P.; Wei, X.-Y. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Process. Technol. 2017, 160, 19–26. [Google Scholar]
- Cao, J.-P.; Li, L.-Y.; Morishita, K.; Xiao, X.-B.; Zhao, X.-Y.; Wei, X.-Y.; Takarada, T. Nitrogen transformations during fast pyrolysis of sewage sludge. Fuel 2013, 104, 1–6. [Google Scholar] [CrossRef]
- Promsampao, N.; Chollacoop, N.; Pattiya, A. Regeneration of pristine HZSM-5 extrudates during the production of deeply deoxygenated bio-oil from ex situ catalytic fast pyrolysis of biomass in a bench-scale fluidised-bed reactor. React. Chem. Eng. 2022, 7, 398–415. [Google Scholar] [CrossRef]
- HPrabhakara, M.; Bramer, E.A.; Brem, G. Hydrotalcite as a deoxygenation catalyst in fast pyrolysis of biomass for the production of high quality bio-oil. J. Anal. Appl. Pyrolysis 2022, 161, 105431. [Google Scholar] [CrossRef]
- Li, Y.; Nishu; Yellezuome, D.; Li, C.; Liu, R. Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ZSM-5 catalyst during biomass catalytic pyrolysis. Fuel 2022, 312, 122924. [Google Scholar] [CrossRef]
- Abdulkareem-Alsultan, G.; Asikin-Mijan, N.; Obeas, L.K.; Yunus, R.; Razali, S.Z.; Islam, A.; Taufiq-Yap, Y.H. In-situ operando and ex-situ study on light hydrocarbon-like-diesel and catalyst deactivation kinetic and mechanism study during deoxygenation of sludge oil. Chem. Eng. J. 2022, 429, 132206. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, L.; Zhao, X.; Julson, J. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading. Catalysts 2016, 6, 195. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Deactivation of hydroprocessing catalysts. Catal. Today 1999, 52, 381–495. [Google Scholar] [CrossRef]
- Mohabeer, C.; Abdelouahed, L.; Marcotte, S.; Taouk, B. Comparative analysis of pyrolytic liquid products of beech wood, flax shives and woody biomass components. J. Anal. Appl. Pyrolysis 2017, 127, 269–277. [Google Scholar] [CrossRef]
- Mohabeer, C.; Reyes, L.; Abdelouahed, L.; Marcotte, S.; Taouk, B. Investigating catalytic de-oxygenation of cellulose, xylan and lignin bio-oils using HZSM-5 and Fe-HZSM-5. J. Anal. Appl. Pyrolysis 2019, 137, 118–127. [Google Scholar] [CrossRef]
- Mohabeer, C.; Reyes, L.; Abdelouahed, L.; Buvat, J.-C.; Tidahy, L.; Abi-Aad, E.; Taouk, B. Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives. J. Fuel Chem. Technol. 2019, 47, 153–166. [Google Scholar] [CrossRef]
- HCerqueira, S.; Caeiro, G.; Costa, L.; Ribeiro, F.R. Deactivation of FCC catalysts. J. Mol. Catal. A Chem. 2008, 292, 1–13. [Google Scholar] [CrossRef]
- Mukarakate, C.; Zhang, X.; Stanton, A.R.; Robichaud, D.J.; Ciesielski, P.N.; Malhotra, K.; Donohoe, B.; Gjersing, E.; Evans, R.J.; Heroux, D.S.; et al. Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors. Green Chem. 2014, 16, 1444–1461. [Google Scholar] [CrossRef]
- Paasikallio, V.; Lindfors, C.; Kuoppala, E.; Solantausta, Y.; Oasmaa, A.; Lehto, J.; Lehtonen, J. Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run. Green Chem. 2014, 16, 3549. [Google Scholar] [CrossRef]
- Vitolo, S.; Bresci, B.; Seggiani, M.; Gallo, M.G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel 2001, 80, 17–26. [Google Scholar] [CrossRef]
- Charon, N.; Ponthus, J.; Espinat, D.; Broust, F.; Volle, G.; Valette, J.; Meier, D. Multi-technique characterization of fast pyrolysis oils. J. Anal. Appl. Pyrolysis 2015, 116, 18–26. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Guyot, D.; Westad, F.; Houmoller, L.P. Multivariate Data Analysis: In Practice: An Introduction to Multivariate Data Analysis and Experimental Design; CAMO Sosftware: Oslo, Norway, 2002. [Google Scholar]
- Guizani, C.; Valin, S.; Billaud, J.; Peyrot, M.; Salvador, S. Biomass fast pyrolysis in a drop tube reactor for bio oil production: Experiments and modeling. Fuel 2017, 207, 71–84. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Ellens, C. Design, Optimization and Evaluation of a Free-Fall Biomass Fast Pyrolysis Reactor and Its Products. Master’s Thesis, Iowa State University, Ames, IA, USA, 2009. [Google Scholar]
- Choi, S.J.; Park, S.H.; Jeon, J.-K.; Lee, I.G.; Ryu, C.; Suh, D.J.; Park, Y.-K. Catalytic conversion of particle board over microporous catalysts. Renew. Energy 2013, 54, 105–110. [Google Scholar] [CrossRef]
- Murata, K.; Liu, Y.; Inaba, M.; Takahara, I. Catalytic fast pyrolysis of jatropha wastes. J. Anal. Appl. Pyrolysis 2012, 94, 75–82. [Google Scholar] [CrossRef]
- Park, H.J.; Dong, J.-I.; Jeon, J.-K.; Yoo, K.-S.; Yim, J.-H.; Sohn, J.M.; Park, Y.-K. Conversion of the Pyrolytic Vapor of Radiata Pine over Zeolites. J. Ind. Eng. Chem. 2007, 13, 182–189. [Google Scholar]
- Park, H.J.; Park, Y.-K.; Kim, J.-S.; Jeon, J.-K.; Yoo, K.-S.; Yim, J.-H.; Jung, J.; Sohn, J.M. Bio-oil upgrading over Ga modified zeolites in a bubbling fluidized bed reactor. In Studies in Surface Science and Catalysis; Rhee, H.-K., Nam, I.-S., Park, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 553–556. [Google Scholar]
- Guo, Z.; Wang, S.; Zhu, Y.; Luo, Z.; Cen, K. Separation of acid compounds for refining biomass pyrolysis oil. J. Fuel Chem. Technol. 2009, 37, 49–52. [Google Scholar] [CrossRef]
- Gayubo, A.G.; Aguayo, A.T.; Atutxa, A.; Aguado, R.; Olazar, M.; Bilbao, J. Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite II Aldehydes, Ketones, and Acids. Ind. Eng. Chem. Res. 2004, 43, 2619–2626. [Google Scholar] [CrossRef]
Biomass Used | Elemental Analysis (wt. %) | |||
---|---|---|---|---|
Carbon | Hydrogen | Nitrogen | Oxygen | |
Beech wood (BW) | 47.38 | 6.11 | <0.01 | 46.51 |
Biomass Used | Moisture Content | Volatile Matter | Fixed Carbon | Ash |
---|---|---|---|---|
Beech wood (BW) | 5.70 | 75.93 | 17.52 | 0.85 |
DTR Temperature (°C) | Nitrogen Flow Rate (mL/min) * | Gas Residence Time (min) |
---|---|---|
500 | 500 | 9.27 |
1000 | 4.63 | |
2000 | 2.32 | |
550 | 500 | 9.27 |
1000 | 4.63 | |
2000 | 2.32 | |
600 | 500 | 9.27 |
1000 | 4.63 | |
2000 | 2.32 |
Retention Time (min) | Reference Compound for Calibration | Chemical Group | Most Abundant Compound in Oil | |
---|---|---|---|---|
6.38 | Furan | Furans | Furan, 2,3,5-trimethyl- | C7H10O |
10.90 | Acetic acid | Carboxylic acids | Acetic acid | C2H4O2 |
18.14 | Allyl butyrate | Esters | 2-Propanol, 1,1-dimethoxy-, acetate | C7H14O4 |
21.40 | 2-Cyclopenten-1-one, 2-methyl | Ketones | Levoglucosenone | C6H6O3 |
28.02 | Furfural | Aldehydes | Furfural | C5H4O2 |
28.66 | Phenol | Phenols | Phenol, 2,4,5-trimethyl- | C9H12O |
30.43 | Dodecene | Alkenes | Cyclopentene, 1-(1-methylethyl)- | C8H14 |
34.88 | p-Cresol | Alcohols | 2-Furanmethanol | C5H6O2 |
39.29 | Tetradecane | Alkanes | Nonane, 4-ethyl-5-methyl- | C12H26 |
41.72 | 4-Methylcatechol | Guaiacols | 4-Ethyl guaiacol | C9H12O2 |
42.66 | Benzamide | Amides | Butyramide, 2,2,3,3-tetramethyl- | C8H17NO |
49.49 | Levoglucosan | Sugars | Levoglucosan | C6H10O5 |
Chemical Families | Conversion (“−” Sign) and Production (“+” Sign) Rate (%) | ||
---|---|---|---|
t = 35 min | t = 60 min | t = 120 min | |
Carboxylic acids | −69 | −69 | −49 |
Alkanes | −68 | −74 | −55 |
Aromatics | −81 | −83 | −77 |
Alcohols | −75 | −77 | −61 |
Aldehydes | −53 | −54 | −22 |
Amides | −71 | −71 | −25 |
Ketones | −66 | −67 | −49 |
Esters | −49 | −52 | −61 |
Furans | −8 | −19 | −2 |
Guaiacols | −55 | −50 | −2 |
Phenols | −71 | −76 | −59 |
Carbohydrates | −87 | −87 | −89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohabeer, C.; Boutamine, Z.; Abdelouahed, L.; Maarawi, A.; Taouk, B. Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution. Biomass 2024, 4, 1238-1256. https://doi.org/10.3390/biomass4040069
Mohabeer C, Boutamine Z, Abdelouahed L, Maarawi A, Taouk B. Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution. Biomass. 2024; 4(4):1238-1256. https://doi.org/10.3390/biomass4040069
Chicago/Turabian StyleMohabeer, Chetna, Zineb Boutamine, Lokmane Abdelouahed, Antoinette Maarawi, and Bechara Taouk. 2024. "Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution" Biomass 4, no. 4: 1238-1256. https://doi.org/10.3390/biomass4040069
APA StyleMohabeer, C., Boutamine, Z., Abdelouahed, L., Maarawi, A., & Taouk, B. (2024). Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution. Biomass, 4(4), 1238-1256. https://doi.org/10.3390/biomass4040069