Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Electronic Properties
3.2. Magnetic Properties
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DOS | Density of states |
f.u. | Formula unit |
FPLO | Full-potential nonorthogonal local-orbital minimum-basis band structure approach |
GGA | Generalized gradient approximation |
PBE | Perdew–Burke–Ernzerhof |
References
- Heusler, F. Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 1903, 12, 219. [Google Scholar]
- Heusler, F.; Take, E. The nature of the Heusler alloys. Phys. Z. 1912, 13, 897. [Google Scholar] [CrossRef]
- Webster, P.J.; Ziebeck., K.R.A. Alloys and Compounds of d-Elements with Main Group Elements. Part 2. In Landolt-Börnstein, New Series, Group III; Wijn, H.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 19c, pp. 75–184. [Google Scholar]
- Ziebeck, K.R.A.; Neumann, K.-U. Magnetic Properties of Metals. In Landolt-Börnstein, New Series, Group III; Wijn, H.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 32/c, pp. 64–414. [Google Scholar]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1. [Google Scholar] [CrossRef]
- Katsnelson, M.I.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.I.; de Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315. [Google Scholar] [CrossRef]
- Galanakis, I. Slater–Pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials 2023, 13, 2010. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, A.; Takanashi, K. Perspectives of Heusler compounds. J. Phys. D Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- Half-Metallic Alloys: Fundamentals and Applications. In Lectures Notes in Physics; Galanakis, I., Dederichs, P.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 676. [Google Scholar]
- Felser, C.; Fecher, G.H. (Eds.) Spintronics. From Materials to Devices; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Fong, C.Y.; Pask, J.E.; Yang, L.H. (Eds.) Half-metallic Materials and Their Properties. In Series on Materials for Engineering; Imperial College Press: London, UK, 2013; Volume 2. [Google Scholar]
- Felser, C.; Hirohata, A. (Eds.) Heusler Alloys. Properties, Growth, Applications. In Springer Series in Materials Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 222. [Google Scholar]
- Gillessen, M.; Dronskowski, R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009, 30, 1290. [Google Scholar] [CrossRef]
- Gillessen, M.; Dronskowski, R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010, 31, 612. [Google Scholar] [CrossRef]
- Ma, J.; Hegde, V.I.; Munira, K.; Xie, Y.; Keshavarz, S.; Mildebrath, D.T.; Wolverton, C.; Ghosh, A.W.; Butler, W.H. Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 2017, 95, 024411. [Google Scholar] [CrossRef]
- Ma, J.; He, J.; Mazumdar, D.; Munira, K.; Keshavarz, S.; Lovorn, T.; Wolverton, C.; Ghosh, A.W.; Butler, W.H. Computational investigation of inverse Heusler compounds for spintronics applications. Phys. Rev. B 2018, 98, 094410. [Google Scholar] [CrossRef]
- Sanvito, S.; Oses, C.; Xue, J.; Tiwari, A.; Zic, M.; Archer, T.; Tozman, P.; Venkatesan, M.; Coey, M.; Curtarolo, S. Accelerated discovery of new magnets in the Heusler alloy family. Sci. Adv. 2017, 3, e1602241. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds. Phys. Rev. B 2017, 95, 045140. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Origin of the Tetragonal Ground State of Heusler Compounds. Phys. Rev. Appl. 2017, 7, 034022. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Phys. Rev. Mater. 2017, 1, 024402. [Google Scholar] [CrossRef]
- Oliynyk, A.O.; Antono, E.; Sparks, T.D.; Ghadbeigi, L.; Gaultois, M.W.; Meredig, B.; Mar, A. High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds. Chem. Mater. 2016, 28, 7324. [Google Scholar] [CrossRef]
- Ni, Z.; Ma, Y.; Liu, X.; Luo, H.; Liu, H.; Meng, F. Electronic structure, magnetic properties and martensitic transformation in all-d-metal Heusler alloys. J. Magn. Magn. Mater. 2018, 451, 721. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Liu, E.K.; Li, Y.; Han, X.L.; Du, Z.W.; Luo, H.Z.; Liu, G.D.; Xi, X.K.; Zhang, H.W.; Wang, W.H.; et al. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys. Appl. Phys. Lett. 2016, 109, 071904. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Liu, E.K.; Chen, J.H.; Li, Y.; Liu, G.D.; Luo, H.Z.; Xi, X.K.; Zhang, H.W.; Wang, W.H.; Wu, G.H. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases. Appl. Phys. Lett. 2015, 107, 022406. [Google Scholar] [CrossRef]
- Ni, Z.; Guo, X.; Liu, X.; Jiao, Y.; Meng, F.; Luo, H. Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5. J. Alloys Compd. 2019, 775, 427. [Google Scholar] [CrossRef]
- Samanta, S.; Ghosh, S.; Mandal, K. Observation of giant exchange bias effect in Ni–Mn–Ti all-d-metal Heusler alloy. J. Phys. Condens. Matter 2022, 34, 105801. [Google Scholar] [CrossRef]
- Aznar, A.; Gràcia-Condal, A.; Planes, A.; Lloveras, P.; Barrio, M.; Tamarit, J.-L.; Xiong, W.; Cong, D.; Popescu, C.; Manosa, L. Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 2019, 3, 044406. [Google Scholar] [CrossRef]
- Samanta, S.; Ghosh, S.; Chatterjee, S.; Mandal, K. Large magnetocaloric effect and magnetoresistance in Fe-Co doped Ni50-x(FeCo)xNn37Ti13 all-d-metal Heusler alloys. J. Alloys Compd. 2022, 910, 164929. [Google Scholar] [CrossRef]
- Samanta, S.; Chatterjee, S.; Ghosh, S.; Mandal, K. Large reversible magnetocaloric effect and magnetoresistance by improving crystallographic compatibility condition in Ni(Co)- Mn-Ti all-d-metal Heusler alloys. Phys. Rev. Mater. 2022, 6, 094411. [Google Scholar] [CrossRef]
- Shena, J.; Zeng, Q.; Zhang, H.; Xi, X.; Liu, E.; Wang, W.; Wu, G. Atomic configuration, unusual lattice constant change, and tunable ferromagnetism in all-d-metal Heusler alloys Fe2CrV-FeCr2V. J. Magn. Magn. Mater. 2019, 492, 165661. [Google Scholar] [CrossRef]
- Mert, G. Magnetic phase transitions of all-d metal Heusler type model. J. Alloy. Compd. 2020, 819, 153299. [Google Scholar] [CrossRef]
- Tanzim, M.F.; Fortunato, N.; Samathrakis, I.; Xie, R.; Opahle, I.; Gutfleisch, O.; Zhang, H. Giant Anomalous Hall and Nernst Conductivities in Magnetic All-d Metal Heusler Alloys. Adv. Funct. Mater. 2023, 33, 2214967. [Google Scholar] [CrossRef]
- de Paula, V.G.; Reis, M.S. All-d-Metal Full Heusler Alloys: A Novel Class of Functional Materials. Chem. Mater. 2021, 33, 5483. [Google Scholar] [CrossRef]
- Marathe, M.; Herper, H.C. Exploration of all-3d Heusler alloys for permanent magnets: An ab initio based high-throughput study. Phys. Rev. B 2023, 107, 174402. [Google Scholar] [CrossRef]
- Nia, S.; Khenchoul, S.; Lefkaier, I.K.; Lagoun, B. DFT-based investigation of the structural, magnetic, electronic, half-metallicity and elastic properties in the all-d heusler compounds: The case of Co2VZn and CoVZn. Eur. Phys. J. B 2021, 94, 118. [Google Scholar] [CrossRef]
- Jin, T.; Jung, Y. Classifying Intermetallic Tetragonal Phase of All-d-Metal Heusler Alloys for Catalysis Applications. Today Catal. 2022, 65, 208. [Google Scholar] [CrossRef]
- Zeng, Q.; Shen, J.; Zhang, H.; Chen, J.; Ding, B.; Xi, X.; Liu, E.; Wang, W.; Wu, G. Electronic behaviors during martensitic transformations in all-d-metal Heusler alloys. J. Phys. Condens. Matter 2019, 31, 425401. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, N.M.; Taubel, A.; Marmodoro, A.; Pfeuffer, L.; Ophale, I.; Ebert, H.; Gutfleisch, O.; Zhang, H. High-Throughput Design of Magnetocaloric Materials for Energy Applications: MḾX alloys. Adv. Sci. 2023, 10, 2206772. [Google Scholar] [CrossRef]
- Fortunato, N.M.; Li, X.; Schöpnecker, S.; Xie, R.; Taubel, A.; Scheibel, F.; Opahle, I.; Gutfleisch, O.; Zhang, H. High-Throughput Screening of All-d-Metal Heusler Alloys for Magnetocaloric Applications. Chem. Mater. 2024, 3, 6765. [Google Scholar] [CrossRef]
- Özdoğan, K.; Maznichenko, I.V.; Ostanin, S.; Şaşıoğlu, E.; Ernst, A.; Mertig, I.; Galanakis, I. High spin polarization in all-3d-metallic Heusler compounds: The case of Fe2CrZ and Co2CrZ (Z = Sc,Ti,V). J. Phys. D Appl. Phys. 2019, 52, 205003, Corrigendum 2024, 57, 049501. [Google Scholar] [CrossRef]
- Tas, M.; Özdoğan, K.; Şaşıoğlu, E.; Galanakis, I. High Spin Magnetic Moments in All-3d-Metallic Co-Based Full Heusler Compounds. Materials 2023, 16, 7543. [Google Scholar] [CrossRef]
- Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 1999, 59, 1743. [Google Scholar] [CrossRef]
- Kopernik, K. Full Potential Local Orbital Minimum Basis Bandstructure Scheme User’s Manual. Available online: https://www.fplo.de/ (accessed on 1 September 2024).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys. Phys. Rev. B 2002, 66, 134428. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Slater-Pauling Behavior and Origin of the Half-Metallicity of the Full-Heusler Alloys. Phys. Rev. B 2002, 66, 174429. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Available online: https://oqmd.org (accessed on 1 September 2024).
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
XYZ | Structure | (Å) | (eV/atom) | (eV/atom) | (eV/f.u.) |
---|---|---|---|---|---|
MnSc | 5.902 | −0.169 | 0.102 | −0.735 | |
5.964 | 0.005 | 0.276 | |||
MnTi | 5.759 | −0.289 | 0.010 | −0.587 | |
5.799 | −0.154 | 0.144 | |||
MnV | 5.603 | 0.196 | 0.365 | −0.143 | |
5.669 | −0.035 | 0.134 | |||
MnCr | 5.614 | 0.093 | 0.122 | −0.216 | |
5.628 | 0.129 | 0.158 | |||
MnY | 6.161 | 0.072 | 0.213 | −0.749 | |
6.225 | 0.246 | 0.388 | |||
MnZr | 6.004 | −0.174 | 0.068 | −0.769 | |
6.040 | 0.005 | 0.247 | |||
MnNb | 5.892 | −0.080 | 0.068 | −0.534 | |
5.873 | 0.034 | 0.182 | |||
MnMo | 5.805 | 0.078 | 0.138 | −0.397 | |
5.743 | 0.151 | 0.211 | |||
MnLu | 6.046 | −0.063 | 0.161 | −0.769 | |
6.114 | 0.125 | 0.349 | |||
MnHf | 5.958 | −0.250 | 0.037 | −0.853 | |
5.973 | −0.050 | 0.237 | |||
MnTa | 5.807 | 0.181 | 0.401 | −0.433 | |
5.863 | −0.015 | 0.205 | |||
MnW | 5.816 | 0.072 | 0.157 | −0.390 | |
5.749 | 0.140 | 0.226 |
XYZ | Structure | (Å) | (eV/atom) | (eV/atom) |
---|---|---|---|---|
MnSc | 6.258 | −0.623 | 0.013 | |
MnTi | 6.127 | −0.586 | 0.000 | |
MnV | 6.047 | −0.236 | 0.075 | |
MnCr | 6.047 | −0.063 | 0.070 | |
MnY | 6.484 | −0.462 | 0.092 | |
MnZr | 6.352 | −0.576 | 0.011 | |
MnNb | 6.236 | −0.298 | 0.085 | |
MnMo | 6.163 | 0.029 | 0.220 | |
MnLu | 6.394 | −0.595 | 0.005 | |
MnHf | 6.309 | −0.662 | 0.011 | |
MnTa | 6.227 | −0.375 | 0.091 | |
MnW | 6.166 | 0.023 | 0.226 | |
MnSc | 6.183 | −0.187 | 0.103 | |
MnTi | 6.065 | −0.346 | 0.049 | |
MnV | 5.984 | −0.154 | 0.001 | |
MnCr | 5.961 | 0.109 | 0.110 | |
MnY | 6.414 | 0.077 | 0.306 | |
MnZr | 6.292 | −0.230 | 0.092 | |
MnNb | 6.192 | −0.162 | 0.002 | |
MnMo | 6.122 | 0.061 | 0.115 | |
MnLu | 6.323 | −0.084 | 0.209 | |
MnHf | 6.252 | −0.328 | 0.079 | |
MnTa | 6.187 | −0.253 | 0.006 | |
MnW | 6.139 | 0.004 | 0.069 |
X2YZ | Structure | () | () | () | () | () | |
---|---|---|---|---|---|---|---|
MnSc | 0.82 | 0.82 | 3.12 | −0.44 | 4.31 | 28 | |
1.23 | 1.56 | 2.95 | −0.42 | 5.31 | |||
MnY | 0.85 | 0.85 | 3.46 | −0.35 | 4.82 | ||
1.19 | 1.50 | 3.16 | −0.36 | 5.50 | |||
MnLu | 0.76 | 0.76 | 3.27 | −0.30 | 4.49 | ||
1.14 | 1.51 | 3.01 | −0.29 | 5.38 | |||
MnTi | 1.05 | 1.05 | 3.23 | −0.45 | 4.87 | 29 | |
1.20 | 1.61 | 2.45 | −0.65 | 4.61 | |||
MnZr | 0.98 | 0.98 | 3.47 | −0.37 | 5.07 | ||
1.03 | 1.54 | 2.60 | −0.49 | 4.68 | |||
Co2MnHf | 0.98 | 0.98 | 3.43 | −0.35 | 5.03 | ||
0.98 | 1.55 | 2.48 | −0.39 | 4.62 | |||
MnV | 1.15 | 1.15 | 3.07 | 0.25 | 5.62 | 30 | |
1.12 | 1.52 | 2.14 | −0.93 | 3.85 | |||
MnNb | 1.22 | 1.22 | 3.50 | −0.13 | 5.80 | ||
0.88 | 1.46 | 2.25 | −0.52 | 4.07 | |||
MnTa | 1.19 | 1.19 | 3.44 | −0.13 | 5.70 | ||
0.76 | 1.50 | 2.04 | −0.44 | 3.86 | |||
MnCr | 1.23 | 1.23 | 2.95 | 1.32 | 6.73 | 31 | |
0.76 | 1.53 | 2.32 | −1.71 | 2.89 | |||
MnMo | 1.40 | 1.40 | 3.38 | 0.20 | 6.37 | ||
−0.05 | 1.34 | 2.04 | −0.47 | 2.85 | |||
MnW | 1.39 | 1.39 | 3.41 | 0.11 | 6.29 | ||
−0.01 | 1.42 | 1.83 | −0.37 | 2.87 |
() | () | () | () | ||
---|---|---|---|---|---|
MnSc | 0.82 | 3.12 | −0.44 | 4.31 | 28 |
MnY | 0.85 | 3.46 | −0.35 | 4.82 | |
MnLu | 0.76 | 3.27 | −0.30 | 4.49 | |
MnSc | 0.28 | 3.96 | −0.22 | 4.31 | |
MnY | 0.25 | 4.17 | −0.13 | 4.53 | |
MnLu | 0.39 | 4.07 | −0.12 | 4.42 | |
MnSc | −0.20 | 3.10 | −0.09 | 2.61 | |
MnY | −0.15 | 3.60 | −0.02 | 3.28 | |
MnLu | −0.19 | 3.41 | −0.01 | 3.03 | |
MnTi | 1.05 | 3.23 | −0.45 | 4.87 | 29 |
MnZr | 0.98 | 3.47 | −0.37 | 5.07 | |
MnHf | 0.98 | 3.43 | −0.35 | 5.03 | |
MnTi | 0.33 | 4.07 | 0.05 | 4.78 | |
MnZr | 0.28 | 4.20 | −0.03 | 4.72 | |
MnHf | 0.28 | 4.17 | −0.03 | 4.71 | |
MnTi | −0.01 | 3.33 | −0.01 | 3.28 | |
MnZr | 0.01 | 3.63 | −0.04 | 3.62 | |
MnHf | −0.00 | 3.55 | −0.06 | 3.49 | |
MnV | 1.15 | 3.07 | 0.25 | 5.62 | 30 |
MnNb | 1.22 | 3.50 | −0.13 | 5.80 | |
MnTa | 1.19 | 3.44 | −0.13 | 5.70 | |
MnV | 0.33 | 3.90 | 0.14 | 4.70 | |
MnNb | 0.19 | 4.05 | −0.05 | 4.39 | |
MnTa | 0.17 | 4.04 | −0.04 | 4.35 | |
MnV | 0.07 | 3.44 | 0.44 | 4.01 | |
MnNb | 0.18 | 3.70 | 0.01 | 4.07 | |
MnTa | 0.19 | 3.71 | −0.02 | 4.06 | |
MnCr | 1.23 | 2.95 | 1.32 | 6.73 | 31 |
MnMo | 1.40 | 3.38 | 0.20 | 6.37 | |
MnW | 1.39 | 3.41 | 0.11 | 6.29 | |
MnCr | 0.26 | 3.79 | 2.85 | 7.17 | |
MnMo | 0.09 | 3.92 | −0.50 | 3.59 | |
MnW | 0.10 | 3.90 | −0.27 | 3.83 | |
MnCr | −0.08 | 3.32 | 1.89 | 5.05 | |
MnMo | 0.35 | 3.75 | 0.03 | 4.49 | |
MnW | 0.39 | 3.85 | 0.01 | 4.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tas, M.; Şaşıoğlu, E.; Galanakis, I. Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism 2024, 4, 400-411. https://doi.org/10.3390/magnetism4040026
Tas M, Şaşıoğlu E, Galanakis I. Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism. 2024; 4(4):400-411. https://doi.org/10.3390/magnetism4040026
Chicago/Turabian StyleTas, Murat, Ersoy Şaşıoğlu, and Iosif Galanakis. 2024. "Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study" Magnetism 4, no. 4: 400-411. https://doi.org/10.3390/magnetism4040026
APA StyleTas, M., Şaşıoğlu, E., & Galanakis, I. (2024). Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism, 4(4), 400-411. https://doi.org/10.3390/magnetism4040026