Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Electronic Properties
3.2. Magnetic Properties
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DOS | Density of states |
f.u. | Formula unit |
FPLO | Full-potential nonorthogonal local-orbital minimum-basis band structure approach |
GGA | Generalized gradient approximation |
PBE | Perdew–Burke–Ernzerhof |
References
- Heusler, F. Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 1903, 12, 219. [Google Scholar]
- Heusler, F.; Take, E. The nature of the Heusler alloys. Phys. Z. 1912, 13, 897. [Google Scholar] [CrossRef]
- Webster, P.J.; Ziebeck., K.R.A. Alloys and Compounds of d-Elements with Main Group Elements. Part 2. In Landolt-Börnstein, New Series, Group III; Wijn, H.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 19c, pp. 75–184. [Google Scholar]
- Ziebeck, K.R.A.; Neumann, K.-U. Magnetic Properties of Metals. In Landolt-Börnstein, New Series, Group III; Wijn, H.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 32/c, pp. 64–414. [Google Scholar]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1. [Google Scholar] [CrossRef]
- Katsnelson, M.I.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.I.; de Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315. [Google Scholar] [CrossRef]
- Galanakis, I. Slater–Pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials 2023, 13, 2010. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, A.; Takanashi, K. Perspectives of Heusler compounds. J. Phys. D Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- Half-Metallic Alloys: Fundamentals and Applications. In Lectures Notes in Physics; Galanakis, I.; Dederichs, P.H. (Eds.) Springer: Berlin/Heidelberg, Germany, 2005; Volume 676. [Google Scholar]
- Felser, C.; Fecher, G.H. (Eds.) Spintronics. From Materials to Devices; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Fong, C.Y.; Pask, J.E.; Yang, L.H. (Eds.) Half-metallic Materials and Their Properties. In Series on Materials for Engineering; Imperial College Press: London, UK, 2013; Volume 2. [Google Scholar]
- Felser, C.; Hirohata, A. (Eds.) Heusler Alloys. Properties, Growth, Applications. In Springer Series in Materials Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 222. [Google Scholar]
- Gillessen, M.; Dronskowski, R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009, 30, 1290. [Google Scholar] [CrossRef]
- Gillessen, M.; Dronskowski, R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010, 31, 612. [Google Scholar] [CrossRef]
- Ma, J.; Hegde, V.I.; Munira, K.; Xie, Y.; Keshavarz, S.; Mildebrath, D.T.; Wolverton, C.; Ghosh, A.W.; Butler, W.H. Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 2017, 95, 024411. [Google Scholar] [CrossRef]
- Ma, J.; He, J.; Mazumdar, D.; Munira, K.; Keshavarz, S.; Lovorn, T.; Wolverton, C.; Ghosh, A.W.; Butler, W.H. Computational investigation of inverse Heusler compounds for spintronics applications. Phys. Rev. B 2018, 98, 094410. [Google Scholar] [CrossRef]
- Sanvito, S.; Oses, C.; Xue, J.; Tiwari, A.; Zic, M.; Archer, T.; Tozman, P.; Venkatesan, M.; Coey, M.; Curtarolo, S. Accelerated discovery of new magnets in the Heusler alloy family. Sci. Adv. 2017, 3, e1602241. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds. Phys. Rev. B 2017, 95, 045140. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Origin of the Tetragonal Ground State of Heusler Compounds. Phys. Rev. Appl. 2017, 7, 034022. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Phys. Rev. Mater. 2017, 1, 024402. [Google Scholar] [CrossRef]
- Oliynyk, A.O.; Antono, E.; Sparks, T.D.; Ghadbeigi, L.; Gaultois, M.W.; Meredig, B.; Mar, A. High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds. Chem. Mater. 2016, 28, 7324. [Google Scholar] [CrossRef]
- Ni, Z.; Ma, Y.; Liu, X.; Luo, H.; Liu, H.; Meng, F. Electronic structure, magnetic properties and martensitic transformation in all-d-metal Heusler alloys. J. Magn. Magn. Mater. 2018, 451, 721. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Liu, E.K.; Li, Y.; Han, X.L.; Du, Z.W.; Luo, H.Z.; Liu, G.D.; Xi, X.K.; Zhang, H.W.; Wang, W.H.; et al. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys. Appl. Phys. Lett. 2016, 109, 071904. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Liu, E.K.; Chen, J.H.; Li, Y.; Liu, G.D.; Luo, H.Z.; Xi, X.K.; Zhang, H.W.; Wang, W.H.; Wu, G.H. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases. Appl. Phys. Lett. 2015, 107, 022406. [Google Scholar] [CrossRef]
- Ni, Z.; Guo, X.; Liu, X.; Jiao, Y.; Meng, F.; Luo, H. Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5. J. Alloys Compd. 2019, 775, 427. [Google Scholar] [CrossRef]
- Samanta, S.; Ghosh, S.; Mandal, K. Observation of giant exchange bias effect in Ni–Mn–Ti all-d-metal Heusler alloy. J. Phys. Condens. Matter 2022, 34, 105801. [Google Scholar] [CrossRef]
- Aznar, A.; Gràcia-Condal, A.; Planes, A.; Lloveras, P.; Barrio, M.; Tamarit, J.-L.; Xiong, W.; Cong, D.; Popescu, C.; Manosa, L. Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 2019, 3, 044406. [Google Scholar] [CrossRef]
- Samanta, S.; Ghosh, S.; Chatterjee, S.; Mandal, K. Large magnetocaloric effect and magnetoresistance in Fe-Co doped Ni50-x(FeCo)xNn37Ti13 all-d-metal Heusler alloys. J. Alloys Compd. 2022, 910, 164929. [Google Scholar] [CrossRef]
- Samanta, S.; Chatterjee, S.; Ghosh, S.; Mandal, K. Large reversible magnetocaloric effect and magnetoresistance by improving crystallographic compatibility condition in Ni(Co)- Mn-Ti all-d-metal Heusler alloys. Phys. Rev. Mater. 2022, 6, 094411. [Google Scholar] [CrossRef]
- Shena, J.; Zeng, Q.; Zhang, H.; Xi, X.; Liu, E.; Wang, W.; Wu, G. Atomic configuration, unusual lattice constant change, and tunable ferromagnetism in all-d-metal Heusler alloys Fe2CrV-FeCr2V. J. Magn. Magn. Mater. 2019, 492, 165661. [Google Scholar] [CrossRef]
- Mert, G. Magnetic phase transitions of all-d metal Heusler type model. J. Alloy. Compd. 2020, 819, 153299. [Google Scholar] [CrossRef]
- Tanzim, M.F.; Fortunato, N.; Samathrakis, I.; Xie, R.; Opahle, I.; Gutfleisch, O.; Zhang, H. Giant Anomalous Hall and Nernst Conductivities in Magnetic All-d Metal Heusler Alloys. Adv. Funct. Mater. 2023, 33, 2214967. [Google Scholar] [CrossRef]
- de Paula, V.G.; Reis, M.S. All-d-Metal Full Heusler Alloys: A Novel Class of Functional Materials. Chem. Mater. 2021, 33, 5483. [Google Scholar] [CrossRef]
- Marathe, M.; Herper, H.C. Exploration of all-3d Heusler alloys for permanent magnets: An ab initio based high-throughput study. Phys. Rev. B 2023, 107, 174402. [Google Scholar] [CrossRef]
- Nia, S.; Khenchoul, S.; Lefkaier, I.K.; Lagoun, B. DFT-based investigation of the structural, magnetic, electronic, half-metallicity and elastic properties in the all-d heusler compounds: The case of Co2VZn and CoVZn. Eur. Phys. J. B 2021, 94, 118. [Google Scholar] [CrossRef]
- Jin, T.; Jung, Y. Classifying Intermetallic Tetragonal Phase of All-d-Metal Heusler Alloys for Catalysis Applications. Today Catal. 2022, 65, 208. [Google Scholar] [CrossRef]
- Zeng, Q.; Shen, J.; Zhang, H.; Chen, J.; Ding, B.; Xi, X.; Liu, E.; Wang, W.; Wu, G. Electronic behaviors during martensitic transformations in all-d-metal Heusler alloys. J. Phys. Condens. Matter 2019, 31, 425401. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, N.M.; Taubel, A.; Marmodoro, A.; Pfeuffer, L.; Ophale, I.; Ebert, H.; Gutfleisch, O.; Zhang, H. High-Throughput Design of Magnetocaloric Materials for Energy Applications: MḾX alloys. Adv. Sci. 2023, 10, 2206772. [Google Scholar] [CrossRef]
- Fortunato, N.M.; Li, X.; Schöpnecker, S.; Xie, R.; Taubel, A.; Scheibel, F.; Opahle, I.; Gutfleisch, O.; Zhang, H. High-Throughput Screening of All-d-Metal Heusler Alloys for Magnetocaloric Applications. Chem. Mater. 2024, 3, 6765. [Google Scholar] [CrossRef]
- Özdoğan, K.; Maznichenko, I.V.; Ostanin, S.; Şaşıoğlu, E.; Ernst, A.; Mertig, I.; Galanakis, I. High spin polarization in all-3d-metallic Heusler compounds: The case of Fe2CrZ and Co2CrZ (Z = Sc,Ti,V). J. Phys. D Appl. Phys. 2019, 52, 205003, Corrigendum 2024, 57, 049501. [Google Scholar] [CrossRef]
- Tas, M.; Özdoğan, K.; Şaşıoğlu, E.; Galanakis, I. High Spin Magnetic Moments in All-3d-Metallic Co-Based Full Heusler Compounds. Materials 2023, 16, 7543. [Google Scholar] [CrossRef]
- Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 1999, 59, 1743. [Google Scholar] [CrossRef]
- Kopernik, K. Full Potential Local Orbital Minimum Basis Bandstructure Scheme User’s Manual. Available online: https://www.fplo.de/ (accessed on 1 September 2024).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys. Phys. Rev. B 2002, 66, 134428. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Slater-Pauling Behavior and Origin of the Half-Metallicity of the Full-Heusler Alloys. Phys. Rev. B 2002, 66, 174429. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Available online: https://oqmd.org (accessed on 1 September 2024).
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
XYZ | Structure | (Å) | (eV/atom) | (eV/atom) | (eV/f.u.) |
---|---|---|---|---|---|
MnSc | 5.902 | −0.169 | 0.102 | −0.735 | |
5.964 | 0.005 | 0.276 | |||
MnTi | 5.759 | −0.289 | 0.010 | −0.587 | |
5.799 | −0.154 | 0.144 | |||
MnV | 5.603 | 0.196 | 0.365 | −0.143 | |
5.669 | −0.035 | 0.134 | |||
MnCr | 5.614 | 0.093 | 0.122 | −0.216 | |
5.628 | 0.129 | 0.158 | |||
MnY | 6.161 | 0.072 | 0.213 | −0.749 | |
6.225 | 0.246 | 0.388 | |||
MnZr | 6.004 | −0.174 | 0.068 | −0.769 | |
6.040 | 0.005 | 0.247 | |||
MnNb | 5.892 | −0.080 | 0.068 | −0.534 | |
5.873 | 0.034 | 0.182 | |||
MnMo | 5.805 | 0.078 | 0.138 | −0.397 | |
5.743 | 0.151 | 0.211 | |||
MnLu | 6.046 | −0.063 | 0.161 | −0.769 | |
6.114 | 0.125 | 0.349 | |||
MnHf | 5.958 | −0.250 | 0.037 | −0.853 | |
5.973 | −0.050 | 0.237 | |||
MnTa | 5.807 | 0.181 | 0.401 | −0.433 | |
5.863 | −0.015 | 0.205 | |||
MnW | 5.816 | 0.072 | 0.157 | −0.390 | |
5.749 | 0.140 | 0.226 |
XYZ | Structure | (Å) | (eV/atom) | (eV/atom) |
---|---|---|---|---|
MnSc | 6.258 | −0.623 | 0.013 | |
MnTi | 6.127 | −0.586 | 0.000 | |
MnV | 6.047 | −0.236 | 0.075 | |
MnCr | 6.047 | −0.063 | 0.070 | |
MnY | 6.484 | −0.462 | 0.092 | |
MnZr | 6.352 | −0.576 | 0.011 | |
MnNb | 6.236 | −0.298 | 0.085 | |
MnMo | 6.163 | 0.029 | 0.220 | |
MnLu | 6.394 | −0.595 | 0.005 | |
MnHf | 6.309 | −0.662 | 0.011 | |
MnTa | 6.227 | −0.375 | 0.091 | |
MnW | 6.166 | 0.023 | 0.226 | |
MnSc | 6.183 | −0.187 | 0.103 | |
MnTi | 6.065 | −0.346 | 0.049 | |
MnV | 5.984 | −0.154 | 0.001 | |
MnCr | 5.961 | 0.109 | 0.110 | |
MnY | 6.414 | 0.077 | 0.306 | |
MnZr | 6.292 | −0.230 | 0.092 | |
MnNb | 6.192 | −0.162 | 0.002 | |
MnMo | 6.122 | 0.061 | 0.115 | |
MnLu | 6.323 | −0.084 | 0.209 | |
MnHf | 6.252 | −0.328 | 0.079 | |
MnTa | 6.187 | −0.253 | 0.006 | |
MnW | 6.139 | 0.004 | 0.069 |
X2YZ | Structure | () | () | () | () | () | |
---|---|---|---|---|---|---|---|
MnSc | 0.82 | 0.82 | 3.12 | −0.44 | 4.31 | 28 | |
1.23 | 1.56 | 2.95 | −0.42 | 5.31 | |||
MnY | 0.85 | 0.85 | 3.46 | −0.35 | 4.82 | ||
1.19 | 1.50 | 3.16 | −0.36 | 5.50 | |||
MnLu | 0.76 | 0.76 | 3.27 | −0.30 | 4.49 | ||
1.14 | 1.51 | 3.01 | −0.29 | 5.38 | |||
MnTi | 1.05 | 1.05 | 3.23 | −0.45 | 4.87 | 29 | |
1.20 | 1.61 | 2.45 | −0.65 | 4.61 | |||
MnZr | 0.98 | 0.98 | 3.47 | −0.37 | 5.07 | ||
1.03 | 1.54 | 2.60 | −0.49 | 4.68 | |||
Co2MnHf | 0.98 | 0.98 | 3.43 | −0.35 | 5.03 | ||
0.98 | 1.55 | 2.48 | −0.39 | 4.62 | |||
MnV | 1.15 | 1.15 | 3.07 | 0.25 | 5.62 | 30 | |
1.12 | 1.52 | 2.14 | −0.93 | 3.85 | |||
MnNb | 1.22 | 1.22 | 3.50 | −0.13 | 5.80 | ||
0.88 | 1.46 | 2.25 | −0.52 | 4.07 | |||
MnTa | 1.19 | 1.19 | 3.44 | −0.13 | 5.70 | ||
0.76 | 1.50 | 2.04 | −0.44 | 3.86 | |||
MnCr | 1.23 | 1.23 | 2.95 | 1.32 | 6.73 | 31 | |
0.76 | 1.53 | 2.32 | −1.71 | 2.89 | |||
MnMo | 1.40 | 1.40 | 3.38 | 0.20 | 6.37 | ||
−0.05 | 1.34 | 2.04 | −0.47 | 2.85 | |||
MnW | 1.39 | 1.39 | 3.41 | 0.11 | 6.29 | ||
−0.01 | 1.42 | 1.83 | −0.37 | 2.87 |
() | () | () | () | ||
---|---|---|---|---|---|
MnSc | 0.82 | 3.12 | −0.44 | 4.31 | 28 |
MnY | 0.85 | 3.46 | −0.35 | 4.82 | |
MnLu | 0.76 | 3.27 | −0.30 | 4.49 | |
MnSc | 0.28 | 3.96 | −0.22 | 4.31 | |
MnY | 0.25 | 4.17 | −0.13 | 4.53 | |
MnLu | 0.39 | 4.07 | −0.12 | 4.42 | |
MnSc | −0.20 | 3.10 | −0.09 | 2.61 | |
MnY | −0.15 | 3.60 | −0.02 | 3.28 | |
MnLu | −0.19 | 3.41 | −0.01 | 3.03 | |
MnTi | 1.05 | 3.23 | −0.45 | 4.87 | 29 |
MnZr | 0.98 | 3.47 | −0.37 | 5.07 | |
MnHf | 0.98 | 3.43 | −0.35 | 5.03 | |
MnTi | 0.33 | 4.07 | 0.05 | 4.78 | |
MnZr | 0.28 | 4.20 | −0.03 | 4.72 | |
MnHf | 0.28 | 4.17 | −0.03 | 4.71 | |
MnTi | −0.01 | 3.33 | −0.01 | 3.28 | |
MnZr | 0.01 | 3.63 | −0.04 | 3.62 | |
MnHf | −0.00 | 3.55 | −0.06 | 3.49 | |
MnV | 1.15 | 3.07 | 0.25 | 5.62 | 30 |
MnNb | 1.22 | 3.50 | −0.13 | 5.80 | |
MnTa | 1.19 | 3.44 | −0.13 | 5.70 | |
MnV | 0.33 | 3.90 | 0.14 | 4.70 | |
MnNb | 0.19 | 4.05 | −0.05 | 4.39 | |
MnTa | 0.17 | 4.04 | −0.04 | 4.35 | |
MnV | 0.07 | 3.44 | 0.44 | 4.01 | |
MnNb | 0.18 | 3.70 | 0.01 | 4.07 | |
MnTa | 0.19 | 3.71 | −0.02 | 4.06 | |
MnCr | 1.23 | 2.95 | 1.32 | 6.73 | 31 |
MnMo | 1.40 | 3.38 | 0.20 | 6.37 | |
MnW | 1.39 | 3.41 | 0.11 | 6.29 | |
MnCr | 0.26 | 3.79 | 2.85 | 7.17 | |
MnMo | 0.09 | 3.92 | −0.50 | 3.59 | |
MnW | 0.10 | 3.90 | −0.27 | 3.83 | |
MnCr | −0.08 | 3.32 | 1.89 | 5.05 | |
MnMo | 0.35 | 3.75 | 0.03 | 4.49 | |
MnW | 0.39 | 3.85 | 0.01 | 4.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tas, M.; Şaşıoğlu, E.; Galanakis, I. Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism 2024, 4, 400-411. https://doi.org/10.3390/magnetism4040026
Tas M, Şaşıoğlu E, Galanakis I. Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism. 2024; 4(4):400-411. https://doi.org/10.3390/magnetism4040026
Chicago/Turabian StyleTas, Murat, Ersoy Şaşıoğlu, and Iosif Galanakis. 2024. "Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study" Magnetism 4, no. 4: 400-411. https://doi.org/10.3390/magnetism4040026
APA StyleTas, M., Şaşıoğlu, E., & Galanakis, I. (2024). Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism, 4(4), 400-411. https://doi.org/10.3390/magnetism4040026