Constructal Design Method Applied to Wave Energy Converters: A Systematic Literature Review
Abstract
1. Introduction
2. Methodological Procedures
- -
- Additionally, secondary questions are answered through the systematic literature review:
- -
- How has the application of the Constructal Design method been growing and expanding over the years in the wave energy converter research field?
- -
- What types of wave energy converters are studied by the Constructal Design method?
- -
- What are the leading countries, researchers, and their collaborations in this research field?
- -
- What are the benefits of applying the Constructal Design method to wave energy converters?
3. Bibliometric Analyses
4. Synthesis and Interpretation
4.1. Overtopping
4.2. Oscillating Water Column
4.3. Submerged Horizontal Plate
5. Considerations and Opportunities for Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OWC | Oscillating water column |
WEC | Wave energy converter |
SHP | Submerged horizontal plate |
MA-WECs | Multi-axis WEC |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
VOF | Volume of fluids |
FVM | Finite volume method |
H/L | Ratio between height and length |
RS | Rio Grande do Sul |
OVT | Overtopping |
References
- Khojasteh, D.; Khojasteh, D.; Kamali, R.; Beyene, A.; Iglesias, G. Assessment of Renewable Energy Resources in Iran; With a Focus on Wave and Tidal Energy. Renew. Sustain. Energy Rev. 2018, 81, 2992–3005. [Google Scholar] [CrossRef]
- Shmelev, S.E.; van den Bergh, J.C.J.M. Optimal Diversity of Renewable Energy Alternatives under Multiple Criteria: An Application to the UK. Renew. Sustain. Energy Rev. 2016, 60, 679–691. [Google Scholar] [CrossRef]
- de Araújo, D.F.C. The Dynamics of Renewable Energies in the Brazilian Energy Matrix in the 21ST Century. Rev. Cerrados 2023, 21, 399–429. [Google Scholar] [CrossRef]
- Pacesila, M.; Burcea, S.G.; Colesca, S.E. Analysis of Renewable Energies in European Union. Renew. Sustain. Energy Rev. 2016, 56, 156–170. [Google Scholar] [CrossRef]
- Khojasteh, D.; Shamsipour, A.; Huang, L.; Tavakoli, S.; Haghani, M.; Flocard, F.; Farzadkhoo, M.; Iglesias, G.; Hemer, M.; Lewis, M.; et al. A Large-Scale Review of Wave and Tidal Energy Research over the Last 20 Years. Ocean Eng. 2023, 282, 114995. [Google Scholar] [CrossRef]
- Agency, I.E. World Energy Outlook 2020—Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 15 April 2025).
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A Global Wave Power Resource and Its Seasonal, Interannual and Long-Term Variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Gunn, K.; Stock-Williams, C. Quantifying the Global Wave Power Resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
- Mørk, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the Global Wave Energy Potential. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 1 January 2010; ASMEDC: Houston, TX, USA, 2010; Volume 3, pp. 447–454. [Google Scholar]
- Ram, M.; Aghahosseini, A.; Breyer, C. Job Creation during the Global Energy Transition towards 100% Renewable Power System by 2050. Technol. Forecast. Soc. Change 2020, 151, 119682. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética (EPE). Balanço Energético Nacional 2025; Empresa de Pesquisa Energética (EPE): Rio de Janeiro, Brazil, 2025. [Google Scholar]
- Pereira, D.S.; Neto, R.S. Diversificação de Fontes Geradoras Da Matriz Elétrica Brasileira: Uma Revisão Sistemática. Meio Ambiente 2021, 3, 2–21. [Google Scholar]
- von Jouanne, A.; Brekken, T.K.A. Ocean and Geothermal Energy Systems. Proc. IEEE 2017, 105, 2147–2165. [Google Scholar] [CrossRef]
- Khojasteh, D.; Mousavi, S.M.; Glamore, W.; Iglesias, G. Wave Energy Status in Asia. Ocean Eng. 2018, 169, 344–358. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Kamali, M.; Khalaj, M.; Khodaparast, Z. Delphi-Based Prioritization of Economic Criteria for Development of Wave and Tidal Energy Technologies. Energy 2019, 167, 819–827. [Google Scholar] [CrossRef]
- IRENA—International Renewable Energy Agency. Innovation Outlook: Ocean Energy Technologies; IRENA: Abu Dhabi, United Arab Emirate, 2020. [Google Scholar]
- International Energy Agency (IEA). Renewables 2021—Report. Available online: https://www.iea.org/reports/renewables-2021 (accessed on 20 April 2025).
- Greaves, D. Wave and Tidal Energy; Greaves, D., Iglesias, G., Eds.; Wiley: Hoboken, NJ, USA, 2018; ISBN 9781119014447. [Google Scholar]
- Apolonia, M.; Fofack-Garcia, R.; Noble, D.R.; Hodges, J.; Correia da Fonseca, F.X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 2021, 14, 4896. [Google Scholar] [CrossRef]
- Venugopal, V.; Tay, Z.Y.; Nemalidinne, T.R. Numerical Modelling Techniques for Wave Energy Converters in Arrays. In Ocean Wave Energy Systems: Hydrodynamics, Power Takeoff and Control Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 281–322. [Google Scholar]
- Kılkış, Ş.; Krajačić, G.; Duić, N.; Rosen, M.A.; Ahmad Al-Nimr, M. Sustainable Development of Energy, Water and Environment Systems as a Key Opportunity for Decarbonisation. Energy Convers. Manag. 2024, 320, 118953. [Google Scholar] [CrossRef]
- Shadman, M.; Roldan-Carvajal, M.; Pierart, F.G.; Haim, P.A.; Alonso, R.; Silva, C.; Osorio, A.F.; Almonacid, N.; Carreras, G.; Maali Amiri, M.; et al. A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives. Sustainability 2023, 15, 1740. [Google Scholar] [CrossRef]
- Farrok, O.; Farah, M.M.; Islam, M.R. Introduction to the Principles of Wave Energy Conversion. In Oceanic Wave Energy Conversion; Springer Nature Singapore: Singapore, 2024; pp. 1–15. [Google Scholar]
- Graw, K.-U. The Submerged Plate as a Wave Filter The Stability of the Pulsating Flow Phenomenon. In Proceedings of the Coastal Engineering 1992; American Society of Civil Engineers: New York, NY, USA, 1993; pp. 1153–1160. [Google Scholar]
- Garcia-Teruel, A.; Forehand, D.I.M. A Review of Geometry Optimisation of Wave Energy Converters. Renew. Sustain. Energy Rev. 2021, 139, 110593. [Google Scholar] [CrossRef]
- Golbaz, D.; Asadi, R.; Amini, E.; Mehdipour, H.; Nasiri, M.; Etaati, B.; Naeeni, S.T.O.; Neshat, M.; Mirjalili, S.; Gandomi, A.H. Layout and Design Optimization of Ocean Wave Energy Converters: A Scoping Review of State-of-the-Art Canonical, Hybrid, Cooperative, and Combinatorial Optimization Methods. Energy Rep. 2022, 8, 15446–15479. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Gandomi, A.H.; Chen, M.; Nazari, R. Advancements in Optimizing Wave Energy Converter Geometry Utilizing Metaheuristic Algorithms. Renew. Sustain. Energy Rev. 2024, 197, 114398. [Google Scholar] [CrossRef]
- Guo, B.; Wang, T.; Jin, S.; Duan, S.; Yang, K.; Zhao, Y. A Review of Point Absorber Wave Energy Converters. J. Mar. Sci. Eng. 2022, 10, 1534. [Google Scholar] [CrossRef]
- López, I.; Carballo, R.; Fouz, D.M.; Iglesias, G. Design Selection and Geometry in Owc Wave Energy Converters for Performance. Energies 2021, 14, 1707. [Google Scholar] [CrossRef]
- Ramezanzadeh, S.; Ozbulut, M.; Yildiz, M. A Numerical Investigation of the Energy Efficiency Enhancement of Oscillating Water Column Wave Energy Converter Systems. Energies 2022, 15, 8276. [Google Scholar] [CrossRef]
- Zandi, R.; Najafzadeh, M.; Lari, K.; Ghazanfari-Moghaddam, M.S. Finding the Best Shape of Floating Wave Energy Converters for Different Primary Geometries: Experimental and Numerical Investigations. Ocean Eng. 2024, 307, 118212. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Gandomi, A.H.; Chen, M. An Optimization Approach for Geometry Design of Multi-Axis Wave Energy Converter. Energy 2024, 301, 131714. [Google Scholar] [CrossRef]
- Sun, P.; He, H.; Chen, H.; Zhang, J.; Li, H. Sensitivity Analysis of Geometric Characteristics on the Cavity-Buoy for Energy Capture Efficiency Enhancement of a Semi-Submersible Floating-Array-Buoy Wave Energy Converter System. Ocean Eng. 2024, 294, 116735. [Google Scholar] [CrossRef]
- Farshforoush, A.; Abbaspour, M. Optimizing Wave Energy Harvesting through Oscillating Water Columns in Semi-Submersible Energy Harvesting Platforms: A Comprehensive Study on Enhancing Efficiency and Competitiveness. Ocean Eng. 2024, 308, 118301. [Google Scholar] [CrossRef]
- Li, D.; Borthwick, A.G.L.; Jiang, C.; Sharma, S.; Dong, X.; Li, Y.; Shi, H. Parameter Optimization of a Floating Two-Buoy Wave Energy Converter. Ocean Eng. 2024, 296, 117043. [Google Scholar] [CrossRef]
- Ekweoba, C.; El Montoya, D.; Galera, L.; Costa, S.; Thomas, S.; Savin, A.; Temiz, I. Geometry Optimization of a Floating Platform with an Integrated System of Wave Energy Converters Using a Genetic Algorithm. Renew. Energy 2024, 231, 120869. [Google Scholar] [CrossRef]
- Bejan, A. Street Network Theory of Organization in Nature. J. Adv. Transp. 1996, 30, 85–107. [Google Scholar] [CrossRef]
- Bejan, A. Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume. Int. J. Heat Mass Transf. 1997, 40, 799–811. [Google Scholar] [CrossRef]
- Bejan, A. Constructal Design Evolution versus Topology Optimization. Int. Commun. Heat Mass Transf. 2023, 141, 106567. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. The Constructal Law of Design and Evolution in Nature. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1335–1347. [Google Scholar] [CrossRef]
- Bejan, A. Vascular Flow Design and Predicting Evolution. Int. Commun. Heat Mass Transf. 2024, 155, 107517. [Google Scholar] [CrossRef]
- Miguel, A.F. Natural Flow Systems: Acquiring Their Constructal Morphology. Int. J. Des. Nat. Ecodynamics 2010, 5, 230–241. [Google Scholar] [CrossRef]
- Bejan, A. Sustainability: The Water and Energy Problem, and the Natural Design Solution. Eur. Rev. 2015, 23, 481–488. [Google Scholar] [CrossRef]
- Bejan, A.; Charles, J.D. Animal Design Advantage from the Analogy between Friction and Body Heat Loss. Biosystems 2024, 235, 105096. [Google Scholar] [CrossRef]
- Athadkar, M.; Lorente, S. Few Large and Many Small, How to Control the Thermal Behavior of Composite Materials. Int. Commun. Heat Mass Transf. 2023, 144, 106768. [Google Scholar] [CrossRef]
- Arcanjo, S.; Vargas, J.V.C.; Ordonez, J.C.; Och, S.H.; Balmant, W.; Mariano, A.B.; Kava, V.M. Diesel/Biodiesel/Biogas Mixtures Driven Compression Ignition Internal Combustion Engines Constructal Design. Int. Commun. Heat Mass Transf. 2024, 156, 107703. [Google Scholar] [CrossRef]
- Gasparovic, C.L.M.; Stanescu, G.; Errera, M.R. Constructal Design of a Mineral Carbonation System for Post-Combustion Carbon Capture. Int. Commun. Heat Mass Transf. 2024, 156, 107657. [Google Scholar] [CrossRef]
- Feng, H.; Chen, L.; Tang, W.; Ge, Y. Optimal Design of a Dual-Pressure Steam Turbine for Rankine Cycle Based on Constructal Theory. Energies 2022, 15, 4854. [Google Scholar] [CrossRef]
- Gungor, S.; Cetkin, E.; Lorente, S. Canopy-to-Canopy Liquid Cooling for the Thermal Management of Lithium-Ion Batteries, a Constructal Approach. Int. J. Heat Mass Transf. 2022, 182, 121918. [Google Scholar] [CrossRef]
- Gungor, S.; Lorente, S. PCM-Based Passive Cooling Solution for Li-Ion Battery Pack, a Theoretical and Numerical Study. Appl. Therm. Eng. 2024, 257, 124262. [Google Scholar] [CrossRef]
- Yu, M.; Lai, X.; Xiao, H.; Liu, Z.; Liu, W. A Study on Flow and Heat Transfer Characteristics of a Constructal Bifurcation Filler in the Circular Tube. Appl. Therm. Eng. 2021, 183, 116205. [Google Scholar] [CrossRef]
- Miguel, A.F. Dendritic Structures for Fluid Flow: Laminar, Turbulent and Constructal Design. J. Fluids Struct. 2010, 26, 330–335. [Google Scholar] [CrossRef]
- Mustafa, A.W.; Jawad, I.R.; Mohammed, A.A. Constructal Design of Cross-flow Heat Exchanger with Concave/Convex Fins. Heat Transf. 2025, 54, 21–40. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; ISBN 1353-7776. [Google Scholar]
- Kubule, A.; Kramens, J.; Bimbere, M.; Pedišius, N.; Blumberga, D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024, 17, 383. [Google Scholar] [CrossRef]
- Wirani, Y.; Eitiveni, I.; Sucahyo, Y.G. Framework of Smart and Integrated Household Waste Management System: A Systematic Literature Review Using PRISMA. Sustainability 2024, 16, 4898. [Google Scholar] [CrossRef]
- Dresch, A.; Lacerda, D.P.; Antunes, J.A.V., Jr. Design Science Research; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-07373-6. [Google Scholar]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cardoso Ermel, A.P.; Lacerda, D.P.; Morandi, M.I.W.M.; Gauss, L. Literature Reviews: Modern Methods for Investigating Scientific and Technological Knowledge, 1st ed.; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-75721-2. [Google Scholar]
- Gomes, M.D.N.; Espinel Lara, M.F.; Iahnke, S.L.P.; Neves Machado, B.; Moraes Goulart, M.; Medeiros Seibt, F.; dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate. Defect Diffus. Forum 2015, 362, 115–171. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. Thermodynamic Optimization of Flow Geometry in Mechanical and Civil Engineering. J. Non-Equilib. Thermodyn. 2001, 26, 305–354. [Google Scholar] [CrossRef]
- Neagu, M.; Bejan, A. Constructal Placement of High-Conductivity Inserts in a Slab: Optimal Design of “Roughness”. J. Heat Transf. 2001, 123, 1184–1189. [Google Scholar] [CrossRef]
- Vargas, J.V.C.; Bejan, A. Thermodynamic Optimization of Finned Crossflow Heat Exchangers for Aircraft Environmental Control Systems. Int. J. Heat Fluid Flow 2001, 22, 657–665. [Google Scholar] [CrossRef]
- Wechsatol, W.; Lorente, S.; Bejan, A. Development of Tree-Shaped Flows by Adding New Users to Existing Networks of Hot Water Pipes. Int. J. Heat Mass Transf. 2002, 45, 723–733. [Google Scholar] [CrossRef]
- Martins, J.C.; Goulart, M.M.; Gomes Mdas, N.; Souza, J.A.; Rocha, L.A.O.; Isoldi, L.A.; dos Santos, E.D. Geometric Evaluation of the Main Operational Principle of an Overtopping Wave Energy Converter by Means of Constructal Design. Renew. Energy 2018, 118, 727–741. [Google Scholar] [CrossRef]
- Gomes, M.d.N.; Lorenzini, G.; Rocha, L.A.O.; dos Santos, E.D.; Isoldi, L.A. Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. J. Eng. Thermophys. 2018, 27, 173–190. [Google Scholar] [CrossRef]
- Dos Santos, E.D.; Machado, B.N.; Zanella, M.M.; Das Neves Gomes, M.; Souza, J.A.; Isoldi, L.A.; Rocha, L.A.O. Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design. Defect Diffus. Forum 2014, 348, 232–244. [Google Scholar] [CrossRef]
- Marshakova, I.V. Citation Networks in Information Science. Scientometrics 1981, 3, 13–25. [Google Scholar] [CrossRef]
- Grácio, M.C.C. Acoplamento Bibliográfico e Análise de Cocitação: Revisão Teórico-Conceitual. Encontros Bibli Rev. Eletrônica Bibliotecon. Ciência Informação 2016, 21, 82–99. [Google Scholar] [CrossRef]
- Goulart, M.M.; Martins, J.C.; Gomes, A.P.; Puhl, E.; Rocha, L.A.O.; Isoldi, L.A.; Gomes Mdas, N.; dos Santos, E.D. Experimental and Numerical Analysis of the Geometry of a Laboratory-Scale Overtopping Wave Energy Converter Using Constructal Design. Renew. Energy 2024, 236, 121497. [Google Scholar] [CrossRef]
- Goulart, M.M.; Martins, J.C.; Junior, I.C.A.; das Neves Gomes, M.; Souza, J.A.; Rocha, L.A.O.; Isoldi, L.A.; dos Santos, E.D. Constructal Design of an Onshore Overtopping Device in Real Scale for Two Different Depths. Mar. Syst. Ocean Technol. 2015, 10, 120–129. [Google Scholar] [CrossRef]
- Martins, J.C.; Fragassa, C.; Goulart, M.M.; Dos Santos, E.D.; Isoldi, L.A.; Gomes, M.D.N.; Rocha, L.A.O. Constructal Design of an Overtopping Wave Energy Converter Incorporated in a Breakwater. J. Mar. Sci. Eng. 2022, 10, 471. [Google Scholar] [CrossRef]
- Mocellin, A.P.G.; Paiva, M.d.S.; dos Santos, E.D.; Rocha, L.A.O.; Isoldi, L.A.; Ziebell, J.S.; Machado, B.N. Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Device Using Representative Regular Waves of the Sea State Found in Tramandaí, Brazil. Processes 2024, 12, 2352. [Google Scholar] [CrossRef]
- Maciel, R.P.; Oleinik, P.H.; Dos Santos, E.D.; Rocha, L.A.O.; Machado, B.N.; Gomes, M.d.N.; Isoldi, L.A. Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions. J. Mar. Sci. Eng. 2023, 11, 2174. [Google Scholar] [CrossRef]
- de Lima, Y.T.B.; Isoldi, L.A.; dos Santos, E.D.; Machado, B.N.; Gomes, M.d.N.; Biserni, C.; Rocha, L.A.O. Study of the Geometry of an Oscillating Water Column Device with Five Chambers Coupled under Regular Waves through the Constructal Design Method. Fluids 2024, 9, 86. [Google Scholar] [CrossRef]
- de Lima, Y.T.B.; Gomes, M.D.N.; Isoldi, L.A.; Dos Santos, E.D.; Lorenzini, G.; Rocha, L.A.O. Geometric Analysis through the Constructal Design of a Sea Wave Energy Converter with Several Coupled Hydropneumatic Chambers Considering the Oscillating Water Column Operating Principle. Appl. Sci. 2021, 11, 8630. [Google Scholar] [CrossRef]
- Júnior, É.A.P.; de Oliveira, S.S.; Oleinik, P.H.; Machado, B.N.; Rocha, L.A.O.; Gomes, M.d.N.; dos Santos, E.D.; Conde, J.M.P.; Isoldi, L.A. Geometric Evaluation of the Hydro-Pneumatic Chamber of an Oscillating Water Column Wave Energy Converter Employing an Axisymmetric Computational Model Submitted to a Realistic Sea State Data. J. Mar. Sci. Eng. 2024, 12, 1620. [Google Scholar] [CrossRef]
- Seibt, F.M.; dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Constructal Design on Full-Scale Numerical Model of a Submerged Horizontal Plate-Type Wave Energy Converter. Mar. Syst. Ocean Technol. 2023, 18, 1–13. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Versteeg, H.K. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson Education: London, UK, 2007. [Google Scholar]
- He, M.; Gao, X.; Xu, W.; Ren, B.; Wang, H. Potential Application of Submerged Horizontal Plate as a Wave Energy Breakwater: A 2D Study Using the WCSPH Method. Ocean Eng. 2019, 185, 27–46. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y. Design of the Submerged Horizontal Plate Breakwater Using a Fully Coupled Hydroelastic Approach. Comput. -Aided Civ. Infrastruct. Eng. 2022, 37, 915–932. [Google Scholar] [CrossRef]
- Lee, C.; Kim, T.; Hwang, T.; Lee, W.-D. Effects of Solitary Wave Breaking on the Hydrodynamic Performance of a Submerged Horizontal Plate: A Physical Modeling Study. Ocean Eng. 2024, 300, 117405. [Google Scholar] [CrossRef]
- Verduzco-Zapata, M.G.; Javier Ocampo-Torres, F.; Mendoza, E.; Silva, R.; Liñán-Cabello, M.; Torres-Orozco, E. Optimal Submergence of Horizontal Plates for Maximum Wave Energy Dissipation. Ocean Eng. 2017, 142, 78–86. [Google Scholar] [CrossRef]
- Chen, Y.; Hayatdavoodi, M.; Zhao, B.; Ertekin, R.C. Power Production from Wave-Induced Oscillations of a Submerged Plate. Proc. Inst. Civ. Eng. -Eng. Comput. Mech. 2023, 176, 103–115. [Google Scholar] [CrossRef]
- Edwards, E.C.; Whitlam, C.; Chapman, J.; Hughes, J.; Redfearn, B.; Brown, S.; Draper, S.; Borthwick, A.G.L.; Foster, G.; Yue, D.K.-P.; et al. The Effect of Device Geometry on the Performance of a Wave Energy Converter. Commun. Eng. 2025, 4, 107. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, J.; Huang, Z. Built-in Wave Energy Converter Inspired Adaptive Vibration Control for Offshore Floating Platform. Renew. Energy 2025, 254, 123679. [Google Scholar] [CrossRef]
- Li, W.; Ke, S.; Qian, K.; Ren, H. Instability Mechanism and Criterion of Wind-Wave Co-Generation Structural System under Typhoon-Wave-Current Coupled Action. Renew. Energy 2026, 256, 123888. [Google Scholar] [CrossRef]
- Branch, R.; McVey, J.R.; Ticona Rollano, F.; Cavagnaro, R.J.; Turpin, A.; Geon, E.; Roberts, B.; Steele, M.; Nawaz, A.; Wickett, M.; et al. Wave Energy Converter Buoy for Arctic Observations. Renew. Energy 2026, 256, 123497. [Google Scholar] [CrossRef]
- Arrosyid, W.A.; Sari, W.R.; Waskito, K.T.; Yanuar; Pria Utama, I.K.A.; Binu Soesanto, Q.M.; Bramantya, A.; Nugroho, B. Recent Advancements in Wave Energy Converter Technologies: A Comprehensive Review on Design and Performance Optimization. Ocean Eng. 2025, 340, 122328. [Google Scholar] [CrossRef]
Documents | Journal | Citations | Wave Energy Converter |
---|---|---|---|
Martins et al. 2018 [69] | Renewable Energy | 68 | Overtopping |
Gomes et al. 2018 [70] | Journal of Engineering Thermophysics | 30 | Oscillating water column |
dos Santos et al. 2014 [71] | Defect and Diffusion Forum | 24 | Overtopping |
Works | Objective | Performance Indicator | Main Results |
---|---|---|---|
Goulart et al. 2024 [74] | To investigate and compare experimental and numerical results of the effect of ramp geometry and free surface water depth on the device’s performance. | Water accumulated level in the reservoir | The experimental and numerical results showed excellent agreement, validating and recommending the respective computational model for future research. Less steep ramps exhibit better performance, consistent with findings reported in the literature. Different water depths correspond to different ranges of ramp inclinations at which overtopping occurs. |
Goulart et al. 2015 [75] | To explore the ramp geometry of the device under different water depths. | Mass of water | Lower height-to-length ratio (less steep ramps) demonstrated better performance. Submergence can increase the amount of overtopped water by up to five times for ramps with the same geometry. |
Martins et al. 2022 [76] | To investigate the hydrodynamic performance of devices with one and two sequential ramps, considering their geometry and positioning, in conjunction with a breakwater. | Average dimensionless overtopping flow | The device with two ramps exhibited a performance indicator approximately 6% higher than that of the device with a single ramp. |
Martins et al. 2022 [76] | To explore the influence of the vertical distance between the two ramps on the hydrodynamic performance of the device. | Average dimensionless overtopping flow | A greater vertical distance resulted in lower overtopping flow performance. A spacing of 1 m yielded the best performance indicator. |
Martins et al. 2018 [69] | To analyze ramp geometry under varying water depths and wave periods. | Dimensionless available power | Wave characteristics, along with parameters such as area, depth, and ramp geometry, are strongly interrelated and influence the available power of the device. |
Gomes et al. 2015 [64] | To investigate the effect of ramp geometry on device performance across different water depths. | Mass of water | Less steep ramps and devices placed at greater depths demonstrated better performance. |
Dos Santos et al. 2014 [71] | To investigate the impact of relative depth on ramp geometry and its influence on the device’s hydrodynamic performance. | Mass of water | The lowest relative depth analyzed resulted in the best performance. Ramp geometry and device depth are strongly interrelated, both significantly influencing the performance indicator. |
Works | Objective | Performance Indicator | Main Results |
---|---|---|---|
Mocellin et al. 2024 [77] | To evaluate the influence of the hydropneumatic chamber geometry (H/L) on the performance of the device. | Hydropneumatic power | The optimal geometry demonstrated a performance 101% higher than the worst geometry analyzed. Regular wave simulations tend to overestimate performance results when compared to simulations with irregular waves. |
Maciel et al. 2023 [78] | To analyze the device geometry under real sea wave conditions and its effect on the performance indicator. | Hydropneumatic power | The chamber with the lowest height-to-width ratio yielded the best performance, while the chamber with the highest ratio resulted in the worst. When compared to regular wave simulations, noticeable differences were observed in the device’s hydrodynamic performance under real wave conditions. |
Lima et al. 2024 [79] | To determine the optimal geometry for a WEC equipped with five hydropneumatic chambers. | Hydropneumatic power | The mass flow rate and hydropneumatic power achieved their maximum value at the same geometry. The maximum performance indicator was approximately 74 times higher than that of the lowest-performing case. |
Lima et al. 2021 [80] | To evaluate the influence of the number and geometry of hydropneumatic chambers on the performance of the OWC. | Hydropneumatic power | The configuration with five chambers showed the highest available power. However, the design with three chambers achieved a higher maximum performance indicator than the four-chamber configuration. |
Pinto Junior et al. 2024 [81] | To identify the hydropneumatic chamber geometry that maximizes the performance indicator by varying its shape from trapezoidal to rectangular. | Available power | The base geometry of the chamber has a greater impact on the performance indicator as it directly influences the device’s inlet area. A difference of up to 795 times was observed between the worst- and best-performing configurations. |
Gomes et al. 2018 [70] | To analyze the effect of device geometry under the incidence of regular waves with varying periods. | Hydropneumatic power | An optimal correlation was identified, capable of maximizing hydropneumatic power across all analyzed wave periods. This occurred when the chamber’s height-to-length ratio was four times the height-to-length ratio of the incident wave. |
Gomes et al. 2015 [64] | To analyze the effect of geometric configurations on wave energy efficiency. | Hydropneumatic power | Higher submergence levels resulted in poorer performance compared to the other cases. Across all simulated submergence conditions, the highest hydropneumatic power values were observed within the chamber H/L ratio range of 0.0598 to 0.2019. |
Performance Indicator | Works | Maximum Value | Minimum Value | Max/Min Ratio |
Oscillating Water Column | ||||
Available power | Pinto Junior et al. 2024 [81] | 16,954.8 kW | 20.2 kW | 839.35 |
Hydropneumatic power | Mocellin et al. 2024 [77] | 56.66 W | 28.19 W | 2.01 |
Lima et al. 2024 [79] | 30.8 kW | 0.4168 kW | 73.90 | |
Maciel et al. 2023 [78] | 29.63 W | 6.83 W | 4.34 | |
Lima et al. 2021 [80] | 30.8 kW | 0.2 kW | 154.00 | |
Gomes et al. 2018 [70] | 214.85 W | 14.4 W | 14.92 | |
Gomes et al. 2015 [64] | 116.43 W | 11.88 W | 9.80 | |
Overtopping | ||||
Water accumulated level in the reservoir | Goulart et al. 2024 [74] | 0.248 m | - | - |
Dimensionless available power | Martins et al. 2018 [69] | 0.018 | - | - |
Average dimensionless overtopping flow | Martins et al. 2022 [76] | 0.044 | 0.03 | 1.47 |
Martins et al. 2022 [76] | 0.044 | 0.031 | 1.42 | |
Goulart et al. 2015 [75] | 8686.73 kg | - | - | |
Gomes et al. 2015 [64] | 8686.73 kg | - | - | |
dos Santos et al. 2014 [71] | 9.5 kg | - | - | |
Submerged Horizontal Plate | ||||
Theoretical efficiency | Seibt et al. 2023 [82] | 37.15% | 1.54% | 24.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capponero, M.E.F.; Telli, G.D.; dos Santos, E.D.; Isoldi, L.A.; das Neves Gomes, M.; Biserni, C.; Rocha, L.A.O. Constructal Design Method Applied to Wave Energy Converters: A Systematic Literature Review. Dynamics 2025, 5, 36. https://doi.org/10.3390/dynamics5030036
Capponero MEF, Telli GD, dos Santos ED, Isoldi LA, das Neves Gomes M, Biserni C, Rocha LAO. Constructal Design Method Applied to Wave Energy Converters: A Systematic Literature Review. Dynamics. 2025; 5(3):36. https://doi.org/10.3390/dynamics5030036
Chicago/Turabian StyleCapponero, Maria Eduarda F., Giovani D. Telli, Elizaldo D. dos Santos, Liércio A. Isoldi, Mateus das Neves Gomes, Cesare Biserni, and Luiz Alberto O. Rocha. 2025. "Constructal Design Method Applied to Wave Energy Converters: A Systematic Literature Review" Dynamics 5, no. 3: 36. https://doi.org/10.3390/dynamics5030036
APA StyleCapponero, M. E. F., Telli, G. D., dos Santos, E. D., Isoldi, L. A., das Neves Gomes, M., Biserni, C., & Rocha, L. A. O. (2025). Constructal Design Method Applied to Wave Energy Converters: A Systematic Literature Review. Dynamics, 5(3), 36. https://doi.org/10.3390/dynamics5030036