Statistical Mechanics of Long Walks in Dynamic Complex Networks: Statistical Arguments for Diversifying Selection †
Abstract
:1. Introduction
2. Statistical Ensembles of Walks in Finite Connected Undirected Graphs
2.1. The Microcanonical Ensemble of Walks
2.2. The Canonical Ensembles of Walks—Random Walks
2.3. Grand Canonical Ensemble of Walks
3. Applications of Statistical Mechanics of Walks
3.1. Backbones for Feedback: Expected Numbers of Cyclic Walks per Graph’s Size
3.2. Determinantal Processes Induced by Canonical Ensembles
3.3. Information Flows Associated with Canonical Ensembles
- Structurality of a Graph w.r.t to a Random Walk:
- Controllability of a Random Walk defined in a Graph:
- Ephemerality of Random Walks defined in a Graph:
4. Fugacity Distribution as a Stationary Solution of a Discrete Fokker–Planck Equation
5. Discussion: Statistical Grounds for Diversifying Selection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNT | complex network theory |
DCN | dynamic complex networks |
MCE | microcanonical ensemble (of walks) |
CNE | canonical ensemble (of walks) |
GCE | grand canonical ensemble (of walks) |
GSR | graph spectral radius |
GTE | graph topological entropy |
References
- Yang, C.-L.; Suh, C.S. A General Framework for Dynamic Complex Networks. J. Vib. Test. Syst. Dyn. 2021, 5, 87–111. [Google Scholar] [CrossRef]
- Shettigar, N.; Yang, C.-L.; Tu, K.-C.; Suh, C.S. On The Biophysical Complexity of Brain Dynamics: An Outlook. Dynamics 2022, 2, 114–148. [Google Scholar] [CrossRef]
- Yang, C.-L.; Suh, C.S. On Controlling Dynamic Complex Networks. Phys. Nonlinear Phenom. 2022; Undergoing 2nd review. [Google Scholar]
- Volchenkov, D. Grammar of Complexity: From Mathematics to a Sustainable World. In Nonlinear Physical Science; World Scientific Series; Higher Education Press: Beijing, China, 2018; pp. 1–3. [Google Scholar]
- Johnson, J. Hypernetworks in the Science of Complex Systems. In Complexity Science; World Scientific Series; Imperial College Press: London, UK, 2014; Volume 3. [Google Scholar]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–49. [Google Scholar] [CrossRef]
- Newman, M. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Bollobás, B. Random Graphs, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Frieze, A.; Karonski, M. Introduction to Random Graphs; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Broido, A.D.; Clauset, A. Scale-free networks are rare. Nat. Commun. 2019, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, G.; Barabási, A.-L. Bose–Einstein condensation in complex networks. Phys. Rev. Lett. 2001, 86, 5632–5635. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, G.; Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 2001, 54, 436–442. [Google Scholar] [CrossRef]
- Volchenkov, D. Infinite Ergodic Walks in Finite Connected Undirected Graphs. Entropy 2021, 23, 205. [Google Scholar] [CrossRef]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics; Charles Scribner’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Adler, R.L.; Konheim, A.G.; McAndrew, M.H. Topological entropy. Trans. Am. Math. Soc. 1965, 114, 309–319. [Google Scholar] [CrossRef]
- Delvenne, J.C.; Libert, A.S. Centrality measures and thermodynamic formalism for complex networks. Phys. Rev. E 2011, 83, 046117. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K. The Problem of the Random Walk. Nature 1905, 72, 294. [Google Scholar] [CrossRef]
- Lovász, L. Random Walks on Graphs: A Survey. In Combinatorics, Paul Erdös is Eighty; Bolyai Society, Mathematical Studies: Keszthely, Hungary, 1993; Volume 2, pp. 1–46. [Google Scholar]
- Aldous, D.; Fill, J.A. Reversible Markov Chains and Random Walks on Graphs; Unfinished Monograph, Recompiled 2014; 2002. Available online: http://www.stat.berkeley.edu/~aldous/RWG/book.html (accessed on 27 June 2022).
- Burda, Z.; Duda, J.; Luck, J.M.; Waclaw, B. Localization of the Maximal Entropy Random Walk. Phys. Rev. Lett. 2009, 102, 160602. [Google Scholar] [CrossRef]
- Landau, E. Zur relativen Wertbemessung der Turnierresultate. Deutsches Wochenschach 1895, 11, 366–369. [Google Scholar]
- Åström, K.J.; Murray, R.M. Feedback Systems: An Introduction for Scientists and Engineers; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Ford, A. Chapter 9: Information feedback and causal loop diagrams. In Modeling the Environment; Island Press: Washington, DC, USA, 2010; p. 99. [Google Scholar]
- Gantmacher, F.R. The Theory of Matrices; Chelsea Publishing: New York, NY, USA, 1960; ISBN 978-0-8218-1376-8. [Google Scholar]
- Faddeev, D.K.; Sominsky, I.S. Problem 979. In Problems in Higher Algebra; Mir Publishers: Moscow, Russia, 1972. [Google Scholar]
- Macchi, O. The coincidence approach to stochastic point processes. Adv. Appl. Probab. 1975, 7, 83–122. [Google Scholar] [CrossRef]
- Slater, J. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322. [Google Scholar] [CrossRef]
- Vershik, A.M. Asymptotic combinatorics with applications to mathematical physics. In Proceedings of the European Mathematical Summer School, Euler Institute, St. Petersburg, Russia, 9–20 July 2001; Springer: Berlin, Germany, 2003; p. 151, ISBN 978-3-540-44890-7. [Google Scholar]
- Deng, N.; Zhou, W.; Haenggi, M. The Ginibre point process as a model for wireless networks with repulsion. IEEE Trans. Wirel. Commun. 2015, 14, 107–121. [Google Scholar] [CrossRef]
- Miyoshi, N.; Shirai, T. A Cellular Network Model with Ginibre Configured Base Stations. Adv. Appl. Probab. 2016, 46, 832–845. [Google Scholar] [CrossRef]
- Katz, N.M.; Sarnak, P. Zeroes of Zeta Functions and Symmetry. Bull. AMS 1999, 36, 1–26. [Google Scholar] [CrossRef]
- Volchenkov, D.; Blanchard, P. Introduction to Random Walks and Diffusions on Graphs and Databases. In Synergetics; Springer Series; Springer: Berlin/Heidelberg, Germany, 2011; Volume 10. [Google Scholar]
- Muir, T. Orthogonants. In Treatise on the Theory of Determinants; Revised and Enlarged by W. H. Metzler; Dover: New York, NY, USA, 1960; Chapter 14. [Google Scholar]
- Webler, F.; Andersen, M. Measurement in the Age of Information. Information 2022, 13, 111. [Google Scholar] [CrossRef]
- Khinchin, A.I. Mathematical Foundations of Information Theory; Dover: New York, NY, USA, 1957. [Google Scholar]
- Ramshaw, J.D. The Statistical Foundations of Entropy; World Scientific: Singapore, 2018. [Google Scholar]
- Volchenkov, D. Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation. Lobachevskii J. Math. 2022, 43, 490–500. [Google Scholar] [CrossRef]
- Volchenkov, D. Memories of the Future. Predictable and Unpredictable Information in Fractional Flipping a Biased Coin. Entropy 2019, 21, 807. [Google Scholar] [CrossRef] [PubMed]
- Grabski, F. Discrete state space Markov processes. In Semi-Markov Processes: Applications in System Reliability and Maintenance; Elsevier: Amsterdam, The Ntherlands, 2015; pp. 1–17. ISBN 978-0-12-800518-7. [Google Scholar]
- Watanabe, S.; Accardi, L.; Freudenberg, W.; Ohya, M. (Eds.) Algebraic Geometrical Method in Singular Statistical Estimation; Series in Quantum Bio-Informatics; World Scientific: Singapore, 2008; pp. 325–336. [Google Scholar]
- James, R.G.; Ellison, C.J.; Crutchfield, J.P. Anatomy of a bit: Information in a time series observation. Chaos 2011, 21, 037109. [Google Scholar] [CrossRef] [PubMed]
- Travers, N.F.; Crutchfield, J.P. Infinite excess entropy processes with countable-state generators. Entropy 2014, 16, 1396–1413. [Google Scholar] [CrossRef]
- Volchenkov, D.; Blanchard, P.; Dawin, J.-R. Markov Chains or the Game of Structure and Chance. From Complex Networks, to Language Evolution, to Musical Compositions. Eur. Phys. J. 2010, 184, 1–82. [Google Scholar]
- Volchenkov, D.; Dawin, J.-R. Musical Markov Chains. Int. J. Mod. Phys. 2012, 16, 116–135. [Google Scholar] [CrossRef]
- Smirnov, V.; Volchenkov, D. Five Years of Phase Space Dynamics of the Standard & Poor’s 500. Appl. Math. Nonlinear Sci. 2019, 4, 203–216. [Google Scholar]
- Chow, S.N.; Huang, W.; Li, Y.; Zhou, H. Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph. Arch. Rational. Mech. Anal. 2012, 203, 969–1008. [Google Scholar] [CrossRef]
- Che, R.; Huang, W.; Li, Y.; Tetali, P. Convergence to global equilibrium for Fokker–Planck equations on a graph and Talagrand-type inequalities. J. Differ. Equ. 2016, 261, 2552–2583. [Google Scholar] [CrossRef]
- Kolmogoroff, A. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 1931, 104, 415–458. [Google Scholar] [CrossRef]
- Bergmann, P.G.; Lebowitz, J.L. New Approach to Nonequilibrium Processes. Phys. Rev. 1955, 99, 578. [Google Scholar] [CrossRef]
- Charlesworth, B.; Lande, R.; Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 1982, 36, 474–498. [Google Scholar] [PubMed]
- Campbell, N.A.; Reece, J.B. Biology; Benjamin Cummings: San Francisco, CA, USA, 2002; pp. 450–451. [Google Scholar]
- Schmalhausen, I.I. Factors of Evolution: The Theory of Stabilizing Selection; Blakiston: San Diego, CA, USA, 1949. [Google Scholar]
- Pastor-Satorras, R.; Vespignani, A. Evolution and Structure of the Internet: A Statistical Physics Approach, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kondrashov, A.S.; Mina, M.V. Sympatric speciation: When is it possible? Biol. J. Linn. Soc. 1986, 27, 201–223. [Google Scholar] [CrossRef]
- Martin, R.A.; Pfennig, D.W. Disruptive selection in natural populations: The roles of ecological specialization and resource competition. Am. Nat. 2009, 174, 268–281. [Google Scholar] [CrossRef]
- Boam, T.B.; Thoday, J.M. Effects of disruptive selection: Polymorphism and divergence without isolation. Heredity 1959, 13, 205–218. [Google Scholar]
- DeLeon, L.F.; Harrel, A.; Hendry, A.P.; Huber, S.K.; Podos, J. Disruptive Selection in a Bimodal Population of Darwin’s Finches. Proc. Biol. Sci. 2009, 276, 753–759. [Google Scholar]
- Volchenkov, D.; Blanchard, P. Mathematical Analysis of Urban Spatial Networks; Springer Series Understanding Complex Systems; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-87828-5. [Google Scholar]
- Blanchard, P.; Volchenkov, D. Urban Landscape is an Important Factor in Rising Inequality, Spatial Segregation, and Social Isolation. In Il Paesaggio Urbano Come Fattore Importante Per L’aumento Delle Disparitá, Per La Segregazione Spaziale E Per L’Isolamento Sociale; Albeverio, S., Giordano, P., Vancheri, A., Eds.; Metodi e Modelli Matematici per le Dinamiche Urbane, UNITEXT; Springer: Milano, Italy, 2021; Volume 128. (In Italian) [Google Scholar] [CrossRef]
CNT | DCN | |
---|---|---|
Thermodynamic limit | Infinite graphs, | Infinite walks, |
Dynamics | Eternal growth | Random structural modifications |
Statistics | Bose-Einstein | Fermi–Dirac |
Important nodes | High centrality/ fitness | High fugacity |
Graph evolution by natural selection | Stabilizing selection | Diversifying selection |
Vertex 1 | Vertex 2 | Vertex 3 | |
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volchenkov, D.; Suh, C.S. Statistical Mechanics of Long Walks in Dynamic Complex Networks: Statistical Arguments for Diversifying Selection. Dynamics 2022, 2, 252-269. https://doi.org/10.3390/dynamics2030013
Volchenkov D, Suh CS. Statistical Mechanics of Long Walks in Dynamic Complex Networks: Statistical Arguments for Diversifying Selection. Dynamics. 2022; 2(3):252-269. https://doi.org/10.3390/dynamics2030013
Chicago/Turabian StyleVolchenkov, Dimitri, and C. Steve Suh. 2022. "Statistical Mechanics of Long Walks in Dynamic Complex Networks: Statistical Arguments for Diversifying Selection" Dynamics 2, no. 3: 252-269. https://doi.org/10.3390/dynamics2030013
APA StyleVolchenkov, D., & Suh, C. S. (2022). Statistical Mechanics of Long Walks in Dynamic Complex Networks: Statistical Arguments for Diversifying Selection. Dynamics, 2(3), 252-269. https://doi.org/10.3390/dynamics2030013