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Abstract: We study the thermodynamic limit of very long walks on finite, connected, non-random
graphs subject to possible random modifications and transportation capacity noise. As walks might
represent the chains of interactions between system units, statistical mechanics of very long walks
may be used to quantify the structural properties important for the dynamics of processes defined in
networks. Networks open to random structural modifications are characterized by a Fermi–Dirac
distribution of node’s fugacity in the framework of grand canonical ensemble of walks. The same
distribution appears as the unique stationary solution of a discrete Fokker–Planck equation describing
the time evolution of probability distribution of stochastic processes in networks. Nodes of inferior
centrality are the most likely candidates for the future structural changes in the network.
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1. Introduction

Dynamic complex networks (DCN) are ubiquitous [1,2]. They are systems whose network
properties evolve in time. Defining network behaviors is challenging because the global
dynamics of DCNs at the ensemble (macroscopic) level are the manifestation of the coupled
constituent dynamics at the individual constituent (microscopic) level [1]. Individual
dynamics and global dynamics together define the emergence of collective behaviors
such as synchronization and asynchronization at the network level. DCNs dynamics are
nonlinear, non-stationary, and complex. Significant efforts have been given to correlate
the complex interactions between ensemble constituents with simultaneous collective
behaviors as well as critical and abrupt failures when the system is perturbed [3].

Functional units of many real-world systems manifesting themselves as DCNs interact
with each other at the different and disparate temporal and spatial scales giving rise to the
various behaviors that may not be expressed by a direct sum of individual behaviors of
their parts [4]. The networking systems are often metaphorically represented by graphs,
in which the graph vertices embody the system functional units, and the graph edges
sketch the various interactions between these units. As a knowledge of more detailed
characteristics can make a network system appear more complex, its graph representation
is essentially observer dependent and therefore not unique [5]. Nevertheless, graph models
are useful for the network analysis, as helping us to answer the fundamental question
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about relations between the local (i.e., pertaining to a single node) and global (of the entire
network) properties of a complex system [4].

The first attempt to address this question in the framework of a thermodynamic ap-
proach to graphs was initiated in complex network theory (CNT) [6,7]. In the thermodynamic
limit of infinitely large graphs N → ∞ considered in CNT, any functionally relevant struc-
tural features of a graph appear to be asymptotically negligible “fluctuations”; the entire
network is viewed as an ever growing collection of structurally homogeneous random
graphs; and the famous power law statistics for node’s degree distributions may result
from a superposition of the binomial or Poisson degree distributions typical for random
graphs [8,9]—true scale-free graphs are rare [10]. The evolution of complex networks is
explained in CNT by the preferential attachment mechanism [11] under the spell of Matthew’s
principle of accumulated advantage (“For to every one who has will more be given, and he will
have abundance; but from him who has not, even what he has will be taken away .” Matthew 25:29,
RSV.). Similarly to the formation of a giant component in random graphs [8], a complex
network eternally growing in accord with the preferential attachment principle undergoes
a topological phase transition from a “rich-get-richer” phase to a “winner-takes-all” phase
due to the Bose–Einstein condensation mechanism [6,12,13].

Another thermodynamic approach to the study of complex networks proposed by us
recently in [14] concerns the thermodynamic limit of very long walks n→ ∞ in graphs. On
the one hand, infinite walks are possible in finite and even very small graphs, such as those
portraying the majority of artificially engineered networking systems and power grids. On
the other hand, the statistical ensembles of (random) walks do not require the structure of a
backbone graph is random, as it was implicitly assumed in CNT concerning asymptotically
infinite graphs. It is obvious that the structures of engineered systems are robust and
functionally determined, being anything but random. As the statistics of random walks is
essentially sensitive to the graph structural features, such as irregularities, the available
cyclic paths, and emerging defects, such as random edge rewiring, dramatically reshaping
the global mobility patterns in the entire graph, the proposed thermodynamic approach
is also applicable for the analysis of dynamic complex networks (DCN) used to model the
evolving relationships between entities. The local fluctuations of path’s growth rate around
the graph topological entropy that rise due to the graph structure modifications follow
Fermi–Dirac statistics [14].

The major distinguishing features between two approaches are summarized in the
following Table 1.

Table 1. The major differences between CNT and DCN.

CNT DCN

Thermodynamic limit Infinite graphs, N → ∞ Infinite walks, n→ ∞
Dynamics Eternal growth Random structural modifications
Statistics Bose-Einstein Fermi–Dirac
Important nodes High centrality/ fitness High fugacity
Graph evolution by natural selection Stabilizing selection Diversifying selection

In the present paper, we continue studying the thermodynamic limit of very long
walks n → ∞ in finite connected undirected graphs. In Section 2, we remind the reader
three major statistical ensembles of long walks in graphs. In Section 3, we discuss the
applications of statistical ensembles for the study of dynamical processes in networks. In
Section 4, we generalize the forward Kolmogorov equation for random walks on graphs
for the case of “white noise” of strength β > 0 added to edge transportation capacity. The
derived Fokker–Planck equation describes the time evolution of probability distributions of
stochastic processes defined in networks. In accordance with the unique equation solution,
while central hubs accumulate the most of traffic in normally operating transport networks,
traffic congestion may catch it at the nodes of low centrality and structural bottlenecks
due to the random fluctuations of transportation capacity in networks. In Section 5, we
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briefly sketch the network evolution theory making use of an analogy with the evolutionary
models of stabilizing and diversifying selection. We conclude in the last section.

2. Statistical Ensembles of Walks in Finite Connected Undirected Graphs

The concept of thermodynamic ensembles of long walks has been introduced by us
in [14] following the ideas of Gibbs [15]. For example, the microcanonical ensemble (MCE)
representing an isolated system with conserved energy corresponds to a collection of walks
in a static graph, in which all walks of the same length n are taken with the same probability
Pn. Isotropic and anisptropic random walks that make up equal probabilities to all available
paths of a given length starting at any graph vertex form the canonical ensembles (CNE) of
walks. Finally, an open system of walks defined on a graph changing its structure in time
due to the growth, withering, or edge rewiring processes that keep the graph topological
entropy (GTE) in tact are described by the grand canonical ensemble (GCE), in which every
node may be characterized by the quality of being fleeting in the course of network’s
transformations—fugacity. In contrast to the classical equilibrium thermodynamics, theses
thermodynamic ensembles are not equivalent if defined for walks in graphs, even in the
thermodynamic limit n→ ∞.

In the present section, we discuss these statistical ensembles of walks in details. For
simplicity, we shall consider a finite connected undirected graph G(V, E) where V, |V| = N,
is a set of graph vertices, and E ⊆ V × V is a set of edges. We assume that the graph
G is defined by an adjacency matrix, Aij = 1, iff (i, j) ∈ E, but Aij = 0 otherwise, and
the adjacency matrix has the following spectral decomposition: Aij = ∑N

s=1 αsuisusj, with
ordered eigenvalues αmax ≡ α1 > α2 ≥ · · · ≥ αN where αmax is the graph spectral radius
(GSR). Since the graph is undirected, its adjacency matrix is symmetric, Aij = Aji, its
eigenvalues are real, and the corresponding eigenvectors {ui}N

i=1 form an orthogonal
system of vectors in RN .

2.1. The Microcanonical Ensemble of Walks

All walks of length n (n-walks) in MCE are assigned the same probability [14]:

Pn ≡ exp
(

Fn

kT

)
, (1)

in which the (Boltzmann constant and) temperature kT ≡ 1/ln 2, and the free energy of
n–walks Fn reads as follows:

Fn ≡ − log2 Pn = −kT lnNn = log2Nn (2)

where Nn is the total number of n-walks in the graph G. Using the spectral decomposition
of the adjacency matrix, we obtain the following algebraic expression for the free energy of
walks [14]:

Fn = log2Nn = log2 ∑ij An
ij = log2 ∑ij

(
∑N

s=1 αn
s uisujs

)
= log2 ∑N

s=1 αn
s γ2

s = log2 γ2
1αn

max

(
1 + ∑N

s=2
γ2

s
γ2

1

(
αs

αmax

)n
)

, γs ≡ ∑N
i=1 uis.

(3)

Since |αs/αmax| < 1, it follows from (3) that in the limit n→ ∞ the intensive free energy
(per edge absorbed by a walk) equals to

µ ≡ lim
n→∞

Fn

n
= lim

n→∞

1
n

log2 γ2
1αn

max

(
1 +

N

∑
s=2

γ2
s

γ2
1

(
αs

αmax

)n
)

= log2 αmax ≡ dG. (4)

log2 αmax in (4) is called the graph topological entropy (GTE) [14,16,17], as being an exponen-
tial growth rate of the number of distinguishable n-walks in the graph, a natural measure
of complexity in the framework of MCE. The GTE µ can also be interpreted as an effective
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dimension of space (of the graph), dG. If d -dimensional flat space is modeled by a lattice,
or a κ—regular graph (in which every graph vertex has the same number of neighbors,
κ = 2d), its spectral radius αmax = κ, and the GTE equals µ = log2κ = d, the dimension of
modeled space.

2.2. The Canonical Ensembles of Walks—Random Walks

All n-walks starting at the same vertex i, i ∈ V, are taken with equal probability in
the CNE [14]. The number of n-walks available from the vertex i, the n-th order degree of the
vertex, equals to

κ
(n)
i ≡

N

∑
j=1

(An)ij, κ
(0)
i = 1. (5)

Taking into account that κ
(n+1)
i = ∑N

j=1 Aijκ
(n)
j , we obtain the following infinite se-

quence of irreducible row-stochastic transition matrices defining possible random walks
subject to the CNE in G [4,14], viz.,

W(n)
ij =

Aijκ
(n)
j

κ
(n+1)
i

=
Aij ∑N

s=1(An)js

∑N
s=1 Ais ∑N

s=1(An)sr
,

N

∑
j=1

W(n)
ij = 1, n ∈ N, (6)

The first order random walk in (6) defined by the transition matrix W(1)
ij = Aij/κ

(1)
i is

known for more than a century [18–20]. The walk W(1)
ij is locally isotropic, as a random walker

chooses the next node to visit among all nearest neighbors with equal probability [4,14].
Other random walks defined in (6) by W(n)

ij , n > 1, make every of κ
(n)
i walks available from

the node i ∈ V with equal probability, and therefore transitions to the nearest neighbors
providing more n-walks are more likely to be chosen by the walker than transitions to others,
so that these random walks may be locally biased (anisotropic) [4].

In the limit of infinite walks n→ ∞, the series of transition matrices W(n)
ij converges [4,14]

to the Ruelle-Bowen random walk [17], viz.,

W(∞)
ij = lim

n→∞
W(n)

ij = lim
n→∞

Aijκ
(n)
j

κ
(n+1)
i

= lim
n→∞

Aijα
n
maxuj1γ1

αn+1
maxui1γ1

=
Aijuj1

αmaxui1
. (7)

Random walks subject to the CNE are characterized by equilibrium densities (of graph
nodes, subgraphs, and currents in the graph) that do not evolve over time, even though the
underlying system might be in constant motion. For example, the major left eigenvectors
of the row-stochastic transition matrices W(n)

ij , n ≥ 1 belonging to the maximal eigenvalue
λ = 1, viz.,

π
(n)
i =

κ
(n)
i κ

(n−1)
i

∑N
s=1 κ

(n)
s κ

(n−1)
s

,
N

∑
s=1

π
(n)
r W(n)

rs = π
(n)
s (8)

constitute the stationary distributions of random walks defined by W(n)
ij on the graph G.

The first—order stationary distribution π
(1)
i = κ

(1)
i /2|E|, where |E| is the total number

of edges in the graph G, informs us about the normalized number of links incident upon a
node—its degree centrality. The stationary distribution for the Ruelle-Bowen random walks,
π
(∞)
i = u2

i1 [21] is related to the eigenvector centrality ui1 of the node i in the graph G [22].
The GTE (playing the role of an effective dimension of space for the walks subject to

the MCE, see Section 2.1) turns into a direction-dependent graph space dimension tensor in
the context of CNE random walks (6) and (7), viz.,
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∆(n)
ij ≡ log2

κ
(n)
i

κ
(n−1)
j

, ∆(∞)
ij = log2

αmaxui1
uj1

, (9)

measuring the degree of directional anisotropy of random transitions in CNE [14].

2.3. Grand Canonical Ensemble of Walks

Systems exchanging energy and particles with a heat bath in thermodynamic equilib-
rium are described by the GCE [15]. The GCE statistics can be applied to the study of the
DCN, acquiring or losing nodes in the course of interaction with the environment, or other
networks. Although the global growth rate of the number of distinguishable walks possible
in a graph tends to the GTE, µ = log2 αmax, in the thermodynamic limit n → ∞, the local
growth rate of the number of distinguishable walks available from a node, log2 αmaxγ1ui1,
may be inferior to the GTE. The GTE µ plays the role of a chemical potential considered fixed
for the entire DCN being in a “thermodynamic equilibrium” with the environment in GCE.

In the framework of GCE, the probability to observe such a local “fluctuation” of the
intensive free energy at the node i ∈ V (due to the local n-walks growth rate inferior to the
GTE µ) for the very long walks n→ ∞ is taken to be [14]:

P (n)
i =

1
Zn

exp
(

nµ− log2 αn
maxui1γ1

kT

)
, (10)

in which kT ≡ 1/ ln 2 and Zn is the grand partition function, playing the role of a normaliza-
tion factor in (10). In the thermodynamic limit of infinite walks n → ∞, the exponential
factor in (10) representing node’s fugacity in the DCN takes the following form:

lim
n→∞

exp
(

nµ−log2 αn
maxui1γ1

kT

)
= lim

n→∞
exp

(
[log2 αn

max−log2 αn
maxui1γ1]

1/ln 2

)
= 1

ui1γ1
, γ1 ≡ ∑N

j=1 uj1,
(11)

so that the grand partition function Z that amasses fugacity over all nodes in the graph G
reads as follows:

Z ≡ lim
n→∞

Zn =
1

γ1

N

∑
j=1

1
uj1

, γ1 ≡
N

∑
i=1

ui1. (12)

Finally, taking into account (11) and (12), we obtain the limiting probability quantify-
ing the ease of separation/amendment of a vertex from/to the network at the node i w.r.t. the
system of infinitely long walks n→ ∞ as

Pi = lim
n→∞

P (n)
i =

u−1
i1

∑N
j=1 u−1

j1

=
1

1 + ui1 ∑N
j 6=i u−1

j1

≡ 1

1 + exp
(

εi−M
kT

) (13)

that takes the form of a Fermi–Dirac distribution of fermions in a single-particle state i of the
energy εi ≡ log2

(
ui1 ∑N

j 6=i u−1
j1

)
, with zero chemical potential M = 0 of adding/removing a

new node if it does not change the system of walks in the graph, and temperature kT ≡ 1/ ln 2.
In the thermodynamic limit of infinite walks, any change to the (free) energy is associated
to a modification of the system of possible walks in the graph while a node can leave and
enter the graph at no cost. The local increment of free energy due to the disappearance of
node from the graph is known as entropic pressure discussed by us in [14].

The distribution (13) of relative fugacity of vertices from/into the network can be con-
sidered as a normalized inverse eigenvector centrality. The graph vertices with the inferior
growth rate of infinitely long walks that they host appear to be insufficiently integrated
into the graph structure, and therefore they might be lost, or, on the contrary, acquire
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new connections in the course of graph structural modifications. The grand canonical
potential, viz.,

Ω = −kT lnZ = log2

(
1

γ1

N

∑
j=1

1
uj1

)
, (14)

plays the role of free energy with respect to the grand partition function Z in GCE, and
kT ≡ 1/ ln 2.

The Fermi–Dirac distribution, previously observed only in a quantum system of non-
interacting fermions, appears in the model due to the non-interacting quality of walks in the
graph, similar to the Pauli exclusion principle allowing for only two possible microstates
for each single-particle level.

3. Applications of Statistical Mechanics of Walks

In the present section, we discuss some applications of the statistical ensembles of
walks for the analysis of feedback loops, determinantal processes, structurality, controlla-
bility, and predicatability of walks in graphs.

3.1. Backbones for Feedback: Expected Numbers of Cyclic Walks per Graph’s Size

Positive and negative feedback loops are at the core of self-regulating and controlling
mechanisms, regenerative circuits, amplifiers, and other complex dynamical systems in
engineering, economics, and biology [23]. The graph cyclic structures serve as a base for
the feedback arc sets of cause and effect that form a circuit or loop [24]. The expected
numbers of cyclic walks of the given periods that can be activated in a graph of a given
size and structure is an important characteristic of the feedback arc sets. The expected
numbers of cyclic walks per graph size can be found by applying the Cayley–Hamilton
theorem [25] (stating that every square matrix over a commutative ring satisfies its own
characteristic equation) to the random walk transition matrices W(n)

ij defined for some
n ≥ 1 in Section 2.2. The characteristic polynomial det(tI −W) = 0 of a N × N transition
matrix W is monic (its leading coefficient is 1), and therefore an analogous polynomial in a
transition matrix W can be interpreted as a regression relation for the probability to reach
the graph vertex j starting from the graph vertex i precisely in N steps (i.e., for the N-th
degree of transition matrix W), viz.,

WN
i,j =

N

∑
k=1

(−1)k+1Tr

(
k∧

W

)(
WN−k

)
i,j

. (15)

The regression relation (15) shows that the probability for a random walker to get
from i to j precisely in N steps is an expectation value over the probabilities to reach j from
i in shorter times: N − 1, N − 2, . . . , 0, weighted by Tr

(∧k W
)

, the expected numbers of cyclic
walks of the period k possible for a random walker per N steps in the given graph. The
trace of the k-th exterior power of W is the k-th coefficient of the characteristic polynomial
of the matrix W and can be calculated as a single determinant, viz.,

Tr

(
k∧

W

)
=

1
k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

Tr W k− 1 0 . . .
...

Tr W2 Tr W k− 2 . . .
...

...
...

...
. . .

...
Tr Wk−1 Tr Wk−2 . . . . . . 1

Tr Wk Tr Wk−1 . . . . . . Tr W

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (16)

The expected numbers of cycle walks of the period k per N steps (16) are the algebraic
invariants of all transition matrices W(n), for any random walk order n ≥ 1, as being
related to the graph topological properties (i.e., the numbers of k-loops that can be made in
N steps).
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The characteristic polynomial coefficients for a transition matrix defined on the graph
can be efficiently calculated using the recursive Faddeev–Le Verrier algorithm [26]. In
Figure 1, we have shown the spectrum of the expected numbers of cycle walks (or a
partition of a N-walk into the cycles of different lengths) a walker can perform in the
Flower snark graph (left panel) and in the Kittel graph (right panel), respectively. The
presented above diagrams show the possibility of co-existence and co-functioning of the
feedback loops of different periods in DCN.

a. b.

Figure 1. The expected numbers of cycle walks a walker performs in (a) Flower snark graph and
(b) Kittell graph per N steps (the graph size).

3.2. Determinantal Processes Induced by Canonical Ensembles

Walks subject to CNE are characterized by the equilibrium densities over individual
vertices, subgraphs, and random currents in a finite connected undirected graph. These
densities can be calculated as the squared determinants of minors made up from the eigenvec-
tors of the symmetrized transition matrices. The corresponding stochastic point processes
are called determinantal process, or fermionic processes [27] motivated by the use of Slater de-
terminants in quantum mechanics [28], with multiple applications in physics [29], wireless
network modeling [30,31], and in random matrix statistics [32].

By performing a similarity transformation, we make the transition matrix W(n)
ij to a

symmetric form [4,33], viz.,

Ŵ(n)
ij = Aij

√
κ
(n)
j κ

(n)
i√

κ
(n+1)
j κ

(n+1)
i

(17)

The similarity transformation does not change the matrix spectrum. In the what follow-
ing, we denote the symmetric transition matrix Ŵ, omitting the random walk order index n
for keeping the notations simple. The symmetric transition matrix (17) can be written in a
spectral form:

Ŵ = ΨΛΨ>, Ψ> = Ψ−1 ∈ O(N), det Ψ ≡ Sgn(Ψ) = ±1, (18)

in which Λ is a diagonal matrix of eigenvalues with real valued entries 1 = λ1 > λ2 ≥
. . . ≥ λN ≥ −1. Each eigenvalue λk, k = 2, . . . N, corresponds to an eigenmode (a
random current) characterized by the relaxation time toward a stationary distribution
τk = −1/ ln(1− λk). The maximal eigenvalue λ1 = 1 (of multiplicity 1) corresponds
to a graph stationary process. The columns ψk : V → SN−1

1 and rows ψk : V → SN−1
1

of the orthogonal matrix Ψ form the orthonormal bases in RN . The k-th order wedge
products, ψi1 ∧ . . . ∧ ψik and ψi1 ∧ . . . ∧ ψik , are the determinants of the corresponding k-th
order minors of Ψ in (18). The space of exterior forms

∧k RN , k = 0, . . . N (
∧0 RN = R,∧1 RN = RN) has the dimension

(
N
k

)
. The properties of determinants of minors of
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matrices composed of orthonormal vectors were discussed in [34] in detail. These wedge
products form the orthonormal basis of the space

∧k RN , viz.,(
ψi1 ∧ . . . ∧ ψik , ψj1 ∧ . . . ∧ ψjk

)
= δi1,j1 . . . δik ,jk ,(

ψi1 ∧ . . . ∧ ψik , ψj1 ∧ . . . ∧ ψjk
)

= δi1,j1 . . . δik ,jk ,
(19)

so that the squared determinants of the k-th order minors of the orthogonal matrix Ψ define
the properly normalized probability distributions over the index set {i1, . . . , ik}:∣∣ψi1 ∧ . . . ∧ ψik

∣∣2 = 1,
∣∣∣ψi1 ∧ . . . ∧ ψik

∣∣∣2 = 1. (20)

An elementary example of this property is given by the Perron (major) eigenvector
of a symmetric transition matrix, ψ1 (whose elements can be considered as the primitive
minors of order 1). Indeed, the squared elements of ψ1 determine a stationary distribution
of random walks over the individual graph nodes, ψ2

1,i = πi, ∑i∈V πi = 1.
To show the compatible stationary distributions over the higher-order minors, we

consider random walks in a triangle graph (Figure 2).

Figure 2. A triangle graph.

All random walks transition probabilities between vertices of a triangle equal to 1/2
(for any order of random walks). The orthonormal eigenvectors of the symmetric transition
probability matrix are given in the rows of Table 2. It is easy to check that the top eigenvector
belonging to λ = 1 defines the equal density for every vertex, (0.57735 . . .)2 = 1/3,
as expected.

Table 2. The orthonormal eigenvectors of transition matrix.

Vertex 1 Vertex 2 Vertex 3

λ = 1 0.57735 . . . 0.57735 . . . 0.57735 . . .
λ = −1/2 −0.44988 . . . 0.81503 . . . −0.36515 . . .
λ = −1/2 0.68138 . . . −0.04892 . . . −0.73030 . . .

The following squared determinants of the 2-nd order minors ( all summing to 1)
define the stationary distributions over the pairs of indices (all compatible with the equitable
density of random walkers over triangle’s vertices):

|ψ1 ∧ ψ2|2 =

∣∣∣∣ 0.57735 0.57735
−0.44988 0.81503

∣∣∣∣2 + ∣∣∣∣ 0.57735 0.57735
−0.44988 −0.36515

∣∣∣∣2 + ∣∣∣∣0.57735 0.57735
0.81503 −0.36515

∣∣∣∣2
= 0.53333 + 0.00239 + 0.46427 = 1;

(21)

|ψ1 ∧ ψ3|2 =

∣∣∣∣0.57735 0.57735
0.68138 0.04892

∣∣∣∣2 + ∣∣∣∣0.57735 0.57735
0.68138 −0.73030

∣∣∣∣2 + ∣∣∣∣0.57735 0.57735
0.04892 −0.73030

∣∣∣∣2
= 0.13333 + 0.66427 + 0.20239 = 1;

(22)
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|ψ2 ∧ ψ3|2 =

∣∣∣∣−0.44988 0.81503
0.68138 0.04892

∣∣∣∣2 + ∣∣∣∣−0.44988 −0.36515
0.68138 −0.73030

∣∣∣∣2 + ∣∣∣∣0.81503 −0.36515
0.04892 −0.73030

∣∣∣∣2
= 0.33333 + 0.33333 + 0.33333 = 1;

(23)

∣∣ψ1 ∧ ψ2
∣∣2 =

∣∣∣∣ 0.57735 0.57735
−0.44988 0.81503

∣∣∣∣2 + ∣∣∣∣0.57735 0.57735
0.68138 0.04892

∣∣∣∣2 + ∣∣∣∣−0.44988 0.81503
0.68138 0.04892

∣∣∣∣2
= 0.53333 + 0.13333 + 0.33333 = 1;

(24)

∣∣ψ1 ∧ ψ3
∣∣2 =

∣∣∣∣ 0.57735 0.57735
−0.44988 −0.36515

∣∣∣∣2 + ∣∣∣∣0.57735 0.57735
0.68138 −0.73030

∣∣∣∣2 + ∣∣∣∣−0.44988 −0.36515
0.68138 −0.73030

∣∣∣∣2
= 0.00239 + 0.66427 + 0.33333 = 1;

(25)

∣∣ψ2 ∧ ψ3
∣∣2 =

∣∣∣∣0.57735 0.57735
0.81503 −0.36515

∣∣∣∣2 + ∣∣∣∣0.57735 0.57735
0.04892 −0.73030

∣∣∣∣2 + ∣∣∣∣0.81503 −0.36515
0.04892 −0.73030

∣∣∣∣2
= 0.46427 + 0.20239 + 0.33333 = 1;

(26)

In the diagrams presented in Figure 3, we highlighted the pairs of indices (the con-
necting edges in triangles) by color and width in accordance with the probabilities (the
values of individual squared determinants) in (21)–(26). The diagrams show stationary
configurations admissible in a triangle structure, and the equitable configuration (of 1/3 s) is
only one of them. Each diagram in Figure 3a can be characterized by the Shannon entropy,
S = −∑i,j Pi,j log2 Pi,j, i, j = 1, 2, 3, reflecting the diversity of probabilities Pi,j in the admis-
sible stationary densities over the pair of indices. The obtained entropy values range from
' 1.585 bits (for the equitable configuration) to ' 0.941 bits for the most unequal partition.
All six entropies are made up into a matrixplot shown in the right panel of Figure 3b helping
to visualize the diversity of stationary configurations possible on the graph.

a. b.

Figure 3. (a) The stationary densities over the pairs of indices possible on a triangle structure. The
pairs of indices are highlighted by color and width in accordance with the corresponding stationary
probabilities in (21)–(26). (b) The matrixplot of entropy values for the six diagrams shown in the left
panel of the figure. The vertical bars are colored in relation to to the pairs of indices (irrelevant to the
probability values in the left panel).

We conclude this subsection with a remark on that a triangle is a very simple graph, as
the corresponding transition matrix in all order of the random walks n is the same. In the
more complex and uneven structures, the behavior of random walks for the different orders
n > 1 vary dramatically due to the increasing degree of anisotropy and the decreasing
mixing time (growing spectral gap) of walks [14].

3.3. Information Flows Associated with Canonical Ensembles

Information is the resolution of uncertainty about the admissible patterns of future
behavior [35]. To discuss information in a system, we need to define a canonical ensemble
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of states of the system first [14]. In the context of walks in graphs, information comes from
lumping of many particular long walks (microstates) into a single macrostate characterized
by some stationary distribution for the individual vertices (π), subgraphs, and random
currents as discussed in Section 3.2.

If nr counts the number of visits paid by a walker to the r-th vertex in the course of
such a walk of length n = ∑r nr that nr/n → πr, ∑r πr = 1 as n → ∞, all these walks are
lumped into a single π-macrostate. The total number of lumped walks is given by the
multinomial coefficient, viz.,

n!
(nπ1)! · · · (nπN)!

≈ exp(−nH), H ≡ −∑
r

πr ln πr, (27)

as n→ ∞ [14]. Therefore, the Boltzmann-Gibbs-Shannon entropy H [36,37] in (27) appears
as a growth rate of the multinomial coefficient as n→ ∞. The free energy over the canonical
ensemble of such very long n-walks subject to CNE is Fn ≈ kT · nH, and the intensive free
energy of walks per absorbed edge (4) equals to

µ = lim
n→∞

Fn

n
= −∑

r
πr log2 πr ≡ H(Xt), (28)

i.e., the expected amount of information released at each step t of the π-walk {Xt ∈ V : t ∈ Z},
in which Pr(Xt = r) = πr [14].

Structurality of a Graph w.r.t to a Random Walk:

On the one hand, our ability to predict the future walk in a graph can be assessed by
the conditional entropies H(Xt|Xt−1, . . . X1), t ≥ 1 that quantify the amount of information
released when the present vertex of the walk Xt becomes known given the previous
history. For a walk defined by a transition matrix Wij, the information calculations are
feasible [4,14,38,39], as evolution of a Markov process in the future depends only on
the present state and does not depend on past history [40]. Indeed, the time average of
the conditional entropy of the present conditioned on the past for Markov chains reads
as follows:

lim
T→∞

1
T ∑T

t=1 H(Xt|Xt−1, . . . X1) = lim
T→∞

1
T [H(X1) + H(X2|X1) + H(X3|X2) + . . .]

= lim
T→∞

[
1
T H(X1) +

T−1
T H(X2|X1)

]
= H(X2|X1) ≡ H(Xt+1|Xt) = −∑N

k=1 πk ∑N
s=1 Wkslog2Wks.

(29)

The entropy excess [41–43] over the entropy rate (29), viz.,

S = H(Xt)− H(Xt+1|Xt),
= −∑N

k=1 πk

(
log2πk + ∑N

s=1 Wkslog2Wks

)
= −∑N

k=1 πk log2

(
πk ∏N

s=1 WWks
ks

)
,

(30)

characterizes the amount of uncertainty about the future step that can be resolved from
past history of the walk predetermined by the graph structure, [4,14,38,39]. In the present
paper, we call this information component “structurality” (measured in bits) having in mind
the quality of structure the graph possesses w.r.t a random walk defined by the transition
matrix Wij.

Controllability of a Random Walk defined in a Graph:

On the other hand, our ability to control the future step of a walk defined in a graph
can be assessed by the conditional mutual information I(Xt+1, Xt|Xt−1) between the present
and the future vertices visited by the walk conditioned on past history [14], viz.,
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C = H(Xt+1|Xt−1)− H(Xt|Xt−1)
= ∑N

k=1 πk ∑N
r=1
(
Wkrlog2Wkr −W2

krlog2W2
kr
)

= ∑N
k=1 πk log2

(
∏N

r=1
W

Wkr
kr

(W2
kr)

W2
kr

)
.

(31)

We call this information component “controllability” having in mind that it quantifies
the consequence of presence at a vertex for reaching another vertex at the next step of the
walk w.r.t to a random walk defined by the transition matrix Wij.

Both information components, S and C, taken together gauge the amount of apparent
uncertainty about the future walker’s location in the graph that can be resolved by ob-
serving past history and applying some graph navigation strategy compatible with the
chosen CNE. Summing up these components together, we call this part of information
predictable [4,14,38,39].

Ephemerality of Random Walks defined in a Graph:

The following formal calculation involving entropy and the aforementioned condi-
tional entropies shows the remaining part of information, neither relevant to the past, nor
to the future [14]. First, we add and subtract the conditional entropies from H(Xt) and
then isolate the structurality (S) and colntrollability (C) information components forming
the predictable part of information (P):

H(Xt) =

S︷ ︸︸ ︷
(H(Xt)− H(Xt+1|Xt)) +

C︷ ︸︸ ︷
(H(Xt+1|Xt−1)− H(Xt|Xt−1))︸ ︷︷ ︸
P

+ (H(Xt+1|Xt) + H(Xt|Xt−1)− H(Xt+1|Xt−1) )︸ ︷︷ ︸
U

.
(32)

The remaining combination of conditional entropies denoted in (32) by U (for “unpre-
dictable”), obviously, represents the amount of true uncertainty anchored at the present state
of the walker only that cannot be inferred anyway [14]. Following [43], this information
component can be called “ephemeral”, and the corresponding quality of random walks on
the graph—ephemerality.

The decomposition of entropy for the random walks of different orders defined on a
graph can be conveniently visualized with the use of radar graphs as shown in Figure 4.

a. b.

Figure 4. The radar graphs representing information decomposition for two canonical ensembles
of walks defined by W(1) and W(∞), respectively, in (a) the Banana tree graph and in (b) the Flower
snark graph.

Two triangles (one shown by a bold line, and a dashed line used for another) presented
on the radar graphs in Figure 4 depict the information decomposition H = S + C + U for
the two orders of random walks. Namely, the bold line triangle displays three information
components associated to the isotropic nearest neighbor random walk defined by the
transition matrix W(1)

ij . The dashed triangles show the partition of entropy associated to the



Dynamics 2022, 2 263

anisotropic walk defined by the matrix W(∞)
ij taking all infinite walks starting from a node

with equal probabilities. Random walks on both graphs (shown in the left right panels of
Figure 4) are characterized by the high degree of predictability.

Using the Markov chain models of musical compositions based on the standard MIDI
representation of music projected to a single octave (12× 12 matrices), we can study the
partition of entropy in musical pieces [4,44,45] in the same way, as we did with graphs.
Two examples of such a partition are shown in Figure 5.

a. b.

Figure 5. The radar graphs representing information decomposition for two canonical ensembles
of walks in the Markov models of the following musical pieces: (a) W.A. Mozart, “Eine Kleine
Nachtmusik” (K.525) and (b) R. Wagner, “Das Rheingold” (WWV 86A), the Prelude and Entrance of
Gods into Valhalla.

The information flow associated to the first order random walks defined on the
musical networks of European tonal music is dominated by the controllability components
(determining the influence of a present state of the Markov chain, a musical note, on the
forthcoming state). The related bold lines triangles shown in Figure 5 are skewed toward
controllability corner of the radar plots. In contrast to them, the random walks of infinite
order mostly account for the large scale structures in a musical composition that are always
in tune with the particular tonality scale, musical style and the human feeling of musical
harmony [4].

The possible applications of entropy decomposition to the predictability analysis of
stock price dynamics based on the five years of the daily Standard & Poor’s data were
discussed in [46]. In [14], the entropy decomposition was considered in a context of
navigation through graphs and urban environments.

4. Fugacity Distribution as a Stationary Solution of a Discrete Fokker–Planck Equation

The GCE is used to describe open systems exchanging energy and particles with
the environment in a state of thermodynamic equilibrium (Section 2.3). In the context of
infinitely long walks in graphs, graph vertices are characterized by their ease of removing
from the graph—fugacity, a relative inverse eigenvector centrality of the vertex. The less
important the vertices w.r.t. very long walks, the higher chance the network structure will
be modified at them by wiring new connections to better integrated nodes and subgraphs,
or by their removal from the network. In Figure 6, we have contrasted the structurally
opposite location of vertices of high centrality and high fugacity in a membrane graph. The
vertices that are prone to possible modifications, as being of minimal centrality, are located
right at the corners of the membrane.
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a. b.

Figure 6. The vertices of a membrane graph are highlighted accordingly their (a) Eigenvector
centrality, (b) Fugacity.

Interestingly, a Fermi–Dirac distribution involving (noise dependent) fugacity also
appears as the unique stationary solution of a Fokker–Planck equation describing the
continuous -time dynamics of distributions subject to the CNE under “noisy” transportation
capacity and random edge rewiring in a graph. For keeping the what following calculations
simple, let us consider the limiting transition operator of the Ruelle-Bowen random walk (7)
in a finite connected undirected graph G(V, E) defined by an adjacency matrix Ai,j, viz.,

W(∞)
ij =

Aij
αmax

exp
(
log2 uj1 − log2 ui1

)
= Aij exp

(
log2 uj1 − log2 ui1 − µ

)
≡ Aij exp Qij

(33)

where u1 is the Perron eigenvector belonging to the maximal eigenvalue αmax of the
adjacency matrix Aij, log2 ui1 is a discrete potential function of the Ruelle-Bowen random
walk (7), µ = log2 αmax is the GTE (4) playing the role of a chemical potential of very long
walks in the graph, and Qij is its generating matrix. The potential functions of Markov
processes defined on graphs and their relations to the Fokker–Planck equations have
been discussed in [47,48]. The continuous time evolution of a probability distribution
ρi(t) = Pr(X(t) = i), i ∈ V is then described by a forward Kolmogorov equation [49], viz.,

ρ̇i(t) = ∑j∈V ρj(t)Qi,j
= ∑j∈V,uj1<ui1

ρj(t)
(
log2 uj1 − log2 ui1 − µ

)
+∑j∈V,uj1>ui1

ρi(t)
(
log2 uj1 − log2 ui1 − µ

) (34)

supplied with some initial condition ρ(0). As was observed in [47], the Fokker–Planck
equation can be obtained by adding “white noise” described by the Wiener process,
dXt = −QXtdt +

√
2β dWt, with strength

√
2β to the Kolmogorov Equation (34). The

Fokker–Planck equation keeps the form of (34) although written down for the Onsager
potential [50]: log2 ui1 → log2 ui1 + β log2 ρi(t) = log2 ui1ρ

β
i (t), i ∈ V, viz.,

ρ̇i(t) = ∑j∈V,uj1ρ
β
j (t)<ui1ρ

β
i (t)

ρj(t)
(

log2 uj1ρ
β
j (t)− log2 ui1ρ

β
i (t)− µ

)
+∑j∈V,uj1ρ

β
j (t)>ui1ρ

β
i (t)

ρi(t)
(

log2 uj1ρ
β
j (t)− log2 ui1ρ

β
i (t)− µ

)
.

(35)
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The Fokker–Planck Equation (35) describes the time evolution of a modified, time
inhomogeneous Ruelle-Bowen random walk perturbed by “white noise” of the strength√

2β of transport capacity, viz.,

W̃(β,∞)
i,j (t) =

Aij

αmax

uj1

ui1

(
ρj(t)
ρi(t)

)β

. (36)

In the absence of noise, β = 0, the Fokker–Planck Equation (35) turns back into the
Kolmogorov Equation (34), and the perturbed transition operator (36) takes again the form
of the Ruelle–Bowen transition operator (7). The distribution ρi(t) then rapidly converges
for any initial condition ρ(0) to a stationary distribution of the Ruelle–Bowen walk featured
by the squared eigenvector centrality of vertices in the graph.

For all β > 0, it can be shown by a direct computation that the unique, noise de-
pendent stationary distribution satisfying the Fokker–Planck Equation (35) is the Gibbs
distribution, viz.,

ρ∗i (β) =
1
Z exp

(
µ− log2 ui1

βkT

)
=

1
Z

1

u1/β
i1

, Z ≡ ∑
i∈V

u−1/β
i1 (37)

that takes the form of a Fermi–Dirac distribution,

ρ∗i (β) =
1

1 + u1/β
i1 ∑j 6=i u−1/β

j1

, (38)

coinciding with the relative fugacity distribution derinved for the GCE (13) in the partic-
ular case of β = 1. Finally, in the case of very strong noise, β = ∞, the stationary solu-
tion (38) converges to a uniform distribution over graph’s nodes independently of the graph
structure, viz.,

ρ∗i (∞) = lim
β→∞

1

1 + u1/β
i1 ∑j 6=i u−1/β

j1

=
1
N

. (39)

5. Discussion: Statistical Grounds for Diversifying Selection

Since DCNs are ubiquitous in the real world, including complex biological and eco-
logical systems, their evolution might be described in terms of the theory of evolution in
reference to the process of natural selection. In the present section, we would like to discuss
a possible connection between statistics of walks emerging in two thermodynamic limits,
the limit of infinite graph N → ∞ and the limit of infinite walks n→ ∞, and the modes of
natural selection. Specifically, we are interested in two types of natural selection, which
have the intrinsic characteristic time scales and, therefore, might be observed in finite time.

Stabilizing selection, in which the population mean stabilizes on a particular non-
extreme trait during some characteristic time of stabilization [51], favors the most common
phenotype in the population [52]. In the theory of stabilizing selection [53], the principle
of accumulated advantage and positive feedback resulting in the reproductive success of
the average phenotypes are considered as the major mechanisms limiting the individual
variability. Obviously, the CNT that explains the growth of complex evolving networks in
the spirit of preferential attachment makes use of an analogy with evolutionary models of
stabilizing selection. By assigning an intrinsic fitness value to each node—the higher the
fitness, the higher the probability of attracting new edges [54]—an operator initiates the
Bose–Einstein condensation mechanism driving a phase transition of the network topology
to the appearance of a few “super hubs” of the maximal centrality and of the highest fitness
accumulating all branches of the network as N → ∞ [12,13] .
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Such a theory certainly was not complete, since it did not explain another impor-
tant type of natural selection—diversifying, or disruptive selection describing changes in
population genetics favorable to the extreme values for a trait over the normative values
formed by in the course of stabilizing selection process [52]. Disruptive selection occurs
in times of rapid environmental change, such as habitat change or change in resources
availability [55,56]. The characteristic time of speciation through a phyletic gradualism
mode of evolution enough for the variance of the trait to increase and for the population to
be divided into two (or more) distinct groups defines an intrinsic time scale of the diversi-
fying selection process [57,58]. Our work provides the statistical ground for “diversifying
selection” in DCN, in the thermodynamic limit of infinite walks n→ ∞. We have shown
that if the DCN is open to random structural modifications, or if the transportation capacity
is affected by “white noise”, centrality flips its role in the network dynamics. Namely,
the nodes of minimal centrality loosely integrated into the fabric of the network would
most likely feature its structural modifications. Concentration of walkers in a “noisy”
transportation network (traffic congestion) would most likely to occur at the nodes of
lowest centrality and in structural bottlenecks (see Figure 7, right panel). In Figure 7, we
have shown the Minnesota Road Network with its vertices highlighted accordingly their
eigenvector centrality (left panel) and their fugacity (right panel).

a. b.

Figure 7. The vertices of Minnesota Road Network are highlighted accordingly their (a) Eigenvector
centrality, (b) Fugacity.

We are very grateful to our reviewer for a profound and interesting question about the
possibility of using the preferential attachment principle as a specific algorithm for network
evolution corresponding to diversifying selection. On the one hand, as we wrote in the
Introduction section, the preferential attachment mechanism referred to the Matthew effect
of accumulated advantage determines network’s evolution as the eternal growth by adding
nodes subjected to the Bose—Einstein statistics and concluding at the Bose–Einstein con-
densation in complex networks, in which the fittest “winner” takes all of the evolving graph.
In contrast to it, the Fermi–Dirac statistics originally describing identical particles that obey
the Pauli exclusion principle does not allow for condensation (of particles at a single state).
The thermodynamics limit of infinite walks subjected to the Fermi–Dirac statistics neither
requires a network to grow, nor predicts any “eventual stage” of its structural evolution.
Similarly, while stabilizing selection fosters a final “condensate” (stabilization) of the entire
population on a single trait, or the most common phenotype, disruptive selection favors the
speciation in the population in times of rapid environmental changes. On the other hand,
abandoning the principle of accumulated advantage, we can propose a recurrent stochastic
algorithm for the gradual improvement of a network’s structure based on the fugacity
distribution. Namely, new edges may be sequentially added to the network in a random
or partly random fashion preferably connecting to the most “disadvantageous” nodes
characterized by the maximal fugacity value. The new connection increases the fraction of
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very long walks hosted by such a node, improving nodes’ connectivity and reducing its
fugacity. The change of (free) energy due to amendment/removal of an edge and the related
change in the network mobility patterns may be described by entropic forces as discussed
in [14]. Then, the fugacity scores are re-calculated for all nodes of the modified graph, and
a new edge is added randomly with a preference given accordingly to the renewed fugacity
distribution. In such an algorithm, high fugacity attracts the future structural modification,
precisely as assumed in the framework of the GCE of walks (Section 2.3). As it is seen in
Figure 7b, the nodes of prominent fugacity in the real-world transportation network appear
to cluster together, as being located physically proximate to each other and forming ghettos
of vertices poorly integrated into the network. The phenomenon of structural clustering
of relatively isolated suburbs was discussed in [59,60]. The physical proximity of nodes
with high fugacity calling for the urgent structural improvements makes applications of
the proposed algorithm to the real-world transportation networks economically feasible, as
requiring only the local structural modifications of the underlying graph.

6. Conclusions

In the present paper, we study the statistical ensembles of very long walks defined
in finite connected graphs. We developed three important applications of these statistical
ensembles to the analysis of network dynamics concerning the feedback and determinantal
processes in DCN, as well as the properties of information flows in networks associated
with the structurality, controllability, and predictability of walks in the network. The special
attention in our work has been given to the DCN open to random structural modifications
described in the framework of GCE of very long walks. Fugacity of a node quantifies the
likelihood of local structural modifications at the node in the course of network evolution.

For describing the time evolution of probability distributions of stochastic processes
defined on graphs, we introduced a discrete finite version of the Fokker–Planck equation
as a generalization of the Kolmogorov equation for the different values of “white noise”
strength β > 0 affecting transportation capacity in the network. Being the unique stationary
solution of the derived Fokker–Planck equation, the Gibbs distribution takes the form of a
Fermi–Dirac distribution, coinciding with the relative fugacity distribution of GCE of walks
for β = 1. In the case of very strong noise, the stationary solution of the Fokker–Planck
equation converges to a uniform distribution over graph’s nodes, independently of the
network structure.

Our work contributes to the evolution theory of DCN by providing a statistical ground
for the “diversifying selection” mechanism featuring the loosely integrated nodes as the
most likely place for the future network developments fostered by random structural
changes in the network.

Author Contributions: Conceptualization, D.V. and C.S.S.; methodology, D.V.; software, D.V.; valida-
tion, D.V. and C.S.S.; formal analysis, D.V. and C.S.S.; investigation, D.V. and C.S.S.; resources, D.V.
and C.S.S.; writing—original draft preparation, D.V.; writing—review and editing, C.S.S.; visualiza-
tion, D.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Acknowledgments: The authors are grateful to their universities for the administrative and techni-
cal support.

Conflicts of Interest: The authors declare no conflict of interest.



Dynamics 2022, 2 268

Abbreviations
The following abbreviations are used in this manuscript:

CNT complex network theory
DCN dynamic complex networks
MCE microcanonical ensemble (of walks)
CNE canonical ensemble (of walks)
GCE grand canonical ensemble (of walks)
GSR graph spectral radius
GTE graph topological entropy
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