Spatial Cluster Analysis of the Social Determinants of Health and Fatal Crashes Involving US Geriatric and Non-Geriatric Road Users
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Outcome Variable
2.3. Predictor Variable
2.4. Control Variables
2.5. Stratification
2.6. Spatial Weight Matrix
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braveman, P.; Egerter, S.; Williams, D.R. The social determinants of health: Coming of age. Annu. Rev. Public Health 2011, 32, 381–398. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. Social Determinants of Health: Know What Affects Health. Available online: https://www.cdc.gov/about/priorities/why-is-addressing-sdoh-important.html (accessed on 9 July 2024).
- Healthy People. Social Determinants of Health. Available online: https://health.gov/healthypeople/priority-areas/social-determinants-health (accessed on 9 July 2024).
- Stajduhar, K.I.; Mollison, A.; Giesbrecht, M.; McNeil, R.; Pauly, B.; Reimer-Kirkham, S.; Dosani, N.; Wallace, B.; Showler, G.; Meagher, C.; et al. “Just too busy living in the moment and surviving”: Barriers to accessing health care for structurally vulnerable populations at end-of-life. BMC Palliat. Care 2019, 18, 11. [Google Scholar] [CrossRef]
- Bailey, V. Rural Hospitals Facing Risk of Closure Due to Financial Stress. Revcycle Intelligence. 5 May 2022. Available online: https://www.techtarget.com/revcyclemanagement/news/366600881/Rural-Hospitals-Facing-Risk-of-Closure-Due-to-Financial-Stress (accessed on 9 July 2024).
- Kaufman, B.G.; Thomas, S.R.; Randolph, R.K.; Perry, J.R.; Thompson, K.W.; Holmes, G.M.; Pink, G.H. The Rising Rate of Rural Hospital Closures. J. Rural. Health 2016, 32, 35–43. [Google Scholar] [CrossRef]
- Miller, K.E.M.; James, H.J.; Holmes, G.M.; Van Houtven, C.H. The effect of rural hospital closures on emergency medical service response and transport times. Health Serv. Res. 2020, 55, 288–300. [Google Scholar] [CrossRef]
- Glassman, B. Multidimensional Deprivation in the United States: 2017. In American Community Survey Reports; U.S. Census Bureau: Washington, DC, USA, 2019. Available online: https://www.census.gov/content/dam/Census/library/publications/2019/demo/acs-40.pdf (accessed on 9 July 2024).
- Flynn, A.; Vaughan, A.; Casper, M.; Glassman, B. Differences in Heart Disease Death Rates and Trends by County-Level Deprivation, 2010–2019. In American Community Survey Reports; U.S. Census Bureau: Washington, DC, USA, 2021. Available online: https://www.census.gov/content/dam/Census/library/working-papers/2021/demo/sehsd-wp2021-19.pdf (accessed on 9 July 2024).
- Glassman, B. Producing County-Level MDI Rates Using Public Use Data: 2010 to 2019. In American Community Survey Reports; U.S. Census Bureau: Washington, DC, USA, 2022. Available online: https://www.census.gov/content/dam/Census/library/working-papers/2022/demo/sehsd-wp2022-19.pdf (accessed on 9 July 2024).
- Dumbaugh, E.; Li, Y.; Saha, D.; Marshall, W. Why do lower-income areas experience worse road safety outcomes? Examining the role of the built environment in Orange County, Florida. Transp. Res. Interdiscip. Perspect. 2022, 16, 100696. [Google Scholar] [CrossRef]
- Morency, P.; Gauvin, L.; Plante, C.; Fournier, M.; Morency, C. Neighborhood social inequalities in road traffic injuries: The influence of traffic volume and road design. Am. J. Public Health 2012, 102, 1112–1119. [Google Scholar] [CrossRef]
- Saha, D.; Alluri, P.; Gan, A.; Wu, W. Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accid. Anal. Prev. 2018, 118, 166–177. [Google Scholar] [CrossRef]
- Sami, A.; Moafian, G.; Najafi, A.; Aghabeigi, M.R.; Yamini, N.; Heydari, S.T.; Lankarani, K.B. Educational level and age as contributing factors to road traffic accidents. Chin. J. Traumatol. 2013, 16, 281–285. [Google Scholar] [CrossRef]
- Zwerling, C.; Peek-Asa, C.; Whitten, P.S.; Choi, S.W.; Sprince, N.L.; Jones, M.P. Fatal motor vehicle crashes in rural and urban areas: Decomposing rates into contributing factors. Inj. Prev. 2005, 11, 24–28. [Google Scholar] [CrossRef]
- Adeyemi, O.J.; Paul, R.; Arif, A. An assessment of the rural-urban differences in the crash response time and county-level crash fatalities in the United States. J. Rural. Health 2021, 38, 999–1010. [Google Scholar] [CrossRef]
- Adeyemi, O.J.; Paul, R.; DiMaggio, C.; Delmelle, E.; Arif, A. The association of crash response times and deaths at the crash scene: A cross-sectional analysis using the 2019 National Emergency Medical Service Information System. J. Rural. Health 2022, 38, 1011–1024. [Google Scholar] [CrossRef]
- Byrne, J.P.; Mann, N.C.; Dai, M.; Mason, S.A.; Karanicolas, P.; Rizoli, S.; Nathens, A.B. Association Between Emergency Medical Service Response Time and Motor Vehicle Crash Mortality in the United States. JAMA Surg. 2019, 154, 286–293. [Google Scholar] [CrossRef]
- Adeyemi, O.; Paul, R.; Delmelle, E.; DiMaggio, C.; Arif, A. Road environment characteristics and fatal crash injury during the rush and non-rush hour periods in the U.S: Model testing and cluster analysis. Spat. Spatio-Temporal Epidemiol. 2023, 44, 100562. [Google Scholar] [CrossRef]
- Wu, B.; Wang, X.; Liu, T.; Dong, N.; Li, Y. Exploring Factors Contributing to Crash Injury Severity in the Rural-Urban Fringe of the Central City. J. Adv. Transp. 2021, 2021, 8453465. [Google Scholar] [CrossRef]
- Cunha-Diniz, F.; Taveira-Gomes, T.; Santos, A.; Teixeira, J.M.; Magalhães, T. Are There Any Differences in Road Traffic Injury Outcomes between Older and Younger Adults? Setting the Grounds for Posttraumatic Senior Personal Injury Assessment Guidelines. J. Clin. Med. 2023, 12, 2353. [Google Scholar] [CrossRef]
- Gopinath, B.; Harris, I.A.; Nicholas, M.; Casey, P.; Blyth, F.; Maher, C.G.; Cameron, I.D. A comparison of health outcomes in older versus younger adults following a road traffic crash injury: A cohort study. PLoS ONE 2015, 10, e0122732. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Older Adult Drivers. Available online: https://www.cdc.gov/older-adult-drivers/about/index.html (accessed on 9 July 2024).
- Adeyemi, O. An Assessment of the Knowledge, Attitude, and Practice of Phone Use While Driving and Crash Outcomes Among Drivers in Oyo State, Nigeria. Int. Res. Rev. 2022, 11, 25–44. [Google Scholar]
- Adeyemi, O. Alcohol- and Drug-Associated Injury Outcomes Among Older Adults Involved in Car Crashes. Innov. Aging 2021, 5, 127. [Google Scholar] [CrossRef]
- Saeednejad, M.; Sadeghian, F.; Fayaz, M.; Rafael, D.; Atlasi, R.; Kazemzadeh Houjaghan, A.; Abedi Kichi, R.; Asgardoon, M.H.; Zabihi Mahmoudabadi, H.; Salamati, Z.; et al. Association of Social Determinants of Health and Road Traffic Deaths: A Systematic Review. Bull. Emerg. Trauma 2020, 8, 211–217. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Fatality Analysis Reporting System Analytical User’s Manual 1975–2015; National Highway Traffic Safety Administration: Washington, DC, USA, 2016. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813556 (accessed on 9 July 2024).
- National Highway Traffic Safety Administration. Fatalities and Fatality Rates by State, 1994–2018—State: USA. Available online: https://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx (accessed on 9 July 2024).
- Alkire, S.; Foster, J. Counting and multidimensional poverty measurement. J. Public Econ. 2011, 95, 476–487. [Google Scholar] [CrossRef]
- United States Census Bureau. American Community Survey Data. Available online: https://www.census.gov/programs-surveys/acs/data.html (accessed on 9 July 2024).
- County Health Rankings and Roadmaps. Ranking Data & Documentation. Available online: https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation (accessed on 9 July 2024).
- University of Wisconsin Population Health Institute. 2020 County Health Rankings Key Findings Reports; County Health Ranking and Roadmaps: Madison, WI, USA, 2020; Available online: https://www.countyhealthrankings.org/reports/2020-county-health-rankings-key-findings-report (accessed on 9 July 2024).
- Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project. Available online: https://hcup-us.ahrq.gov/databases.jsp (accessed on 9 July 2024).
- Adeyemi, O.J.; Arif, A.A.; Paul, R. Exploring the relationship of rush hour period and fatal and non-fatal crash injuries in the U.S.: A systematic review and meta-analysis. Accid. Anal. Prev. 2021, 163, 106462. [Google Scholar] [CrossRef]
- Economic Research Services. Rural-Urban Commuting Area Codes; U.S. Department of Agriculture: Washington, DC, USA, 2019. Available online: https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ (accessed on 9 July 2024).
- Ke, W.; Cheng, H.P.; Yan, D.; Lin, C. The application of cluster analysis and inverse distance-weighted interpolation to appraising the water quality of Three Forks Lake. Procedia Environ. Sci. 2011, 10, 2511–2517. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Baumer, Y.; Baah, F.O.; Baez, A.S.; Farmer, N.; Mahlobo, C.T.; Pita, M.A.; Potharaju, K.A.; Tamura, K.; Wallen, G.R. Social Determinants of Cardiovascular Disease. Circ. Res. 2022, 130, 782–799. [Google Scholar] [CrossRef]
- Kimenai, D.M.; Pirondini, L.; Gregson, J.; Prieto, D.; Pocock, S.J.; Perel, P.; Hamilton, T.; Welsh, P.; Campbell, A.; Porteous, D.J.; et al. Socioeconomic Deprivation: An Important, Largely Unrecognized Risk Factor in Primary Prevention of Cardiovascular Disease. Circulation 2022, 146, 240–248. [Google Scholar] [CrossRef]
- Butler, A.M. Social Determinants of Health and Racial/Ethnic Disparities in Type 2 Diabetes in Youth. Curr. Diabetes Rep. 2017, 17, 60. [Google Scholar] [CrossRef]
- Walker, R.J.; Strom Williams, J.; Egede, L.E. Influence of Race, Ethnicity and Social Determinants of Health on Diabetes Outcomes. Am. J. Med. Sci. 2016, 351, 366–373. [Google Scholar] [CrossRef]
- Coughlin, S.S. Social determinants of breast cancer risk, stage, and survival. Breast Cancer Res. Treat. 2019, 177, 537–548. [Google Scholar] [CrossRef]
- Coughlin, S.S. Social determinants of colorectal cancer risk, stage, and survival: A systematic review. Int. J. Color. Dis. 2020, 35, 985–995. [Google Scholar] [CrossRef]
- Alegría, M.; NeMoyer, A.; Falgàs Bagué, I.; Wang, Y.; Alvarez, K. Social Determinants of Mental Health: Where We Are and Where We Need to Go. Curr. Psychiatry Rep. 2018, 20, 95. [Google Scholar] [CrossRef]
- Allen, J.; Balfour, R.; Bell, R.; Marmot, M. Social determinants of mental health. Int. Rev. Psychiatry 2014, 26, 392–407. [Google Scholar] [CrossRef]
- Salive, M.E. Multimorbidity in older adults. Epidemiol. Rev. 2013, 35, 75–83. [Google Scholar] [CrossRef]
- Divo, M.J.; Martinez, C.H.; Mannino, D.M. Ageing and the epidemiology of multimorbidity. Eur. Respir. J. 2014, 44, 1055–1068. [Google Scholar] [CrossRef]
- Shigemura, N.; Toyoda, Y. Elderly patients with multiple comorbidities: Insights from the bedside to the bench and programmatic directions for this new challenge in lung transplantation. Transpl. Int. 2020, 33, 347–355. [Google Scholar] [CrossRef]
- Davis, J.W.; Chung, R.; Juarez, D.T. Prevalence of comorbid conditions with aging among patients with diabetes and cardiovascular disease. Hawaii Med. J. 2011, 70, 209–213. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215980/ (accessed on 9 July 2024).
- Adeyemi, O.; Grudzen, C.; DiMaggio, C.; Wittman, I.; Velez-Rosborough, A.; Arcila-Mesa, M.; Cuthel, A.; Poracky, H.; Meyman, P.; Chodosh, J. Pre-Injury Frailty and Clinical Care Trajectory of Geriatric Trauma Patients: A Retrospective Cohort Analysis of A Large Level I US Trauma Center. medRxiv 2023. [Google Scholar] [CrossRef]
- Bandeen-Roche, K.; Seplaki, C.L.; Huang, J.; Buta, B.; Kalyani, R.R.; Varadhan, R.; Xue, Q.-L.; Walston, J.D.; Kasper, J.D. Frailty in Older Adults: A Nationally Representative Profile in the United States. J. Gerontol. Ser. A 2015, 70, 1427–1434. [Google Scholar] [CrossRef]
- Chen, X.; Mao, G.; Leng, S.X. Frailty syndrome: An overview. Clin. Interv. Aging 2014, 9, 433–441. [Google Scholar] [CrossRef]
- Curtis, E.; Romanowski, K.; Sen, S.; Hill, A.; Cocanour, C. Frailty score on admission predicts mortality and discharge disposition in elderly trauma patients over the age of 65 y. J. Surg. Res. 2018, 230, 13–19. [Google Scholar] [CrossRef]
- Fehlmann, C.A.; Nickel, C.H.; Cino, E.; Al-Najjar, Z.; Langlois, N.; Eagles, D. Frailty assessment in emergency medicine using the Clinical Frailty Scale: A scoping review. Intern. Emerg. Med. 2022, 17, 2407–2418. [Google Scholar] [CrossRef]
- Lin, H.S.; Watts, J.N.; Peel, N.M.; Hubbard, R.E. Frailty and post-operative outcomes in older surgical patients: A systematic review. BMC Geriatr. 2016, 16, 157. [Google Scholar] [CrossRef]
- Alshibani, A.; Alharbi, M.; Conroy, S. Under-triage of older trauma patients in prehospital care: A systematic review. Eur. Geriatr. Med. 2021, 12, 903–919. [Google Scholar] [CrossRef]
- Anantha, R.V.; Painter, M.D.; Diaz-Garelli, F.; Nunn, A.M.; Miller, P.R.; Chang, M.C.; Jason Hoth, J. Undertriage Despite Use of Geriatric-Specific Trauma Team Activation Guidelines: Who Are We Missing? Am. Surg. 2020, 87, 419–426. [Google Scholar] [CrossRef]
- Chang, D.C.; Bass, R.R.; Cornwell, E.E.; Mackenzie, E.J. Undertriage of elderly trauma patients to state-designated trauma centers. Arch. Surg. 2008, 143, 776–781; discussion 782. [Google Scholar] [CrossRef]
- Chu, I.; Vaca, F.; Stratton, S.; Chakravarthy, B.; Hoonpongsimanont, W.; Lotfipour, S. Geriatric Trauma Care: Challenges Facing Emergency Medical Services. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860422/pdf/cjem8_2p0051.pdf (accessed on 9 July 2024).
- Horst, M.A.; Morgan, M.E.; Vernon, T.M.; Bradburn, E.H.; Cook, A.D.; Shtayyeh, T.; D’Andrea, L.; Rogers, F.B. The geriatric trauma patient: A neglected individual in a mature trauma system. J. Trauma Acute Care Surg. 2020, 89, 192–198. [Google Scholar] [CrossRef]
- Dave, U.; Gosine, B.; Palaniappan, A. An Overview of Trauma Center Levels and Disparities in Rural Trauma Care. Reconstr. Rev. 2020, 10, 23–25. [Google Scholar] [CrossRef]
- Hsia, R.; Shen, Y.C. Possible geographical barriers to trauma center access for vulnerable patients in the United States: An analysis of urban and rural communities. Arch. Surg. 2011, 146, 46–52. [Google Scholar] [CrossRef]
- Newgard, C.D.; Fu, R.; Bulger, E.; Hedges, J.R.; Mann, N.C.; Wright, D.A.; Lehrfeld, D.P.; Shields, C.; Hoskins, G.; Warden, C.; et al. Evaluation of Rural vs Urban Trauma Patients Served by 9-1-1 Emergency Medical Services. JAMA Surg. 2017, 152, 11–18. [Google Scholar] [CrossRef]
- Adeyemi, O.J.; Paul, R.; DiMaggio, C.; Delmelle, E.; Arif, A. Rush Hour-Related Road Crashes: Assessing the Social and Environmental Determinants of Fatal and Non-Fatal Road Crash Events. Ph.D. Thesis, The University of North Carolina at Charlotte, Ann Arbor, MI, USA, 2021. Available online: https://ninercommons.charlotte.edu/islandora/object/etd%3A2929/datastream/PDF/download/citation.pdf (accessed on 9 July 2024).
- Li, G.; Brady, J.E.; Chen, Q. Drug use and fatal motor vehicle crashes: A case-control study. Accid. Anal. Prev. 2013, 60, 205–210. [Google Scholar] [CrossRef]
- Martin, J.-L.; Gadegbeku, B.; Wu, D.; Viallon, V.; Laumon, B. Cannabis, alcohol and fatal road accidents. PLoS ONE 2017, 12, e0187320. [Google Scholar] [CrossRef]
- Bergmark, R.W.; Gliklich, E.; Guo, R.; Gliklich, R.E. Texting while driving: The development and validation of the distracted driving survey and risk score among young adults. Inj. Epidemiol. 2016, 3, 7. [Google Scholar] [CrossRef]
- Boccardi, V.; Paolisso, G. Distracted driving and crash risk. N. Engl. J. Med. 2014, 370, 1565. [Google Scholar] [CrossRef]
- Coben, J.H.; Zhu, M. Keeping an eye on distracted driving. JAMA J. Am. Med. Assoc. 2013, 309, 877–878. [Google Scholar] [CrossRef]
- Foss, R.D.; Goodwin, A.H. Distracted driver behaviors and distracting conditions among adolescent drivers: Findings from a naturalistic driving study. J. Adolesc. Health 2014, 54, S50–S60. [Google Scholar] [CrossRef]
- Adeyemi, O.; Paul, R.; Arif, A. Spatial Cluster Analysis of Fatal Road Accidents From Non-Use of Seat Belts Among Older Drivers. Innov. Aging 2020, 4, 113–114. [Google Scholar] [CrossRef]
- Adeyemi, O.; Rajib, P.; Arif, A. Rush Hour Accidents: Assessing the Relationship between Road Environmental Determinants and County-Level Fatal Road Accidents Patterns in the United States. Available online: https://apha.confex.com/apha/2020/meetingapp.cgi/Paper/483798 (accessed on 9 July 2024).
- Center for Disease Control and Prevention. Motor Vehicle Prioritizing Interventions and Cost Calculator for States (MV PICCS). Available online: https://wisqars.cdc.gov/mvpiccs/ (accessed on 9 July 2024).
- Ecola, L.; Ringel, J.S.; Connor, K.; Powell, D.; Jackson, C.P.; Ng, P.; Miller, C. Costs and Effectiveness of Interventions to Reduce Motor Vehicle-Related Injuries and Deaths: Supplement to Tool Documentation. RAND Health Q. 2018, 8, 9. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183771/ (accessed on 9 July 2024).
- Mitra, S. Spatial Autocorrelation and Bayesian Spatial Statistical Method for Analyzing Intersections Prone to Injury Crashes. Transp. Res. Rec. 2009, 2136, 92–100. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Xue, F. A Review of Bayesian Spatiotemporal Models in Spatial Epidemiology. ISPRS Int. J. Geo-Inf. 2024, 13, 97. [Google Scholar] [CrossRef]
- Wheeler, M.W. An investigation of non-informative priors for Bayesian dose-response modeling. Regul. Toxicol. Pharmacol. 2023, 141, 105389. [Google Scholar] [CrossRef]
- van de Schoot, R.; Kaplan, D.; Denissen, J.; Asendorpf, J.B.; Neyer, F.J.; van Aken, M.A.G. A gentle introduction to Bayesian analysis: Applications to developmental research. Child Dev. 2014, 85, 842–860. [Google Scholar] [CrossRef]
- Alam, M.S.; Tabassum, N.J. Spatial pattern identification and crash severity analysis of road traffic crash hot spots in Ohio. Heliyon 2023, 9, e16303. [Google Scholar] [CrossRef]
- Liu, J.; Das, S.; Zhan, F.B.; Khan, M.N. Spatial analysis of geographical disparities in pedestrian safety. Transp. Policy 2024, 156, 164–181. [Google Scholar] [CrossRef]
- Hu, W.; Dong, Q.; Huang, B. Correlations between road crash mortality rate and distance to trauma centers. J. Transp. Health 2017, 6, 50–59. [Google Scholar] [CrossRef]
- Wiratama, B.S.; Chen, P.L.; Chao, C.J.; Wang, M.H.; Saleh, W.; Lin, H.A.; Pai, C.W. Effect of Distance to Trauma Centre, Trauma Centre Level, and Trauma Centre Region on Fatal Injuries among Motorcyclists in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 2998. [Google Scholar] [CrossRef]
- Jarman, M.P.; Castillo, R.C.; Carlini, A.R.; Kodadek, L.M.; Haider, A.H.J.S. Rural risk: Geographic disparities in trauma mortality. Surgery 2016, 160, 1551–1559. [Google Scholar] [CrossRef]
- Brown, J.B.; Rosengart, M.R.; Billiar, T.R.; Peitzman, A.B.; Sperry, J.L. Distance matters: Effect of geographic trauma system resource organization on fatal motor vehicle collisions. J. Trauma Acute Care Surg. 2017, 83, 111–118. [Google Scholar] [CrossRef]
- Jarman, M.P.; Curriero, F.C.; Haut, E.R.; Pollack Porter, K.; Castillo, R.C. Associations of Distance to Trauma Care, Community Income, and Neighborhood Median Age With Rates of Injury Mortality. JAMA Surg. 2018, 153, 535–543. [Google Scholar] [CrossRef]
Variable | All (N = 3108) | Rural + Small Towns (n = 627 (20.2%)) | Micropolitan–Urban (n = 1321 (42.5%)) | Metropolitan–Urban (n = 1160 (37.3%)) | p-Value |
---|---|---|---|---|---|
Multidimensional Deprivation Index | |||||
MDI Rate (Median (Q1, Q3)) | 13.0 (9.4, 18.1) | 13.4 (9.7, 19.0) | 14.9 (10.8, 19.3) | 11.4 (8.1, 15.5) | <0.001 ## |
Deprivation Index (n (%)) | |||||
Very Highly Deprived | 283 (9.1) | 125 (11.4) | 109 (11.8) | 49 (4.5) | <0.001 ### |
Highly Deprived | 806 (25.9) | 290 (26.5) | 302 (32.6) | 214 (19.7) | |
Average-to-Low Deprived | 2019 (65.0) | 681 (62.1) | 516 (55.7) | 822 (75.8) | |
Fatal Crash Measures | |||||
Fatal Counts (Geriatric) (Median (Q1, Q3)) | 3.0 (1.0, 6.0) | 1.0 (0.0, 2.0) | 3.0 (1.0, 5.0) | 6.0 (3.0, 11.0) | <0.001 ## |
Fatal Counts (Non-Geriatric) (Median (Q1, Q3)) | 11.0 (5.0, 23.0) | 5.0 (2.0, 8.0) | 13.0 (7.0, 20.0) | 25.0 (11.0, 50.0) | <0.001 ## |
Fatal Counts (All Ages) (Median (Q1, Q3)) | 14.0 (6.0, 28.0) | 6.0 (3.0, 11.0) | 16.0 (9.0, 25.0) | 31.0 (15.0, 62.0) | <0.001 ## |
Case Fatality Rate (Geriatric) (Mean (SD)) | 9.1 (8.8) | 10.3 (12.3) | 8.8 (6.8) | 8.2 (5.7) | <0.001 # |
Case Fatality Rate (Non-Geriatric) (Mean (SD)) | 35.6 (1.0) | 38.8 (19.6) | 35.1 (11.5) | 32.9 (10.5) | <0.001 # |
Case Fatality Rate (All Ages) (Mean (SD)) | 44.7 (15.1) | 49.1 (19.0) | 43.9 (12.6) | 41.1 (11.2) | <0.001 # |
SMR (Geriatric) (Median (Q1, Q3)) | 1.3 (0.6, 2.5) | 1.7 (0.0, 3.5) | 1.5 (0.9, 2.5) | 1.1 (0.6, 1.7) | <0.001 ## |
SMR (Non-Geriatric) (Median (Q1, Q3)) | 1.6 (0.9, 2.7) | 2.3 (1.3, 3.7) | 1.8 (1.2, 2.6) | 1.1 (0.7, 1.7) | <0.001 ## |
SMR (All Ages) (Median (Q1, Q3)) | 1.6 (1.0, 2.7) | 2.3 (1.4, 3.6) | 1.8 (1.2, 2.6) | 1.1 (0.7, 1.7) | <0.001 ## |
Sociodemographic Characteristics | |||||
Male Proportion (Mean (SD)) | 50.1 (2.2) | 50.6 (2.6) | 50.1 (2.2) | 49.5 (1.6) | <0.001 # |
Black Proportion (Median (Q1, Q3)) | 2.6 (0.9, 11.1) | 1.0 (0.6, 3.5) | 2.8 (1.1, 11.4) | 6.4 (1.9, 15.8) | <0.001 ## |
Hispanic Proportion (Median (Q1, Q3)) | 4.5 (2.5, 10.2) | 3.5 (2.1, 7.3) | 4.4 (2.5, 10.6) | 5.8 (3.1, 12.1) | <0.001 ## |
Poverty Proportion (Mean (SD)) | 14.5 (5.8) | 15.6 (6.3) | 15.8 (5.6) | 12.2 (4.7) | <0.001 # |
Bachelor’s Degree Proportion (Median (Q1, Q3)) | 19.6 (15.3, 26.0) | 18.1 (14.3, 22.2) | 17.5 (14.3, 22.1) | 25.2 (18.7, 33.5) | <0.001 ## |
Excessive Alcohol Intake Proportion (Mean (SD)) | 0.2 (0.1) | 0.2 (0.1) | 0.2 (0.1) | 0.2 (0.1) | <0.001 # |
ED Utilization Rate (Mean (SD)) | 5.6 (1.1) | 5.5 (1.3) | 6.0 (1.0) | 5.4 (0.9) | <0.001 # |
Crash Event Characteristics | |||||
Night Fatal Crash Proportion (Mean (SD)) | 24.8 (17.3) | 21.5 (21.7) | 24.5 (14.4) | 28.4 (13.6) | <0.001 # |
Rush Hour Fatal Event Proportion (Mean (SD)) | 43.3 (20.9) | 43.0 (28.2) | 44.5 (16.8) | 42.7 (14.2) | 0.112 |
Alcohol Screening Proportion (Mean (SD)) | 43.3 (20.2) | 46.1 (25.2) | 42.7 (17.5) | 40.9 (16.2) | <0.001 # |
Drug Screening Proportion (Mean (SD)) | 38.7 (22.9) | 38.7 (26.9) | 38.8 (21.3) | 38.8 (19.7) | 0.995 |
ID | Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | MDI Rate | ||||||||||||||
2 | Male Proportion | −0.03 | |||||||||||||
3 | Black Proportion | 0.49 ** | −0.14 ** | ||||||||||||
4 | Hispanic Proportion | 0.21 ** | 0.15 ** | −0.09 ** | |||||||||||
5 | Poverty Proportion | 0.72 ** | 0.09 ** | 0.48 ** | 0.07 ** | ||||||||||
6 | Bachelor’s Degree Prop. | −0.38 ** | −0.19 ** | −0.08 ** | −0.01 | −0.48 ** | |||||||||
7 | Night Fatal Crash Prop. | 0.07 ** | −0.04 * | 0.16 ** | 0.11 ** | 0.07 ** | 0.06 ** | ||||||||
8 | Rush Hour Fatal Crash | 0.01 | 0.01 | −0.06 ** | −0.01 | 0.00 | −0.05 ** | −0.48 ** | |||||||
9 | Excessive Alcohol Intake | −0.48 ** | 0.17 ** | −0.36 ** | 0.00 | −0.54 ** | 0.43 ** | 0.00 | −0.02 | ||||||
10 | Alcohol Screening Prop. | −0.13 ** | 0.06 ** | −0.15 ** | −0.20 ** | −0.03 ** | 0.01 | 0.01 | 0.00 | 0.10 ** | |||||
11 | Drug Screening Proportion | −0.11 ** | 0.06 ** | −0.14 ** | −0.12 ** | −0.02 | 0.04 * | 0.02 | 0.01 | 0.11 ** | 0.75 ** | ||||
12 | ED Utilization Rate | 0.38 ** | −0.03 | 0.33 ** | 0.01 | 0.46 ** | −0.42 ** | 0.05 ** | 0.03 | −0.25 ** | −0.06 ** | 0.00 | |||
13 | Rurality/Urbanity | 0.14 ** | 0.21 ** | −0.15 ** | −0.06 ** | 0.24 ** | −0.36 ** | −0.15 ** | 0.04 * | −0.17 ** | 0.06 ** | −0.03 | 0.03 | ||
14 | Geriatric CFR | −0.06 ** | 0.04 * | −0.07 ** | −0.08 ** | −0.03 | −0.06 ** | −0.16 ** | 0.02 | −0.01 | 0.06 ** | 0.07 ** | −0.03 | 0.10 ** |
Equation | |||
Categories | Models | DIC | WAIC |
Geriatric Road Users | Poisson | 12,773.08 | 12,797.04 |
Negative Binomial | 13,078.22 | 13,097.60 | |
Zero-inflated Poisson | 12,799.53 | 12,837.25 | |
Zero-inflated Negative Binomial | 13,099.47 | 13,141.36 | |
Non-Geriatric Road Users | Poisson | 18,272.93 | 18,148.86 |
Negative Binomial | 18,862.41 | 18,670.81 | |
Zero-inflated Poisson | 18,306.93 | 18,226.43 | |
Zero-inflated Negative Binomial | 18,791.44 | 18,766.62 | |
All Road Users | Poisson | 19,123.49 | 18,972.55 |
Negative Binomial | 19,596.30 | 19,490.90 | |
Zero-inflated Poisson | 19,126.44 | 18,972.53 | |
Zero-inflated Negative Binomial | 19,418.82 | 19,319.98 |
Variables | Geriatric Road Users | Non-Geriatric Road Users | All Age Groups |
---|---|---|---|
Incidence Rate Ratio (95% CrI) | Incidence Rate Ratio (95% CrI) | Incidence Rate Ratio (95% CrI) | |
MDI Rate (Median (Q1, Q3)) | 1.01 (1.01–1.02) | 1.01 (1.01–1.02) | 1.01 (1.01–1.01) |
Deprivation Index (n (%)) | |||
Very Highly Deprived | 1.34 (1.17–1.52) | 1.35 (1.20–1.50) | 1.33 (1.20–1.48) |
Highly Deprived | 1.21 (1.13–1.30) | 1.26 (1.18–1.34) | 1.25 (1.17–1.32) |
Average-to-Low Deprived | Ref. | Ref. | Ref. |
Sociodemographic Characteristics | |||
Male Proportion | 1.07 (1.06–1.09) | 1.05 (1.04–1.06) | 1.05 (1.04–1.06) |
Black Proportion | 0.99 (0.99–0.99) | 0.99 (0.99–1.00) | 0.99 (0.99–1.00) |
Hispanic Proportion | 0.99 (0.99–0.99) | 0.99 (0.98–0.99) | 0.99 (0.99–0.99) |
Poverty Proportion | 1.03 (1.02–1.03) | 1.03 (1.02–1.03) | 1.02 (1.02–1.03) |
Bachelor’s Degree Proportion | 0.97 (0.97–0.97) | 0.96 (0.96–0.97) | 0.96 (0.96–0.97) |
Excessive Alcohol Intake Prop. | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) |
ED Utilization Rate | 1.10 (1.07–1.14) | 1.10 (1.07–1.13) | 1.09 (1.06–1.11) |
Rural + Small Towns | 1.81 (1.67–1.96) | 2.06 (1.94–2.20) | 1.97 (1.86–2.10) |
Micropolitan–Urban | 1.41 (1.32–1.50) | 1.52 (1.45–1.60) | 1.47 (1.40–1.54) |
Metropolitan–Urban | Ref. | Ref. | Ref. |
Crash Event Characteristics | |||
Night Fatal Crash Proportion | 0.99 (0.99–0.99) | 1.00 (0.99–1.00) | 0.99 (0.99–1.00) |
Rush Hour Fatal Event Prop. | 1.00 (1.00–1.01) | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) |
Alcohol Screening Proportion | 0.99 (0.99–1.00) | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) |
Drug Screening Proportion | 0.99 (0.99–1.00) | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) |
County Metrics (Coefficients) | |||
County: Random Component | 11.93 (8.11–18.99) | 7.58 (6.67–9.70) | 9.15 (7.13–11.71) |
County: Spatial Component | 1.65 (1.27–2.07) | 1.40 (1.14–1.69) | 1.43 (1.18–1.71) |
Road Users | Variable | All Areas (95% CrI) | Rural + Small Towns (95% CrI) | Non-Metropolitan Urban (95% CrI) | Metropolitan Urban (95% CrI) |
---|---|---|---|---|---|
Geriatric Road Users (65+ years) | Deprivation Index | ||||
Very Highly Deprived | 1.23 (1.10–1.38) | 1.46 (1.16–1.83) | 1.44 (1.21–1.71) | 1.17 (0.98–1.41) | |
Highly Deprived | 1.15 (1.08–1.24) | 1.28 (1.09–1.49) | 1.26 (1.13–1.42) | 1.19 (1.09–1.31) | |
Average-to-Low Deprived | Ref. | Ref. | Ref. | Ref. | |
Non-Geriatric Road Users | Deprivation Index | ||||
Very Highly Deprived | 1.20 (1.08–1.32) | 1.20 (0.97–1.47) | 1.28 (1.10–1.48) | 1.25 (1.05–1.48) | |
Highly Deprived | 1.19 (1.12–1.26) | 1.13 (0.99–1.29) | 1.15 (1.05–1.27) | 1.34 (1.23–1.47) | |
Average-to-Low Deprived | Ref. | ||||
All Age Groups | Deprivation Index | ||||
Very Highly Deprived | 1.20 (1.09–1.32) | 1.22 (1.01–1.48) | 1.29 (1.12–1.48) | 1.23 (1.04–1.45) | |
Highly Deprived | 1.18 (1.12–1.25) | 1.15 (1.02–1.30) | 1.16 (1.06–1.27) | 1.32 (1.21–1.44) | |
Average-to-Low Deprived | Ref. | Ref. | Ref. | Ref. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyemi, O.; DiMaggio, C.; Grudzen, C.; Konda, S.; Rogers, E.; Blecker, S.; Rizzo, J.; Chodosh, J. Spatial Cluster Analysis of the Social Determinants of Health and Fatal Crashes Involving US Geriatric and Non-Geriatric Road Users. Trauma Care 2024, 4, 266-281. https://doi.org/10.3390/traumacare4040023
Adeyemi O, DiMaggio C, Grudzen C, Konda S, Rogers E, Blecker S, Rizzo J, Chodosh J. Spatial Cluster Analysis of the Social Determinants of Health and Fatal Crashes Involving US Geriatric and Non-Geriatric Road Users. Trauma Care. 2024; 4(4):266-281. https://doi.org/10.3390/traumacare4040023
Chicago/Turabian StyleAdeyemi, Oluwaseun, Charles DiMaggio, Corita Grudzen, Sanjit Konda, Erin Rogers, Saul Blecker, JohnRoss Rizzo, and Joshua Chodosh. 2024. "Spatial Cluster Analysis of the Social Determinants of Health and Fatal Crashes Involving US Geriatric and Non-Geriatric Road Users" Trauma Care 4, no. 4: 266-281. https://doi.org/10.3390/traumacare4040023
APA StyleAdeyemi, O., DiMaggio, C., Grudzen, C., Konda, S., Rogers, E., Blecker, S., Rizzo, J., & Chodosh, J. (2024). Spatial Cluster Analysis of the Social Determinants of Health and Fatal Crashes Involving US Geriatric and Non-Geriatric Road Users. Trauma Care, 4(4), 266-281. https://doi.org/10.3390/traumacare4040023