A Review of Tibial Shaft Fracture Fixation Methods
Abstract
:1. Introduction
2. Intramedullary Nail
2.1. Indications
2.2. Techniques and Outcomes
2.3. Complications
3. Minimally Invasive Plating
3.1. Indications
3.2. Techniques and Outcomes
3.3. Complications
4. External Fixation
4.1. Indications
4.2. Techniques and Outcomes
4.3. Complications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larsen, P.; Elsoe, R.; Hansen, S.H.; Graven-Nielsen, T.; Laessoe, U.; Rasmussen, S. Incidence and epidemiology of tibial shaft fractures. Injury 2015, 46, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Court-Brown, C.M.; Caesar, B. Epidemiology of adult fractures: A review. Injury 2006, 37, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Laurila, J.; Huttunen, T.T.; Kannus, P.; Kääriäinen, M.; Mattila, V.M. Tibial shaft fractures in Finland between 1997 and 2014. Injury 2019, 50, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Gaebler, C.; Berger, U.; Schandelmaier, P.; Greitbauer, M.; Schauwecker, H.H.; Applegate, B.; Zych, G.; Vécsei, V. Rates and odds ratios for complications in closed and open tibial fractures treated with unreamed, small diameter tibial nails: A multicenter analysis of 467 cases. J. Orthop. Trauma 2001, 15, 415–423. [Google Scholar] [CrossRef]
- Melvin, S.J.; Dombroski, D.G.; Torbert, J.T.; Kovach, S.J.; Esterhai, J.L.; Mehta, S. Open tibial shaft fractures: I. Evaluation and initial wound management. J. Am. Acad. Orthop. Surg. 2010, 18, 10–19. [Google Scholar] [CrossRef]
- Zelle, B.A.; Boni, G. Safe surgical technique: Intramedullary nail fixation of tibial shaft fractures. Patient Saf. Surg. 2015, 9, 40. [Google Scholar] [CrossRef]
- Duan, X.; Al-Qwbani, M.; Zeng, Y.; Zhang, W.; Xiang, Z. Intramedullary nailing for tibial shaft fractures in adults. Cochrane Database Syst. Rev. 2012, 1, CD008241. [Google Scholar] [CrossRef]
- Bong, M.R.; Kummer, F.J.; Koval, K.J.; Egol, K.A. Intramedullary nailing of the lower extremity: Biomechanics and biology. J. Am. Acad. Orthop. Surg. 2007, 15, 97–106. [Google Scholar] [CrossRef]
- Bhanushali, A.; Kovoor, J.G.; Stretton, B.; Kieu, J.T.; Bright, R.A.; Hewitt, J.N.; Ovenden, C.D.; Gupta, A.K.; Afzal, M.Z.; Edwards, S.; et al. Outcomes of early versus delayed weight-bearing with intramedullary nailing of tibial shaft fractures: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. Off. Publ. Eur. Trauma Soc. 2022, 48, 3521–3527. [Google Scholar] [CrossRef]
- Cereijo, C.; Attum, B.; Rodriguez-Buitrago, A.; Jahangir, A.A.; Obremskey, W. Intramedullary Nail Fixation of Tibial Shaft Fractures. JBJS Essent. Surg. Tech. 2018, 8, e24. [Google Scholar] [CrossRef]
- Bekos, A.; Sioutis, S.; Kostroglou, A.; Saranteas, T.; Mavrogenis, A.F. The history of intramedullary nailing. Int. Orthop. 2021, 45, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Appelmann, P.; Pairon, P.; Mehler, D.; Rommens, P.M. The Retrograde Tibial Nail: Presentation and biomechanical evaluation of a new concept in the treatment of distal tibia fractures. Injury 2014, 45, S81–S86. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Han, W.; Jia, H. Suprapatellar versus infrapatellar intramedullary nailing for tibal shaft fractures. Medicine 2018, 97, e10917. [Google Scholar] [CrossRef] [PubMed]
- Stinner, D.J.; Mir, H. Techniques for Intramedullary Nailing of Proximal Tibia Fractures. Orthop. Clin. N. Am. 2014, 45, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zhou, J.; Zhang, Y.; Mei, G.; Jin, D. A Meta-analysis of Reamed Versus Unreamed Intramedullary Nailing for the Treatment of Closed Tibial Fractures. Orthopedics 2014, 37, e332–e338. [Google Scholar] [CrossRef]
- Shao, Y.; Zou, H.; Chen, S.; Shan, J. Meta-analysis of reamed versus unreamed intramedullary nailing for open tibial fractures. J. Orthop. Surg. Res. 2014, 9, 74. [Google Scholar] [CrossRef]
- Court-Brown, C.M. Reamed intramedullary tibial nailing: An overview and analysis of 1106 cases. J. Orthop. Trauma 2004, 18, 96–101. [Google Scholar] [CrossRef]
- Turley, L.; Barry, I.; Sheehan, E. Frequency of complications in intramedullary nailing of open tibial shaft fractures: A systematic review. EFORT Open Rev. 2023, 8, 90–99. [Google Scholar] [CrossRef]
- Makridis, K.G.; Tosounidis, T.; Giannoudis, P.V. Management of infection after intramedullary nailing of long bone fractures: Treatment protocols and outcomes. Open Orthop. J. 2013, 7, 219–226. [Google Scholar] [CrossRef]
- Shih, K.-S.; Hsu, C.-C.; Hsu, T.-P. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: A finite element study. J. Trauma Acute Care Surg. 2012, 72, E46–E53. [Google Scholar] [CrossRef]
- Vaughn, J.; Gotha, H.; Cohen, E.; Fantry, A.J.; Feller, R.J.; Van Meter, J.; Hayda, R.; Born, C.T. Nail Dynamization for Delayed Union and Nonunion in Femur and Tibia Fractures. Orthopedics 2016, 39, e1117–e1123. [Google Scholar] [CrossRef]
- Hendrickx, L.A.M.; Virgin, J.; Bekerom, M.P.J.v.D.; Doornberg, J.N.; Kerkhoffs, G.M.M.J.; Jaarsma, R.L. Complications and subsequent surgery after intra-medullary nailing for tibial shaft fractures: Review of 8110 patients. Injury 2020, 51, 1647–1654. [Google Scholar] [CrossRef]
- Pihlajamäki, H.K.; Salminen, S.T.; Böstman, O.M. The treatment of nonunions following intramedullary nailing of femoral shaft fractures. J. Orthop. Trauma 2002, 16, 394–402. [Google Scholar] [CrossRef]
- Wu, C.C.; Shih, C.H. Effect of dynamization of a static interlocking nail on fracture healing. Can. J. Surg. 1993, 36, 302–306. [Google Scholar]
- Litrenta, J.; Tornetta, P.; Vallier, H.; Firoozabadi, R.; Leighton, R.; Egol, K.; Kruppa, C.; Jones, C.B.; Collinge, C.; Bhandari, M.; et al. Dynamizations and Exchanges: Success Rates and Indications. J. Orthop. Trauma 2015, 29, 569–573. [Google Scholar] [CrossRef]
- Bleeker, N.J.; Reininga, I.H.F.; van de Wall, B.J.M.P.M.; Hendrickx, L.A.M.; Beeres, F.J.P.; Duis, K.T.; Doornberg, J.N.; Jaarsma, R.L.M.P.F.; Kerkhoffs, G.M.M.J.; Ijpma, F.F.A. Difference in Pain, Complication Rates, and Clinical Outcomes After Suprapatellar Versus Infrapatellar Nailing for Tibia Fractures? A Systematic Review of 1447 Patients. J. Orthop. Trauma 2021, 35, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.C.; Fleming, J.J. Minimally Invasive Plate Osteosynthesis for Distal Tibia Fractures. Clin. Podiatr. Med. Surg. 2018, 35, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Katı, Y.A.; Öken, F.; Yıldırım, A.; Köse, Ö.; Ünal, M. May minimally invasive plate osteosynthesis be an alternative to intramedullary nailing in selected spiral oblique and spiral wedge tibial shaft fractures? Jt. Dis. Relat. Surg. 2020, 31, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.-H.; Yan, S.-G.; Cai, X.-Z.; Shi, M.-M.; Lin, T. Intramedullary nailing versus plating for extra-articular distal tibial metaphyseal fracture: A systematic review and meta-analysis. Injury 2014, 45, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Song, J.-K.; Rho, J.Y.; Lee, J.; Choi, J.; Choi, S. Minimally invasive plate osteosynthesis (MIPO) for mid-shaft fracture of the tibia (AO/OTA classification 42): A retrospective study. Ann. Med. Surg. 2020, 60, 408–412. [Google Scholar] [CrossRef]
- Wajnsztejn, A.; Pires, R.E.S.; dos Santos, A.L.G.; Labronici, P.J.; Fernandes, H.J.A.; Ferretti, M. Minimally invasive posteromedial percutaneous plate osteosynthesis for diaphyseal tibial fractures: Technique description. Injury 2017, 48 (Suppl. S4), S6–S9. [Google Scholar] [CrossRef] [PubMed]
- Dhakar, A. Minimally Invasive Plate Osteosynthesis with Locking Plates for Distal Tibia Fractures. J. Clin. Diagn. Res. 2016, 10, RC01–RC04. [Google Scholar] [CrossRef]
- Song, X.; Huang, X.; Yakufu, M.; Yan, B.; Feng, C. Minimally invasive plate osteosynthesis or conventional intramedullary nailing for distal tibial fractures. Medicine 2020, 99, e21779. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, S.; Chakravarthy, J.; Cooper, J. Minimally invasive locking plate osteosynthesis for fractures of the distal tibia—Results in 20 patients. Injury 2006, 37, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.W.; Leung, F.; Chan, C.F.; Chow, S.P. Wound complication of minimally invasive plate osteosynthesis in distal tibia fractures. Int. Orthop. 2008, 32, 697–703. [Google Scholar] [CrossRef]
- Guo, J.J.; Tang, N.; Yang, H.L.; Tang, T.S.; Maredza, M.; Petrou, S.; Dritsaki, M.; Achten, J.; Griffin, J.; Lamb, S.E.; et al. A prospective, randomised trial comparing closed intramedullary nailing with percutaneous plating in the treatment of distal metaphyseal fractures of the tibia. J. Bone Jt. Surg. Br. 2010, 92, 984–988. [Google Scholar] [CrossRef]
- Fang, J.-H.; Wu, Y.-S.; Guo, X.-S.; Sun, L.-J. Comparison of 3 Minimally Invasive Methods for Distal Tibia Fractures. Orthopedics 2016, 39, e627–e633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, B.; Wang, Q.; Shang, H. Minimally Invasive Percutaneous Plate Osteosynthesis technique combined with locking compression plates guided by C-Arm X-Ray machine in treatment of tibial metaphyseal fractures: Curative effect and postoperative complications. Pak. J. Med. Sci. 2022, 38, 505–510. [Google Scholar] [CrossRef]
- Tian, R.; Zheng, F.; Zhao, W.; Zhang, Y.; Yuan, J.; Zhang, B.; Li, L. Prevalence and influencing factors of nonunion in patients with tibial fracture: Systematic review and meta-analysis. J. Orthop. Surg. Res. 2020, 15, 377. [Google Scholar] [CrossRef]
- Kariya, A.; Jain, P.; Patond, K.; Mundra, A. Outcome and complications of distal tibia fractures treated with intramedullary nails versus minimally invasive plate osteosynthesis and the role of fibula fixation. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1487–1498. [Google Scholar] [CrossRef]
- Radaideh, A.; Alrawashdeh, M.; Khateeb, A.; Obeidat, O.; Tabar, M.; Essa, S.; Alkhatatba, M.; Albayati, M.; Albashaireh, M. Outcomes of Treating Tibial Shaft Fractures Using Intramedullary Nailing (IMN) versus Minimally Invasive Percutaneous Plate Osteosynthesis (MIPPO). Med. Arch. 2022, 76, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Beytemür, O.; Barış, A.; Albay, C.; Yüksel, S.; Çağlar, S.; Alagöz, E. Comparison of intramedullary nailing and minimal invasive plate osteosynthesis in the treatment of simple intra-articular fractures of the distal tibia (AO-OTA type 43 C1-C2). Acta Orthop. Traumatol. Turc. 2017, 51, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Polat, A.; Kose, O.; Canbora, K.; Yanık, S.; Guler, F. Intramedullary nailing versus minimally invasive plate osteosynthesis for distal extra-articular tibial fractures: A prospective randomized clinical trial. J. Orthop. Sci. 2015, 20, 695–701. [Google Scholar] [CrossRef]
- Shen, J.; Xu, J.; Tang, M.-J.; Luo, C.-F.; Zhang, C.-Q. Extra-articular distal tibia facture (AO-43A): A retrospective study comparing modified MIPPO with IMN. Injury 2016, 47, 2352–2359. [Google Scholar] [CrossRef]
- Sun, L.-J.; Wu, Z.-P.; Guo, X.-S.; Chen, H. Management of distal third tibial fractures: Comparison of combined internal and external fixation with minimally invasive percutaneous plate osteosynthesis. Int. Orthop. 2014, 38, 2349–2355. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Crossman, P.T.; Loizou, C.L. Plate versus nail for distal tibial fractures: A systematic review and meta-analysis. J. Orthop. Trauma 2014, 28, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Lidder, S.; Masterson, S.; Grechenig, C.; Clement, H.; Gänsslen, A.; Grechenig, S. The risk of neurovascular injury in minimally invasive plate osteosynthesis (MIPO) when using a distal tibia anterolateral plate: A cadaver study. Acta Chir. Orthop. Traumatol. Cechoslov. 2014, 81, 313–316. [Google Scholar] [CrossRef]
- Pichler, W.; Grechenig, W.; Tesch, N.P.; Weinberg, A.M.; Heidari, N.; Clement, H. The risk of iatrogenic injury to the deep peroneal nerve in minimally invasive osteosynthesis of the tibia with the less invasive stabilisation system: A cadaver study. J. Bone Jt. Surg. Br. 2009, 91, 385–387. [Google Scholar] [CrossRef]
- Bible, J.E.; Mir, H.R. External Fixation: Principles and Applications. J. Am. Acad. Orthop. Surg. 2015, 23, 683–690. [Google Scholar] [CrossRef]
- Milenkovic, S.; Mitkovic, M.; Mitkovic, M. External fixation of segmental tibial shaft fractures. Eur. J. Trauma Emerg. Surg. 2020, 46, 1123–1127. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Liu, K.; Cai, F.; Zhang, X.; Li, H.; Zhang, T.; Yusufu, A. Staged correction trajectory with hexapod external fixator for the satisfactory reduction of long bone shaft fracture. BMC Musculoskelet. Disord. 2022, 23, 224. [Google Scholar] [CrossRef]
- Has, B.; Jovanovic, S.; Wertheimer, B.; Mikolašević, I.; Grdic, P. External fixation as a primary and definitive treatment of open limb fractures. Injury 1995, 26, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Elbatrawy, Y.; Thabet, A.M.; Zayed, M.; Capitani, D. Taylor spatial frame fixation in Patients with multiple traumatic injuries: Study of 57 long-bone fractures. J. Orthop. Trauma 2013, 27, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Blachut, P.A.; Meek, R.N.; O’brien, P.J. External fixation and delayed intramedullary nailing of open fractures of the tibial shaft. A sequential protocol. J. Bone Jt. Surg. Am. 1990, 72, 729–735. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Yushan, M.; Liu, Z.; Zhang, T.; Ma, H.; Ma, C.; Yusufu, A. Management of high-energy tibial shaft fractures using the hexapod circular external fixator. BMC Surg. 2021, 21 (Suppl. S1), 95. [Google Scholar] [CrossRef]
- Atif, M.; Mohib, Y.; Hasan, O.; Rashid, H. In the cost-conscious era: Ilizarov circular frame or uniplanar external fixator for management of complex open tibia shaft fracture, retrospective cohort study from a level-1 trauma center. J. Pak. Med. Assoc. 2020, 70, S20–S23. [Google Scholar]
- Gasser, B.; Boman, B.; Wyder, D.; Schneider, E. Stiffness Characteristics of the circular ilizarov device as opposed to conventional external fixators. J. Biomech. Eng. 1990, 112, 15–21. [Google Scholar] [CrossRef]
- Claes, L.; Eckert-Hübner, K.; Augat, P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop. Res. 2002, 20, 1099–1105. [Google Scholar] [CrossRef]
- Hao, Z.-C.; Xia, Y.; Xia, D.-M.; Zhang, Y.-T.; Xu, S.-G. Treatment of open tibial diaphyseal fractures by external fixation combined with limited internal fixation versus simple external fixation: A retrospective cohort study. BMC Musculoskelet. Disord. 2019, 20, 311. [Google Scholar] [CrossRef]
- Moroni, A.; Faldini, C.; Pegreffi, F.; Giannini, S. Fixation strength of tapered versus bicylindrical hydroxyapatite-coated external fixation pins: An animal study. J. Biomed. Mater. Res. 2002, 63, 61–64. [Google Scholar] [CrossRef]
- Bayrak, A.; Polat, Ö.; Ursavaş, H.T.; Gözügül, K.; Öztürk, V.; Duramaz, A. Which external fixation method is better for the treatment of tibial shaft fractures due to gunshot injury? Orthop. Traumatol. Surg. Res. 2022, 108, 102948. [Google Scholar] [CrossRef] [PubMed]
- Barnard, A.-C.; Birkholtz, F.; Glatt, V.; Tetsworth, K.; Naude, J.J.; Manjra, M.A.; Hohmann, E. Functional Outcomes and Quality of Life Following Complex Tibial Fractures Treated with Circular External Fixation: A Comparison between Proximal, Midshaft, and Distal Tibial Fractures. Strateg. Trauma Limb Reconstr. 2021, 16, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Seide, K.; Wolnack, J.; Weinrich, N.; Jürgens, C. Theory and software of the hexapod external fixator. Biomed. Tech. 2002, 47, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Massobrio, M.; Mora, R. (Eds.) Hexapod External Fixator Systems: Principles and Current Practice in Orthopaedic Surgery; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Henderson, D.J.; Barron, E.; Hadland, Y.; Sharma, H.K. Functional outcomes after tibial shaft fractures treated using the Taylor spatial frame. J. Orthop. Trauma 2015, 29, e54–e59. [Google Scholar] [CrossRef] [PubMed]
- Fadel, M.; Hosny, G. The Taylor spatial frame for deformity correction in the lower limbs. Int. Orthop. 2005, 29, 125–129. [Google Scholar] [CrossRef]
- Cinthuja, P.; Wijesinghe, P.C.I.; Silva, P. Use of external fixators in developing countries: A short socioeconomic analysis. Cost Eff. Resour. Alloc. 2022, 20, 14. [Google Scholar] [CrossRef]
- Cunningham, J.L.; Evans, M.; Harris, J.D.; Kenwright, J. The Measurement of Stiffness of Fractures Treated with External Fixation. Eng. Med. 1987, 16, 229–232. [Google Scholar] [CrossRef]
- Della Rocca, G.J.; Crist, B.D. External Fixation Versus Conversion to Intramedullary Nailing for Definitive Management of Closed Fractures of the Femoral and Tibial Shaft. J. Am. Acad. Orthop. Surg. 2006, 14, S131–S135. [Google Scholar] [CrossRef]
- Bhandari, M.; Zlowodzki, M.; Tornetta, P.; Schmidt, A.; Templeman, D.C. Intramedullary Nailing Following External Fixation in Femoral and Tibial Shaft Fractures. J. Orthop. Trauma 2005, 19, 140–144. [Google Scholar] [CrossRef]
- Camathias, C.; Valderrabano, V.; Oberli, H. Routine pin tract care in external fixation is unnecessary: A randomised, prospective, blinded controlled study. Injury 2012, 43, 1969–1973. [Google Scholar] [CrossRef]
- Foote, C.J.; Guyatt, G.H.; Vignesh, N.K.; Mundi, R.; Chaudhry, H.; Heels-Ansdell, D.; Thabane, L.; Tornetta, P.; Bhandari, M. Which Surgical Treatment for Open Tibial Shaft Fractures Results in the Fewest Reoperations? A Network Meta-analysis. Clin. Orthop. Relat. Res. 2015, 473, 2179–2192. [Google Scholar] [CrossRef] [PubMed]
- Swart, E.; Lasceski, C.; Latario, L.; Jo, J.; Nguyen, U.-S.D.T. Modern treatment of tibial shaft fractures: Is there a role today for closed treatment? Injury 2021, 52, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamburini, L.; Zeng, F.; Neumann, D.; Jackson, C.; Mancini, M.; Block, A.; Patel, S.; Wellington, I.; Stroh, D. A Review of Tibial Shaft Fracture Fixation Methods. Trauma Care 2023, 3, 202-211. https://doi.org/10.3390/traumacare3030019
Tamburini L, Zeng F, Neumann D, Jackson C, Mancini M, Block A, Patel S, Wellington I, Stroh D. A Review of Tibial Shaft Fracture Fixation Methods. Trauma Care. 2023; 3(3):202-211. https://doi.org/10.3390/traumacare3030019
Chicago/Turabian StyleTamburini, Lisa, Francine Zeng, Dillon Neumann, Casey Jackson, Michael Mancini, Andrew Block, Seema Patel, Ian Wellington, and David Stroh. 2023. "A Review of Tibial Shaft Fracture Fixation Methods" Trauma Care 3, no. 3: 202-211. https://doi.org/10.3390/traumacare3030019