The Use of Biologic and Targeted Synthetic Disease-Modifying Drugs in the Treatment of Psoriatic Arthritis
Abstract
:1. Introduction
2. Pathogenesis
3. Treatment Approach
4. Disease Manifestation and Treatment Selection
- Treat-to-Target Approach
- Multispecialty Coordination
- Comorbidities
- ○
- Common comorbidities include cardiovascular disease, obesity, and mental health disorders (anxiety, depression), which may influence treatment choices.
- ○
- Cardiovascular risk should be assessed for all patients, and JAKi should be used cautiously in those with cardiovascular risk factors [48].
- ○
- Weight loss is advised for obese patients, as it improves PsA outcomes [49].
- ○
- Special attention is needed for patients with anxiety and depression, as these conditions can impact medication choice. Some drugs, like apremilast and brodalumab (for PsO), should be avoided in those with severe anxiety or depression due to potential suicide risks [50].
- Other considerations
- Adjunctive therapies
- Different clinical domains of psoriatic arthritis respond variably to bDMARDs and tsDMARDs [53].
- Treatment should be aimed at reaching remission or low disease activity.
- NSAIDs may be used to relieve musculoskeletal signs and symptoms; local injections of glucocorticoids may be considered as adjunctive therapy.
- In patients with polyarthritis, or those with monoarthritis/oligoarthritis and poor prognostic factors (structural damage, elevated acute-phase reactants, dactylitis, or nail involvement), a csDMARD should be initiated rapidly, with methotrexate preferred in those with clinically relevant skin involvement.
- In patients with peripheral arthritis and an inadequate response to at least one csDMARD, therapy with a bDMARD should be commenced.
- In patients with peripheral arthritis and an inadequate response to at least one bDMARD, or when a bDMARD is not appropriate, a JAKi may be considered, taking safety considerations into account.
- In patients with mild disease and an inadequate response to at least one csDMARD, in whom neither a bDMARD nor a JAKi is appropriate, a PDE4i may be considered.
- In patients with unequivocal enthesitis and an insufficient response to NSAIDs or local glucocorticoid injections, therapy with a bDMARD should be considered.
- In patients with clinically relevant axial disease with an insufficient response to NSAIDs, therapy with a TNFi, IL-17i, or JAKi should be considered.
- Treatment choice may be dictated by extra-articular manifestations: relevant skin involvement—IL-17i, IL-23i, IL-12/23i; uveitis—monoclonal antibody TNFi; IBD—monoclonal antibody TNFi, IL12/23i, IL-23i, JAKi.
- In patients with an inadequate response or intolerance to a bDMARD or JAKi, switching to another bDMARD or JAKi should be considered, including one switch within a class.
- In patients with sustained remission, tapering of DMARDs may be considered.
5. Conventional Synthetic DMARDs (csDMARDs)
5.1. Methotrexate
5.2. Sulfasalazine
5.3. Leflunomide
5.4. Cyclosporine
6. Biologic DMARDs (bDMARDs)
6.1. TNF Inhibitors
6.1.1. TNFis Are Generally the Preferred First bDMARD Therapy for Moderate to Severe Disease
6.1.2. Etanercept
6.1.3. Adalimumab
6.1.4. Infliximab
6.1.5. Golimumab
6.1.6. Certolizumab Pegol
6.2. IL-17 Inhibitors
6.2.1. Secukinumab
6.2.2. Ixekizumab
6.2.3. Bimekizumab
6.2.4. Brodalumab
6.3. IL-12/23 and IL-23 Inhibitors
6.3.1. Ustekinumab
6.3.2. Guselkumab
6.3.3. Risankizumab
6.3.4. Tildrakizumab
6.4. Abatacept
6.5. Targeted Synthetic DMARDs (tsDMARDs)
6.5.1. Apremilast
6.5.2. Janus Kinase Inhibitors (JAKis)
6.5.3. Tofacitinib
6.5.4. Upadacitinib
6.6. Potential Treatments
6.6.1. Deucravacitinib
6.6.2. Filgotinib
6.6.3. Brepocitinib
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerschbaumer, A.; Fenzl, K.H.; Erlacher, L.; Aletaha, D. An overview of psoriatic arthritis—epidemiology, clinical features, pathophysiology and novel treatment targets. Wien. Klin. Wochenschr. 2016, 128, 791–795. [Google Scholar] [CrossRef]
- Gladman, D.D. Clinical Features and Diagnostic Considerations in Psoriatic Arthritis. Rheum. Dis. Clin. N. Am. 2015, 41, 569–579. [Google Scholar] [CrossRef]
- Moll, J.; Wright, V. Psoriatic arthritis. Semin. Arthritis Rheum. 1973, 3, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Ogdie, A.; Weiss, P. The Epidemiology of Psoriatic Arthritis. Rheum. Dis. Clin. N. Am. 2015, 41, 545–568. [Google Scholar] [CrossRef]
- Stolwijk, C.; van Onna, M.; Boonen, A.; van Tubergen, A. Global Prevalence of Spondyloarthritis: A Systematic Review and Meta-Regression Analysis. Arthritis Care Res. 2016, 68, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.; Haddad, A.; Rosen, C.F.; Lee, K.; Chandran, V.; Cook, R.; Gladman, D.D. The Incidence and Risk Factors for Psoriatic Arthritis in Patients with Psoriasis: A Prospective Cohort Study. Arthritis Rheumatol. 2015, 68, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Wilson, F.C.; Icen, M.; Crowson, C.S.; McEvoy, M.T.; Gabriel, S.E.; Kremers, H.M. Incidence and clinical predictors of psoriatic arthritis in patients with psoriasis: A population-based study. Arthritis Care Res. 2009, 61, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tillett, W.; Charlton, R.; Nightingale, A.; Snowball, J.; Green, A.; Smith, C.; Shaddick, G.; McHugh, N. Interval between onset of psoriasis and psoriatic arthritis comparing the UK Clinical Practice Research Datalink with a hospital-based cohort. Rheumatology 2017, 56, 2109–2113. [Google Scholar] [CrossRef]
- Poddubnyy, D.; Jadon, D.R.; Bosch, F.V.D.; Mease, P.J.; Gladman, D.D. Axial involvement in psoriatic arthritis: An update for rheumatologists. Semin. Arthritis Rheum. 2021, 51, 880–887. [Google Scholar] [CrossRef]
- Feld, J.; Ye, J.Y.; Chandran, V.; Inman, R.D.; Haroon, N.; Cook, R.; Gladman, D.D. Is axial psoriatic arthritis distinct from ankylosing spondylitis with and without concomitant psoriasis? Rheumatology 2019, 59, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Gladman, D.D.; Ye, J.Y.; Chandran, V.; Lee, K.-A.; Cook, R.J. Oligoarticular vs Polyarticular Psoriatic Arthritis: A Longitudinal Study Showing Similar Characteristics. J. Rheumatol. 2021, 48, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; Lories, R.J.U.; Tan, A.L.; Benjamin, M. The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 2007, 56, 2482–2491. [Google Scholar] [CrossRef]
- McGonagle, D.G.; McInnes, I.B.; Kirkham, B.W.; Sherlock, J.; Moots, R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: Recent advances and controversies. Ann. Rheum. Dis. 2019, 78, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Dubash, S.; Alabas, O.A.; Michelena, X.; Garcia-Montoya, L.; Wakefield, R.J.; Helliwell, P.S.; Emery, P.; McGonagle, D.G.; Tan, A.L.; Marzo-Ortega, H. Dactylitis is an indicator of a more severe phenotype independently associated with greater SJC, CRP, ultrasound synovitis and erosive damage in DMARD-naive early psoriatic arthritis. Ann. Rheum. Dis. 2021, 81, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Brockbank, J.E.; Stein, M.; Schentag, C.T.; Gladman, D. Dactylitis in psoriatic arthritis: A marker for disease severity? Ann. Rheum. Dis. 2005, 64, 188–190. [Google Scholar] [CrossRef]
- Jamnitski, A.; Symmons, D.; Peters, M.J.L.; Sattar, N.; MciInnes, I.; Nurmohamed, M.T. Cardiovascular comorbidities in patients with psoriatic arthritis: A systematic review. Ann. Rheum. Dis. 2012, 72, 211–216. [Google Scholar] [CrossRef]
- Eder, L.; Thavaneswaran, A.; Pereira, D.; Sussman, G.; Gladman, D.D. Prevalence of Monoclonal Gammopathy Among Patients with Psoriatic Arthritis. J. Rheumatol. 2012, 39, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, L.; Nannini, C.; Cassarà, E.; Kaloudi, O.; Susini, M.; Lenzetti, I.; Cantini, F. Frequency of iridocyclitis in patients with early psoriatic arthritis: A prospective, follow up study. Int. J. Rheum. Dis. 2012, 15, 414–418. [Google Scholar] [CrossRef]
- Exarchou, S.; Di Giuseppe, D.; Klingberg, E.; Sigurdardottir, V.; Wedrén, S.; Lindström, U.; Turesson, C.; Jacobsson, L.T.H.; Askling, J.; Wallman, J.K. Incidence of clinically diagnosed psoriatic arthritis in Sweden. J. Rheumatol. 2024, 50, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Wright, V.; Moll, J.M. Psoriatic arthritis. Bull. Rheum. Dis. 1971, 21, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Baraliakos, X.; Gao, S.; Chen, W.; Sweet, K.; Chakravarty, S.D.; Song, Q.; Shawi, M.; Rahman, P. Genetic and Molecular Distinctions Between Axial Psoriatic Arthritis and Radiographic Axial Spondyloarthritis: Post Hoc Analyses from Four Phase 3 Clinical Trials. Adv. Ther. 2023, 40, 2439–2456. [Google Scholar] [CrossRef]
- Jadon, D.R.; Stober, C.; Pennington, S.R.; FitzGerald, O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat. Rev. Rheumatol. 2020, 16, 609–627. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Gladman, D.; Helliwell, P.; Marchesoni, A.; Mease, P.; Mielants, H. Classification criteria for psoriatic arthritis: Development of new criteria from a large international study. Arthritis. Care Res. 2006, 54, 2665–2673. [Google Scholar] [CrossRef]
- Theander, E.; Husmark, T.; Alenius, G.-M.; Larsson, P.T.; Teleman, A.; Geijer, M.; Lindqvist, U.R.C. Early psoriatic arthritis: Short symptom duration, male gender and preserved physical functioning at presentation predict favourable outcome at 5-year follow-up. Results from the Swedish Early Psoriatic Arthritis Register (SwePsA). Ann. Rheum. Dis. 2013, 73, 407–413. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, O.; Haroon, M.; Giles, J.T.; Winchester, R. Concepts of pathogenesis in psoriatic arthritis: Genotype determines clinical phenotype. Arthritis Res. Ther. 2015, 17, 1–11. [Google Scholar] [CrossRef]
- Stober, C. Pathogenesis of psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101694. [Google Scholar] [CrossRef] [PubMed]
- Veale, D.J.; Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 2018, 391, 2273–2284. [Google Scholar] [CrossRef]
- Chandran, V.; Schentag, C.T.; Brockbank, J.E.; Pellett, F.J.; Shanmugarajah, S.; Toloza, S.M.A.; Rahman, P.; Gladman, D.D. Familial aggregation of psoriatic arthritis. Ann. Rheum. Dis. 2008, 68, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Feld, J.; Chandran, V.; Haroon, N.; Inman, R.; Gladman, D. Axial disease in psoriatic arthritis and ankylosing spondylitis: A critical comparison. Nat. Rev. Rheumatol. 2018, 14, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Jadon, D.R.; Sengupta, R.; Nightingale, A.; Lindsay, M.; Korendowych, E.; Robinson, G.; Jobling, A.; Shaddick, G.; Bi, J.; Winchester, R.; et al. Axial Disease in Psoriatic Arthritis study: Defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann. Rheum. Dis. 2016, 76, 701–707. [Google Scholar] [CrossRef]
- Nair, R.P.; Duffin, K.C.; Helms, C.; Ding, J.; Stuart, P.E.; Goldgar, D.; Gudjonsson, J.E.; Li, Y.; Tejasvi, T.; Feng, B.J.; et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 2009, 41, 199–204. [Google Scholar] [CrossRef]
- Thorleifsdottir, R.H.; Sigurdardottir, S.L.; Sigurgeirsson, B.; Olafsson, J.H.; Sigurdsson, M.I.; Petersen, H.; Arnadottir, S.; Gudjonsson, J.E.; Johnston, A.; Valdimarsson, H. Improvement of Psoriasis after Tonsillectomy Is Associated with a Decrease in the Frequency of Circulating T Cells That Recognize Streptococcal Determinants and Homologous Skin Determinants. J. Immunol. 2012, 188, 5160–5165. [Google Scholar] [CrossRef]
- Pattison, E.; Harrison, B.J.; Griffiths, C.E.M.; Silman, A.J.; Bruce, I.N. Environmental risk factors for the development of psoriatic arthritis: Results from a case-control study. Ann. Rheum. Dis. 2007, 67, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Lee, C.-H.; Chi, C.-C. Association of Psoriasis with Inflammatory Bowel Disease. JAMA Dermatol. 2018, 154, 1417–1423. [Google Scholar] [CrossRef]
- Rizzo, A.; Ferrante, A.; Guggino, G.; Ciccia, F. Gut inflammation in spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2017, 31, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Ritchlin, C.T.; Colbert, R.A.; Gladman, D.D. Psoriatic Arthritis. J. Med. 2017, 376, 957–970. [Google Scholar] [CrossRef]
- Bridgewood, C.; Watad, A.; Russell, T.; Palmer, T.M.; Marzo-Ortega, H.; Khan, A.; Millner, P.A.; Dunsmuir, R.; Rao, A.; Loughenbury, P.; et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 2019, 78, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.A.; Suzuki, E.; Maverakis, E.; Adamopoulos, I.E. Targeting IL-17 in psoriatic arthritis. Eur. J. Rheumatol. 2017, 4, 272–277. [Google Scholar] [CrossRef]
- McGonagle, D.; Ash, Z.; Dickie, L.; McDermott, M.; Aydin, S.Z. The early phase of psoriatic arthritis. Ann. Rheum. Dis. 2011, 70, i71–i76. [Google Scholar] [CrossRef]
- Menon, B.; Gullick, N.J.; Walter, G.J.; Rajasekhar, M.; Garrood, T.; Evans, H.G.; Taams, L.S.; Kirkham, B.W. Interleukin-17+CD8+ T Cells Are Enriched in the Joints of Patients with Psoriatic Arthritis and Correlate with Disease Activity and Joint Damage Progression. Arthritis Rheumatol. 2014, 66, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Celis, R.; Cuervo, A.; Ramírez, J.; Cañete, J.D. Psoriatic Synovitis: Singularity and Potential Clinical Implications. Front. Med. 2019, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.W.L.; Bowman, E.P.; McElwee, J.J.; Smyth, M.J.; Casanova, J.-L.; Cooper, A.M.; Cua, D.J. IL-12 and IL-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 2015, 21, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Yamanaka, K.; Yamamoto, O.; Honda, T. Pathophysiology of psoriasis: A review. J. Dermatol. 2021, 48, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.; Gallagher, P.; FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 2014, 74, 1045–1050. [Google Scholar] [CrossRef]
- Smolen, J.S.; Braun, J.; Dougados, M.; Emery, P.; FitzGerald, O.; Helliwell, P.; Kavanaugh, A.; Kvien, T.K.; Landewé, R.; Luger, T.; et al. Treating spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis, to target: Recommendations of an international task force. Ann. Rheum. Dis. 2013, 73, 6–16. [Google Scholar] [CrossRef]
- Coates, L.C.; Moverley, A.R.; McParland, L.; Brown, S.; Navarro-Coy, N.; O'Dwyer, J.L.; Meads, D.M.; Emery, P.; Conaghan, P.G.; Helliwell, P.S. Effect of tight control of inflammation in early psoriatic arthritis (TICOPA): A UK multicentre, open-label, randomised controlled trial. Lancet 2015, 386, 2489–2498. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, E.; Björkman, S.; Eliasson, B.; Larsson, I.; Bilberg, A. Weight loss is associated with sustained improvement of disease activity and cardiovascular risk factors in patients with psoriatic arthritis and obesity: A prospective intervention study with two years of follow-up. Arthritis Res. Ther. 2020, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, M.G.; Papp, K.A.; Marangell, L.B.; Koo, J.; Blauvelt, A.; Gooderham, M.; Wu, J.J.; Rastogi, S.; Harris, S.; Pillai, R.; et al. Psychiatric adverse events during treatment with brodalumab: Analysis of psoriasis clinical trials. J. Am. Acad. Dermatol. 2017, 78, 81–89.e5. [Google Scholar] [CrossRef]
- Cuchacovich, R.; Garcia-Valladares, I.; Espinoza, L.R. Combination Biologic Treatment of Refractory Psoriasis and Psoriatic Arthritis. J. Rheumatol. 2012, 39, 187–193. [Google Scholar] [CrossRef]
- FitzGerald, O.; Ogdie, A.; Chandran, V.; Coates, L.C.; Kavanaugh, A.; Tillett, W.; Leung, Y.Y.; Dewit, M.; Scher, J.U.; Mease, P.J. Psoriatic arthritis. Nat. Rev. Dis. Prim. 2021, 7, 1–17. [Google Scholar] [CrossRef]
- Leung, Y.; Kavanaugh, A.; Ritchlin, C.T. Expert Perspective: Management of the Psoriatic Arthritis Patient After Failure of One Tumor Necrosis Factor Inhibitor. Arthritis Rheumatol. 2023, 75, 1312–1324. [Google Scholar] [CrossRef] [PubMed]
- Gossec, L.; Kerschbaumer, A.; Ferreira, R.J.O.; Aletaha, D.; Baraliakos, X.; Bertheussen, H.; Boehncke, W.-H.; Esbensen, B.A.; McInnes, I.B.; McGonagle, D.; et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2023 update. Ann. Rheum. Dis. 2024, 83, 706–719. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, G.H.; Kowalczyk, A.; Taylor, H.; Ibrahim, F.; Packham, J.C.; McHugh, N.J.; Mulherin, D.M.; Kitas, G.D.; Chakravarty, K.; Tom, B.D.M.; et al. A randomized placebo-controlled trial of methotrexate in psoriatic arthritis. Rheumatology 2012, 51, 1368–1377. [Google Scholar] [CrossRef]
- Lindström, U.; di Giuseppe, D.; Exarchou, S.; Alenius, G.-M.; Olofsson, T.; Klingberg, E.; Jacobsson, L.; Askling, J.; Wallman, J.K. Methotrexate treatment in early psoriatic arthritis in comparison to rheumatoid arthritis: An observational nationwide study. RMD Open 2023, 9, e002883. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; Soriano, E.R.; Corp, N.; Bertheussen, H.; Duffin, K.C.; Campanholo, C.B.; Chau, J.; Eder, L.; Fernández-Ávila, D.G.; Garg, A.; et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): Updated treatment recommendations for psoriatic arthritis 2021. Nat. Rev. Rheumatol. 2022, 18, 465–479. [Google Scholar] [CrossRef]
- Coates, L.C.; Tillett, W.; D'Agostino, M.-A.; Rahman, P.; Behrens, F.; McDearmon-Blondell, E.L.; Bu, X.; Chen, L.; Kapoor, M.; Conaghan, P.G.; et al. Comparison between adalimumab introduction and methotrexate dose escalation in patients with inadequately controlled psoriatic arthritis (CONTROL): A randomised, open-label, two-part, phase 4 study. Lancet Rheumatol. 2022, 4, e262–e273. [Google Scholar] [CrossRef] [PubMed]
- Clegg, D.O.; Reda, D.J.; Mejias, E.; Cannon, G.W.; Weisman, M.H.; Taylor, T.; Budiman-Mak, E.; Blackburn, W.D.; Vasey, F.B.; Mahowald, M.L.; et al. Comparison of sulfasalazine and placebo in the treatment of psoriatic arthritis. A department of veterans affairs cooperative study. Arthritis Rheum. 1996, 39, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Kaltwasser, J.P.; Nash, P.; Gladman, D.; Rosen, C.F.; Behrens, F.; Jones, P.; Wollenhaupt, J.; Falk, F.G.; Mease, P. Efficacy and safety of leflunomide in the treatment of psoriatic arthritis and psoriasis: A multinational, double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 2004, 50, 1939–1950. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Matteson, E.L.; Ellis, C.N.; Ho, V.C.; Tellner, D.C.; Voorhees, J.J.; McCune, W.J. Cyclosporine in the treatment of psoriatic arthritis. Arch. Dermatol. 1989, 125, 507–510. [Google Scholar] [CrossRef]
- Metyas, S.; Tomassian, C.; Messiah, R.; Gettas, T.; Chen, C.; Quismorio, A. Combination Therapy of Apremilast and Biologic Agent as a Safe Option of Psoriatic Arthritis and Psoriasis. Curr. Rheumatol. Rev. 2019, 15, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.; Thavaneswaran, A.; Chandran, V.; Gladman, D.D. Tumour necrosis factor α blockers are more effective than methotrexate in the inhibition of radiographic joint damage progression among patients with psoriatic arthritis. Ann. Rheum. Dis. 2013, 73, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Lindström, U.; Di Giuseppe, D.; Delcoigne, B.; Glintborg, B.; Möller, B.; Ciurea, A.; Pombo-Suarez, M.; Sanchez-Piedra, C.; Eklund, K.; Relas, H.; et al. Effectiveness and treatment retention of TNF inhibitors when used as monotherapy versus comedication with csDMARDs in 15 332 patients with psoriatic arthritis. Data from the EuroSpA collaboration. Ann. Rheum. Dis. 2021, 80, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Goffe, B.S.; Metz, J.; VanderStoep, A.; Finck, B.; Burge, D.J. Etanercept in the treatment of psoriatic arthritis and psoriasis: A randomised trial. Lancet 2000, 356, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Kivitz, A.J.; Burch, F.X.; Siegel, E.L.; Cohen, S.B.; Ory, P.; Salonen, D.; Rubenstein, J.; Sharp, J.T.; Tsuji, W. Etanercept treatment of psoriatic arthritis: Safety, efficacy, and effect on disease progression. Arthritis Rheum. 2004, 50, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Kivitz, A.J.; Burch, F.X.; Siegel, E.L.; Cohen, S.B.; Ory, P.; Salonen, D.; Rubenstein, J.; Sharp, J.T.; Dunn, M.; et al. Continued inhibition of radiographic progression in patients with psoriatic arthritis following 2 years of treatment with etanercept. J. Rheumatol. 2006, 33, 712–721. [Google Scholar] [PubMed]
- Behrens, F.; Meier, L.; Prinz, J.C.; Jobst, J.; Lippe, R.; Löschmann, P.-A.; Lorenz, H.-M. Simultaneous Response in Several Domains in Patients with Psoriatic Disease Treated with Etanercept as Monotherapy or in Combination with Conventional Synthetic Disease-modifying Antirheumatic Drugs. J. Rheumatol. 2018, 45, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Combe, B.; Behrens, F.; McHugh, N.; Brock, F.; Kerkmann, U.; Kola, B.; Gallo, G. Comparison of Etanercept Monotherapy and Combination Therapy with Methotrexate in Psoriatic Arthritis: Results from 2 Clinical Trials. J. Rheumatol. 2016, 43, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Gladman, D.D.; Collier, D.H.; Ritchlin, C.T.; Helliwell, P.S.; Liu, L.; Kricorian, G.; Chung, J.B. Etanercept and Methotrexate as Monotherapy or in Combination for Psoriatic Arthritis: Primary Results from a Randomized, Controlled Phase III Trial. Arthritis Rheumatol. 2019, 71, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Gladman, D.D.; Ritchlin, C.T.; Ruderman, E.M.; Steinfeld, S.D.; Choy, E.H.; Sharp, J.T.; Ory, P.A.; Perdok, R.J.; Weinberg, M.A. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: Results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005, 52, 3279–3289. [Google Scholar] [CrossRef]
- Gladman, D.D.; Mease, P.J.; Ritchlin, C.T.; Choy, E.H.S.; Sharp, J.T.; Ory, P.A.; Perdok, R.J.; Sasso, E.H. Adalimumab for long-term treatment of psoriatic arthritis: Forty-eight week data from the adalimumab effectiveness in psoriatic arthritis trial. Arthritis Rheum. 2007, 56, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Ory, P.; Sharp, J.T.; Ritchlin, C.T.; Bosch, F.V.D.; Wellborne, F.; Birbara, C.; Thomson, G.T.D.; Perdok, R.J.; Medich, J.; et al. Adalimumab for long-term treatment of psoriatic arthritis: 2-year data from the Adalimumab Effectiveness in Psoriatic Arthritis Trial (ADEPT). Ann. Rheum. Dis. 2008, 68, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Antoni, C.E.; Kavanaugh, A.; Kirkham, B.; Tutuncu, Z.; Burmester, G.R.; Schneider, U.; Furst, D.E.; Molitor, J.; Keystone, E.; Gladman, D.; et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: Results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum. 2005, 52, 1227–1236. [Google Scholar] [CrossRef]
- Kavanaugh, A.; Krueger, G.G.; Beutler, A.; Guzzo, C.; Zhou, B.; Dooley, L.T.; Mease, P.J.; Gladman, D.D.; de Vlam, K.; Geusens, P.P.; et al. Infliximab maintains a high degree of clinical response in patients with active psoriatic arthritis through 1 year of treatment: Results from the IMPACT 2 trial. Ann. Rheum. Dis. 2006, 66, 498–505. [Google Scholar] [CrossRef]
- Antoni, C.; Krueger, G.G.; de Vlam, K.; Birbara, C.; Beutler, A.; Guzzo, C.; Zhou, B.; Dooley, L.T.; Kavanaugh, A. Infliximab improves signs and symptoms of psoriatic arthritis: Results of the IMPACT 2 trial. Ann. Rheum. Dis. 2005, 64, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; McInnes, I.; Mease, P.; Krueger, G.G.; Gladman, D.; Gomez-Reino, J.; Papp, K.; Zrubek, J.; Mudivarthy, S.; Mack, M.; et al. Golimumab, a new human tumor necrosis factor α antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis: Twenty-four–week efficacy and safety results of a randomized, placebo-controlled study. Arthritis Rheum. 2009, 60, 976–986. [Google Scholar] [CrossRef]
- Kavanaugh, A.; Husni, M.E.; Harrison, D.D.; Kim, L.; Lo, K.H.; Leu, J.H.; Hsia, E.C. Safety and Efficacy of Intravenous Golimumab in Patients with Active Psoriatic Arthritis. Arthritis Rheumatol. 2017, 69, 2151–2161. [Google Scholar] [CrossRef]
- Kavanaugh, A.; McInnes, I.B.; Mease, P.J.; Krueger, G.G.; Gladman, D.D.; van der Heijde, D.; Mudivarthy, S.; Xu, W.; Mack, M.; Xu, Z.; et al. Clinical efficacy, radiographic and safety findings through 2 years of golimumab treatment in patients with active psoriatic arthritis: Results from a long-term extension of the randomised, placebo-controlled GO-REVEAL study. Ann. Rheum. Dis. 2012, 72, 1777–1785. [Google Scholar] [CrossRef]
- Kavanaugh, A.; McInnes, I.B.; Mease, P.; Krueger, G.G.; Gladman, D.; van der Heijde, D.; Zhou, Y.; Lu, J.; Leu, J.H.; Goldstein, N.; et al. Clinical efficacy, radiographic and safety findings through 5 years of subcutaneous golimumab treatment in patients with active psoriatic arthritis: Results from a long-term extension of a randomised, placebo-controlled trial (the GO-REVEAL study). Ann. Rheum. Dis. 2014, 73, 1689–1694. [Google Scholar] [CrossRef]
- Mease, P.J.; Fleischmann, R.; Deodhar, A.A.; Wollenhaupt, J.; Khraishi, M.; Kielar, D.; Woltering, F.; Stach, C.; Hoepken, B.; Arledge, T.; et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann. Rheum. Dis. 2014, 73, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; McInnes, I.B.; Kirkham, B.; Kavanaugh, A.; Rahman, P.; van der Heijde, D.; Landewé, R.; Nash, P.; Pricop, L.; Yuan, J.; et al. Secukinumab Inhibition of Interleukin-17A in Patients with Psoriatic Arthritis. J. Med. 2015, 373, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Mease, P.J.; Reimold, A.M.; Tahir, H.; Rech, J.; Hall, S.; Geusens, P.; Wang, Z.; Pricop, L.; Mpofu, S.; et al. Secukinumab for Long-Term Treatment of Psoriatic Arthritis: A Two-Year Followup from a Phase III, Randomized, Double-Blind Placebo-Controlled Study. Arthritis Care Res. 2016, 69, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; McInnes, I.B.; Mease, P.J.; Hall, S.; Chinoy, H.; Kivitz, A.J.; Wang, Z.; Mpofu, S. Efficacy of Subcutaneous Secukinumab in Patients with Active Psoriatic Arthritis Stratified by Prior Tumor Necrosis Factor Inhibitor Use: Results from the Randomized Placebo-controlled FUTURE 2 Study. J. Rheumatol. 2016, 43, 1713–1717. [Google Scholar] [CrossRef]
- Mease, P.; van der Heijde, D.; Landewé, R.; Mpofu, S.; Rahman, P.; Tahir, H.; Singhal, A.; Boettcher, E.; Navarra, S.; Meiser, K.; et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: Primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann. Rheum. Dis. 2018, 77, 890–897. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.; Mease, P.J.; Landewé, R.B.M.; Rahman, P.; Tahir, H.; Singhal, A.; Boettcher, E.; Navarra, S.; Zhu, X.; Ligozio, G.; et al. Secukinumab provides sustained low rates of radiographic progression in psoriatic arthritis: 52-week results from a phase 3 study, FUTURE 5. Rheumatology 2020, 59, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Baraliakos, X.; Gossec, L.; Pournara, E.; Jeka, S.; Mera-Varela, A.; D'Angelo, S.; Schulz, B.; Rissler, M.; Nagar, K.; Perella, C.; et al. Secukinumab in patients with psoriatic arthritis and axial manifestations: Results from the double-blind, randomised, phase 3 MAXIMISE trial. Ann. Rheum. Dis. 2020, 80, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; Kishimoto, M.; Gottlieb, A.; Shuler, C.L.; Lin, C.-Y.; Lee, C.H.; Mease, P.J. Ixekizumab efficacy and safety with and without concomitant conventional disease-modifying antirheumatic drugs (cDMARDs) in biologic DMARD (bDMARD)-naïve patients with active psoriatic arthritis (PsA): Results from SPIRIT-P1. RMD Open 2017, 3, e000567. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; van der Heijde, D.; Ritchlin, C.T.; Okada, M.; Cuchacovich, R.S.; Shuler, C.L.; Lin, C.-Y.; Braun, D.K.; Lee, C.H.; Gladman, D.D. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: Results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 2016, 76, 79–87. [Google Scholar] [CrossRef]
- Van der Heijde, D.; Gladman, D.D.; Kishimoto, M.; Okada, M.; Rathmann, S.S.; Moriarty, S.R.; Shuler, C.L.; Carlier, H.; Benichou, O.; Mease, P.J. Efficacy and Safety of Ixekizumab in Patients with Active Psoriatic Arthritis: 52-week Results from a Phase III Study (SPIRIT-P1). J. Rheumatol. 2018, 45, 1608. [Google Scholar] [CrossRef]
- Mease, P.J.; Smolen, J.S.; Behrens, F.; Nash, P.; Leage, S.L.; Li, L.; Tahir, H.; Gooderham, M.; Krishnan, E.; Liu-Seifert, H.; et al. A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naïve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann. Rheum. Dis. 2019, 79, 123–131. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.; Gladman, D.D.; Kishimoto, M.; Okada, M.; Rathmann, S.S.; Moriarty, S.R.; Shuler, C.L.; Carlier, H.; Benichou, O.; Mease, P.J. Efficacy and Safety of Ixekizumab in Patients with Active Psoriatic Arthritis: 52-week Results from a Phase III Study (SPIRIT-P1). J. Rheumatol. 2017, 45, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Mease, P.; Tahir, H.; Schulze-Koops, H.; de la Torre, I.; Li, L.; Hojnik, M.; Sapin, C.; Okada, M.; Caporali, R.; et al. Multicentre, randomised, open-label, parallel-group study evaluating the efficacy and safety of ixekizumab versus adalimumab in patients with psoriatic arthritis naïve to biological disease-modifying antirheumatic drug: Final results by week 52. Ann. Rheum. Dis. 2020, 79, 1310–1319. [Google Scholar] [CrossRef]
- Blauvelt, A.; Leonardi, C.; Elewski, B.; Crowley, J.; Guenther, L.; Gooderham, M.; Langley, R.; Vender, R.; Pinter, A.; Griffiths, C.; et al. A head-to-head comparison of ixekizumab vs. guselkumab in patients with moderate-to-severe plaque psoriasis: 24-week efficacy and safety results from a randomized, double-blinded trial. Br. J. Dermatol. 2020, 184, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; Warren, R.B.; Lebwohl, M.; Gooderham, M.; Strober, B.; Langley, R.G.; Paul, C.; De Cuyper, D.; Vanvoorden, V.; Madden, C.; et al. Bimekizumab versus Secukinumab in Plaque Psoriasis. J. Med. 2021, 385, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Ritchlin, C.T.; Coates, L.C.; McInnes, I.B.; Mease, P.J.; Merola, J.F.; Tanaka, Y.; Asahina, A.; Gossec, L.; Gottlieb, A.B.; Warren, R.B.; et al. Bimekizumab treatment in biologic DMARD-naïve patients with active psoriatic arthritis: 52-week efficacy and safety results from the phase III, randomised, placebo-controlled, active reference BE OPTIMAL study. Ann. Rheum. Dis. 2023, 82, 1404–1414. [Google Scholar] [CrossRef]
- Merola, J.F.; Landewé, R.; McInnes, I.B.; Mease, P.J.; Ritchlin, C.T.; Tanaka, Y.; Asahina, A.; Behrens, F.; Gladman, D.D.; Gossec, L.; et al. Bimekizumab in patients with active psoriatic arthritis and previous inadequate response or intolerance to tumour necrosis factor-α inhibitors: A randomised, double-blind, placebo-controlled, phase 3 trial (BE COMPLETE). Lancet 2022, 401, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; McInnes, I.B.; Merola, J.F.; Warren, R.B.; Kavanaugh, A.; Gottlieb, A.B.; Gossec, L.; Assudani, D.; Bajracharya, R.; Coarse, J.; et al. Safety and Efficacy of Bimekizumab in Patients with Active Psoriatic Arthritis: Three-Year Results from a Phase IIb Randomized Controlled Trial and Its Open-Label Extension Study. Arthritis Rheumatol. 2022, 74, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.Z.; et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. J. Med. 2012, 366, 1181–1189. [Google Scholar] [CrossRef]
- Mease, P.J.; Genovese, M.C.; Greenwald, M.W.; Ritchlin, C.T.; Beaulieu, A.D.; Deodhar, A.; Newmark, R.; Feng, J.; Erondu, N.; Nirula, A. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 2014, 370, 2295–2306. [Google Scholar] [CrossRef]
- Mease, P.J.; Helliwell, P.S.; Hjuler, K.F.; Raymond, K.; McInnes, I. Brodalumab in psoriatic arthritis: Results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann. Rheum. Dis. 2020, 80, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Puig, L.; Gottlieb, A.B.; Ritchlin, C.; You, Y.; Li, S.; Song, M.; Randazzo, B.; Rahman, P.; McInnes, I.B. Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: Post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann. Rheum. Dis. 2016, 75, 1984–1988. [Google Scholar] [CrossRef] [PubMed]
- Helliwell, P.S.; Gladman, D.D.; Chakravarty, S.D.; Kafka, S.; Karyekar, C.S.; You, Y.; Campbell, K.; Sweet, K.; Kavanaugh, A.; Gensler, L.S. Effects of ustekinumab on spondylitis-associated endpoints in TNFi-naïve active psoriatic arthritis patients with physician-reported spondylitis: Pooled results from two phase 3, randomised, controlled trials. RMD Open 2020, 6, e001149. [Google Scholar] [CrossRef]
- Mease, P.J.; Helliwell, P.S.; Gladman, D.D.; Poddubnyy, D.; Baraliakos, X.; Chakravarty, S.D.; Kollmeier, A.P.; Hsia, E.C.; Xu, X.L.; Sheng, S.; et al. Efficacy of guselkumab on axial involvement in patients with active psoriatic arthritis and sacroiliitis: A post-hoc analysis of the phase 3 DISCOVER-1 and DISCOVER-2 studies. Lancet Rheumatol. 2021, 3, e715–e723. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Kavanaugh, A.; Gottlieb, A.B.; Puig, L.; Rahman, P.; Ritchlin, C.; Brodmerkel, C.; Li, S.; Wang, Y.; Mendelsohn, A.M.; et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 2013, 382, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Ritchlin, C.; Rahman, P.; Kavanaugh, A.; McInnes, I.B.; Puig, L.; Li, S.; Wang, Y.; Shen, Y.-K.; Doyle, M.K.; Mendelsohn, A.M.; et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann. Rheum. Dis. 2014, 73, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Ritchlin, C.; Rahman, P.; Puig, L.; Gottlieb, A.B.; Li, S.; Wang, Y.; Noonan, L.; Brodmerkel, C.; Song, M.; et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: Results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann. Rheum. Dis. 2014, 73, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, A.; Gottlieb, A.B.; Boehncke, W.-H.; Dong, B.; Wang, Y.; Zhuang, Y.; Barchuk, W.; Xu, X.L.; Hsia, E.C.; Aelion, J.; et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis: A randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2018, 391, 2213–2224. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, A.; Helliwell, P.S.; Boehncke, W.-H.; Kollmeier, A.P.; Hsia, E.C.; A Subramanian, R.; Xu, X.L.; Sheng, S.; Agarwal, P.; Zhou, B.; et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet 2020, 395, 1115–1125. [Google Scholar] [CrossRef]
- Mease, P.J.; Rahman, P.; Gottlieb, A.B.; Kollmeier, A.P.; Hsia, E.C.; Xu, X.L.; Sheng, S.; Agarwal, P.; Zhou, B.; Zhuang, Y.; et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet 2020, 395, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; Gossec, L.; Theander, E.; Bergmans, P.; Neuhold, M.; Karyekar, C.S.; Shawi, M.; Noël, W.; Schett, G.; McInnes, I.B. Efficacy and safety of guselkumab in patients with active psoriatic arthritis who are inadequate responders to tumour necrosis factor inhibitors: Results through one year of a phase IIIb, randomised, controlled study (COSMOS). Ann. Rheum. Dis. 2021, 81, 359–369. [Google Scholar] [CrossRef]
- McInnes, I.B.; Rahman, P.; Gottlieb, A.B.; Hsia, E.C.; Kollmeier, A.P.; Xu, X.L.; Jiang, Y.; Sheng, S.; Shawi, M.; Chakravarty, S.D.; et al. Long-Term Efficacy and Safety of Guselkumab, a Monoclonal Antibody Specific to the p19 Subunit of Interleukin-23, Through Two Years: Results From a Phase III, Randomized, Double-Blind, Placebo-Controlled Study Conducted in Biologic-Naive Patients with Active Psoriatic Arthritis. Arthritis Rheumatol. 2022, 74, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.E.; Keiserman, M.; Papp, K.; McCasland, L.; White, D.; Lu, W.; Wang, Z.; Soliman, A.M.; Eldred, A.; Barcomb, L.; et al. Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 1 trial. Ann. Rheum. Dis. 2021, 81, 225–231. [Google Scholar] [CrossRef]
- Kristensen, L.E.; Soliman, A.M.; Papp, K.; White, D.; Barcomb, L.; Lu, W.; Eldred, A.; Behrens, F. Risankizumab improved health-related quality of life, fatigue, pain and work productivity in psoriatic arthritis: Results of KEEPsAKE 1. Rheumatology 2022, 62, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Östör, A.; Bosch, F.V.D.; Papp, K.; Asnal, C.; Blanco, R.; Aelion, J.; Alperovich, G.; Lu, W.; Wang, Z.; Soliman, A.M.; et al. Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 2 trial. Ann. Rheum. Dis. 2021, 81, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; A Papp, K.; Blauvelt, A.; Tyring, S.K.; Sinclair, R.; Thaçi, D.; Nograles, K.; Mehta, A.; Cichanowitz, N.; Li, Q.; et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): Results from two randomised controlled, phase 3 trials. Lancet 2017, 390, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Chohan, S.; Fructuoso, F.J.G.; E Luggen, M.; Rahman, P.; Raychaudhuri, S.P.; Chou, R.C.; Mendelsohn, A.M.; Rozzo, S.J.; Gottlieb, A. Efficacy and safety of tildrakizumab in patients with active psoriatic arthritis: Results of a randomised, double-blind, placebo-controlled, multiple-dose, 52-week phase IIb study. Ann. Rheum. Dis. 2021, 80, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Gottlieb, A.B.; van der Heijde, D.; FitzGerald, O.; Johnsen, A.; Nys, M.; Banerjee, S.; Gladman, D.D. Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann. Rheum. Dis. 2017, 76, 1550–1558. [Google Scholar] [CrossRef]
- Kavanaugh, A.; Mease, P.J.; Gomez-Reino, J.J.; Adebajo, A.O.; Wollenhaupt, J.; Gladman, D.D.; Hochfeld, M.; Teng, L.L.; Schett, G.; Lespessailles, E.; et al. Longterm (52-week) Results of a Phase III Randomized, Controlled Trial of Apremilast in Patients with Psoriatic Arthritis. J. Rheumatol. 2015, 42, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Mease, P.J.; Gomez-Reino, J.J.; O Adebajo, A.; Wollenhaupt, J.; Gladman, D.D.; Lespessailles, E.; Hall, S.; Hochfeld, M.; Hu, C.; et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum. Dis. 2014, 73, 1020–1026. [Google Scholar] [CrossRef]
- Cutolo, M.; Myerson, G.E.; Fleischmann, R.M.; Lioté, F.; Díaz-González, F.; Bosch, F.V.D.; Marzo-Ortega, H.; Feist, E.; Shah, K.; Hu, C.; et al. A Phase III, Randomized, Controlled Trial of Apremilast in Patients with Psoriatic Arthritis: Results of the PALACE 2 Trial. J. Rheumatol. 2016, 43, 1724–1734. [Google Scholar] [CrossRef]
- Edwards, C.J.; Blanco, F.J.; Crowley, J.; Birbara, C.A.; Jaworski, J.; Aelion, J.; Stevens, R.M.; Vessey, A.; Zhan, X.; Bird, P. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with psoriatic arthritis and current skin involvement: A phase III, randomised, controlled trial (PALACE 3). Ann. Rheum. Dis. 2016, 75, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Nash, P.; Ohson, K.; Walsh, J.; Delev, N.; Nguyen, D.; Teng, L.; Gómez-Reino, J.J.; Aelion, J.A. Early and sustained efficacy with apremilast monotherapy in biological-naïve patients with psoriatic arthritis: A phase IIIB, randomised controlled trial (ACTIVE). Ann. Rheum. Dis. 2018, 77, 690–698. [Google Scholar] [CrossRef]
- Kawalec, P.; Holko, P.; Moćko, P.; Pilc, A. Comparative effectiveness of abatacept, apremilast, secukinumab and ustekinumab treatment of psoriatic arthritis: A systematic review and network meta-analysis. Rheumatol. Int. 2017, 38, 189–201. [Google Scholar] [CrossRef]
- Mease, P.J.; Hatemi, G.; Paris, M.; Cheng, S.; Maes, P.; Zhang, W.; Shi, R.; Flower, A.; Picard, H.; Gold, L.S. Apremilast Long-Term Safety Up to 5 Years from 15 Pooled Randomized, Placebo-Controlled Studies of Psoriasis, Psoriatic Arthritis, and Behçet’s Syndrome. Am. J. Clin. Dermatol. 2023, 24, 809–820. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Buch, M.H.; Dougados, M.; Bhatt, D.L.; Giles, J.T.; Ytterberg, S.R.; Koch, G.G.; Vranic, I.; Wu, J.; Wang, C.; et al. Risk of major adverse cardiovascular events with tofacitinib versus tumour necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: A post hoc analysis from ORAL Surveillance. Ann. Rheum. Dis. 2022, 82, 119–129. [Google Scholar] [CrossRef]
- Mease, P.; Hall, S.; FitzGerald, O.; van der Heijde, D.; Merola, J.F.; Avila-Zapata, F.; Cieślak, D.; Graham, D.; Wang, C.; Menon, S.; et al. Tofacitinib or Adalimumab versus Placebo for Psoriatic Arthritis. J. Med. 2017, 377, 1537–1550. [Google Scholar] [CrossRef]
- Gladman, D.; Rigby, W.; Azevedo, V.F.; Behrens, F.; Blanco, R.; Kaszuba, A.; Kudlacz, E.; Wang, C.; Menon, S.; Hendrikx, T.; et al. Tofacitinib for Psoriatic Arthritis in Patients with an Inadequate Response to TNF Inhibitors. J. Med. 2017, 377, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Anderson, J.K.; Magrey, M.; Merola, J.F.; Liu, Y.; Kishimoto, M.; Jeka, S.; Pacheco-Tena, C.; Wang, X.; Chen, L.; et al. Trial of Upadacitinib and Adalimumab for Psoriatic Arthritis. J. Med. 2021, 384, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Lertratanakul, A.; Anderson, J.K.; Papp, K.; Bosch, F.V.D.; Tsuji, S.; Dokoupilova, E.; Keiserman, M.; Wang, X.; Zhong, S.; et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann. Rheum. Dis. 2020, 80, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Strober, B.; Thaçi, D.; Sofen, H.; Kircik, L.; Gordon, K.B.; Foley, P.; Rich, P.; Paul, C.; Bagel, J.; Colston, E.; et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 Program for Evaluation of TYK2 inhibitor psoriasis second trial. J. Am. Acad. Dermatol. 2022, 88, 40–51. [Google Scholar] [CrossRef]
- Mease, P.J.; A Deodhar, A.; van der Heijde, D.; Behrens, F.; Kivitz, A.J.; Neal, J.; Kim, J.; Singhal, S.; Nowak, M.; Banerjee, S. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann. Rheum. Dis. 2022, 81, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, E.; Scriffignano, S.; de Vlam, K.; Ronga, M.; Perrotta, F.M.; Lories, R. Triple jump for the optimal management of psoriatic arthritis: Diet, sleep and exercise—A review. RMD Open 2023, 9, e003339. [Google Scholar] [CrossRef] [PubMed]
Class of Medication | Medications | Comments |
---|---|---|
Conventional DMARDs | ||
Oral small molecules | Methotrexate Sulfasalazine Cyclosporine Leflunomide | |
Biologic DMARDs (bDMARDs) | ||
TNFi Monoclonal antibody Receptor fusion protein Pegylated Fab’ | Adaimumab, Infliximab, Golimumab Etanercept Certolizumab pegol | FDA approved for PsA, PsO |
IL-17i IL-17Ai IL-17A/Fi | Secukinumab, Ixekizumab, Bimekizumab | FDA approved for PsA, PsO FDA approved for PsO and PsA |
IL-12/23i | Ustekinumab | FDA approved for PsA, PsO |
IL-23i Monoclonal antibody to p19 subunit of IL23 | Guselkumab Risankizumab | FDA approved for PsA, PsO |
CTLA-4i | Abatacept | FDA approved for PsA |
Targeted Synthetic DMARDs (tsDMARDs) | ||
PDE4i | Apremilast | FDA approved for PsA, PsO |
JAKi | Tofacitinib, Upadacitinib | FDA approved for PsA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Lau, A.; Brent, L.H. The Use of Biologic and Targeted Synthetic Disease-Modifying Drugs in the Treatment of Psoriatic Arthritis. Biologics 2025, 5, 1. https://doi.org/10.3390/biologics5010001
Ali R, Lau A, Brent LH. The Use of Biologic and Targeted Synthetic Disease-Modifying Drugs in the Treatment of Psoriatic Arthritis. Biologics. 2025; 5(1):1. https://doi.org/10.3390/biologics5010001
Chicago/Turabian StyleAli, Rafal, Arthur Lau, and Lawrence H. Brent. 2025. "The Use of Biologic and Targeted Synthetic Disease-Modifying Drugs in the Treatment of Psoriatic Arthritis" Biologics 5, no. 1: 1. https://doi.org/10.3390/biologics5010001
APA StyleAli, R., Lau, A., & Brent, L. H. (2025). The Use of Biologic and Targeted Synthetic Disease-Modifying Drugs in the Treatment of Psoriatic Arthritis. Biologics, 5(1), 1. https://doi.org/10.3390/biologics5010001