Optimization of a New Antihyperglycemic Formulation Using a Mixture of Linum usitatissimum L., Coriandrum sativum L., and Olea europaea var. sylvestris Flavonoids: A Mixture Design Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield of Extraction
2.2. Sub-Acute Toxicity
2.3. Antihyperglycemic Activity of the Formulation
2.3.1. Experiment Results
2.3.2. Establishment of Response Prediction Models
2.3.3. Effect of Mixtures and Validation of Their Interactions
2.3.4. Optimal Mixture Prediction
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Flavonoids Extracts
3.3. Animals
3.4. Sub-Acute Toxicity Studies
3.5. Mixture Design and Glucose Tolerance Test
3.5.1. Oral Glucose Tolerance Test
3.5.2. Mixture Design
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baena-Díez, J.M.; Peñafiel, J.; Subirana, I.; Ramos, R.; Elosua, R.; Marín-Ibañez, A.; Guembe, M.J.; Rigo, F.; Tormo-Díaz, M.J.; Moreno-Iribas, C.; et al. Risk of Cause-Specific Death in Individuals With Diabetes: A Competing Risks Analysis. Diabetes Care 2016, 39, 1987–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; Da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Da Fernandes, J.D.R.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Blas, E.; Kurup, A.S. Equity, Social Determinants, and Public Health Programmes; World Health Organization: Geneva, Switzerland, 2010; ISBN 978-92-4-156397-0. [Google Scholar]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mechchate, H.; Es-safi, I.; Zahra Jawhari, F.; Bari, A.; Grafov, A.; Bousta, D. Ethnobotanical Survey about the Management of Diabetes with Medicinal Plants Used by Diabetic Patient in Region of Fez-Meknes, Morocco. Ethnobot. Res. Appl. 2020, 19. [Google Scholar] [CrossRef] [Green Version]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; El Moussaoui, A.; Cerruti, P.; Avella, M.; Grafov, A.; Bousta, D. Marketing and Legal Status of Phytomedicines and Food Supplements in Morocco. J. Complementary Integr. Med. 2020, 18. [Google Scholar] [CrossRef]
- Wagner, H.; Ulrich-Merzenich, G. Synergy Research: Approaching a New Generation of Phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vuuren, S.; Viljoen, A. Plant-Based Antimicrobial Studies—Methods and Approaches to Study the Interaction between Natural Products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raskin, I.; Ripoll, C. Can an Apple a Day Keep the Doctor Away? Curr. Pharm. Des. 2004, 10, 3419–3429. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-safi, I.; Amaghnouje, A.; Boukhira, S.; Alotaibi, A.A.; Al-zharani, M.; Nasr, F.A.; Noman, O.M.; Conte, R.; Amal, E.H.E.Y.; et al. Antioxidant, Anti-Inflammatory and Antidiabetic Proprieties of LC-MS/MS Identified Polyphenols from Coriander Seeds. Molecules 2021, 26, 487. [Google Scholar] [CrossRef] [PubMed]
- Eidi, M.; Eidi, A.; Saeidi, A.; Molanaei, S.; Sadeghipour, A.; Bahar, M.; Bahar, K. Effect of Coriander Seed (Coriandrum Sativum L.) Ethanol Extract on Insulin Release from Pancreatic Beta Cells in Streptozotocin-Induced Diabetic Rats. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 404–406. [Google Scholar]
- Dhanapakiam, P.; Joseph, J.M.; Ramaswamy, V.; Moorthi, M.; Kumar, A.S. The Cholesterol Lowering Property of Coriander Seeds (Coriandrum Sativum): Mechanism of Action. J. Environ. Biol. 2007, 29, 53. [Google Scholar]
- Ghule, A.E.; Jadhav, S.S.; Bodhankar, S.L. Effect of Ethanolic Extract of Seeds of Linum Usitatissimum (Linn.) in Hyperglycaemia Associated ROS Production in PBMNCs and Pancreatic Tissue of Alloxan Induced Diabetic Rats. Asian Pac. J. Trop. Dis. 2012, 2, 405–410. [Google Scholar] [CrossRef]
- Bouzghaya, S.; Amri, M.; Homblé, F. Improvement of Diabetes Symptoms and Complications by an Aqueous Extract of Linum Usitatissimum (L.) Seeds in Alloxan-Induced Diabetic Mice. J. Med. Food 2020, 23, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Mechchate, H.; Es-Safi, I.; Bourhia, M.; Kyrylchuk, A.; El Moussaoui, A.; Conte, R.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves. Molecules 2020, 25, 5073. [Google Scholar] [CrossRef]
- Ahmad, M.; Akhtar, M.S.; Malik, T.; Gilani, A.H. Hypoglycaemic Action of the Flavonoid Fraction of Cuminum Nigrum Seeds. Phytother. Res. 2000, 14, 103–106. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Abotaleb, M.; Samuel, S.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. Cancers 2018, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, Flavones, Flavanones, and Human Health: Epidemiological Evidence. J. Med. Food 2005, 8, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Xu, B. Antidiabetic Properties of Dietary Flavonoids: A Cellular Mechanism Review. Nutr. Metab. 2015, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, N.; Chin, N.L. Simplex-Centroid Mixture Formulation for Optimised Composting of Kitchen Waste. Bioresour. Technol. 2010, 101, 8205–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechchate, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of Catechin, Epicatechin, and Rutin:Optimization of a Novel Complete Antidiabetic Formulation Using a Mixture Design Approach. J. Nutr. Biochem. 2020, 108520. [Google Scholar] [CrossRef]
- Qiu, S.-X.; Lu, Z.-Z.; Luyengi, L.; Lee, S.K.; Pezzuto, J.M.; Farnsworth, N.R.; Thompson, L.U.; Fong, H.H.S. Isolation and Characterization of Flaxseed (Linum Usitatissimum) Constituents. Pharm. Biol. 1999, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rajeshwari, C.U.; Andallu, B. Isolation and Simultaneous Detection of Flavonoids in the Methanolic and Ethanolic Extracts of Coriandrum Sativum L. Seeds by RP-HPLC. Pak. J. Food Sci. 2011, 21, 13–21. [Google Scholar]
- Le Tutour, B.; Guedon, D. Antioxidative Activities of Olea Europaea Leaves and Related Phenolic Compounds. Phytochemistry 1992, 31, 1173–1178. [Google Scholar] [CrossRef]
- Meirinhos, J.; Silva, B.M.; ValentÃo, P.; Seabra, R.M.; Pereira, J.A.; Dias, A.; Andrade, P.B.; Ferreres, F. Analysis and Quantification of Flavonoidic Compounds from Portuguese Olive (Olea Europaea L.) Leaf Cultivars. Nat. Prod. Res. 2005, 19, 189–195. [Google Scholar] [CrossRef]
- Haddad, P.; Eid, H. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017, 24, 355–364. [Google Scholar] [CrossRef]
- Yao, Z.; Gu, Y.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Xia, Y.; Bao, X.; Shi, H.; Sun, S.; et al. Estimated Daily Quercetin Intake and Association with the Prevalence of Type 2 Diabetes Mellitus in Chinese Adults. Eur. J. Nutr. 2019, 58, 819–830. [Google Scholar] [CrossRef]
- Hao, H.; Shao, Z.; Tang, D.; Lu, Q.; Chen, X.; Yin, X.; Wu, J.; Chen, H. Preventive Effects of Rutin on the Development of Experimental Diabetic Nephropathy in Rats. Life Sci. 2012, 91, 959–967. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D. Flavonol Kaempferol Improves Chronic Hyperglycemia-Impaired Pancreatic Beta-Cell Viability and Insulin Secretory Function. Eur. J. Pharmacol. 2011, 670, 325–332. [Google Scholar] [CrossRef]
- An, G.; Gallegos, J.; Morris, M.E. The Bioflavonoid Kaempferol Is an Abcg2 Substrate and Inhibits Abcg2-Mediated Quercetin Efflux. Drug Metab. Dispos. 2011, 39, 426–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorge, A.P.; Horst, H.; De Sousa, E.; Pizzolatti, M.G.; Silva, F.R.M.B. Insulinomimetic Effects of Kaempferitrin on Glycaemia and on 14C-Glucose Uptake in Rat Soleus Muscle. Chemico-Biol. Interact. 2004, 149, 89–96. [Google Scholar] [CrossRef]
- Zanatta, L.; Rosso, Â.; Folador, P.; Figueiredo, M.S.R.B.; Pizzolatti, M.G.; Leite, L.D.; Silva, F.R.M.B. Insulinomimetic Effect of Kaempferol 3-Neohesperidoside on the Rat Soleus Muscle. J. Nat. Prod. 2008, 71, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Alkhalidy, H.; Moore, W.; Wang, Y.; Luo, J.; McMillan, R.; Zhen, W.; Zhou, K.; Liu, D. The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production. Molecules 2018, 23, 2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauter, A.P.; Martins, A.; Borges, C.; Mota-Filipe, H.; Pinto, R.; Sepodes, B.; Justino, J. Antihyperglycaemic and Protective Effects of Flavonoids on Streptozotocin-Induced Diabetic Rats. Phytother. Res. 2010, 24, S133–S138. [Google Scholar] [CrossRef] [Green Version]
- Hossain, C.M.; Ghosh, M.K.; Satapathy, B.S.; Dey, N.S.; Mukherjee, B. Apigenin Causes Biochemical Modulation, GLUT4 and CD38 Alterations to Improve Diabetes and to Protect Damages of Some Vital Organs in Experimental Diabetes. Am. J. Pharmacol. Toxicol. 2014, 9, 39–52. [Google Scholar] [CrossRef]
- Wang, N.; Yi, W.J.; Tan, L.; Zhang, J.H.; Xu, J.; Chen, Y.; Qin, M.; Yu, S.; Guan, J.; Zhang, R. Apigenin Attenuates Streptozotocin-Induced Pancreatic β Cell Damage by Its Protective Effects on Cellular Antioxidant Defense. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 554–563. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, X.; Shuai, X.; Xu, Y.; Liu, Y.; Liang, X.; Wei, D.; Su, D. Luteolin Prevents Uric Acid-Induced Pancreatic β-Cell Dysfunction. J. Biomed. Res. 2014, 28, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O.M.; Markham, K.R.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-429-12158-6. [Google Scholar]
- National Research Council. Guide for the Care and Use of Laboratory Animals. In The National Academies Collection: Reports Funded by National Institutes of Health, 8th ed.; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
Time (Min) | T0 | T30 | T60 | T90 | T120 |
---|---|---|---|---|---|
Treatment | |||||
Normal (0.2 mL of saline) | 91.2 ± 8.04 | 495 ± 24.4 | 372 ± 18.1 | 293 ± 21,6 | 140 ± 12.7 |
Gli 1 mg/kg | 57 ±9.43 *** | 186 ± 12.4 *** | 149 ± 16.7 *** | 92.4 ± 5.94 *** | 56.2 ± 6.34 *** |
FLU 25 mg/kg | 71.8 ± 11.5 ** | 247 ± 21.8 *** | 128 ± 8.7 *** | 120 ± 7.82 *** | 89.8 ± 7.82 *** |
FCS 25 mg/kg | 55.2 ± 8.46 *** | 202 ± 12.1 *** | 96 ± 9.2 *** | 82.6 ± 6.87 *** | 67.6 ± 9.6 *** |
FOE 25 mg/kg | 63.6 ± 5.77 *** | 250 ± 27.8 *** | 116 ± 12.6 *** | 76.4 ± 10.4 *** | 67.4 ± 8.44 *** |
FLU/FCS (1/2:1/2) 25 mg/kg | 65.4 ± 3.2 *** | 229 ± 30.6 *** | 151 ± 19.7 *** | 85.6 ± 9.63 *** | 78.2 ± 7.85 *** |
FOE/FCS (1/2:1/2) 25 mg/kg | 53.2 ± 12.51 *** | 274 ± 29.4 *** | 147 ± 14.9 *** | 76.4 ± 8.53 *** | 68.6 ± 8.67 *** |
FLU/FOE (1/2:1/2) 25 mg/kg | 48.2 ± 7.08 *** | 195 ± 28.6 *** | 121 ± 11.8 *** | 87.2 ± 9.23 *** | 74.8 ± 8.07 *** |
FLU/FCS/FOE (1/3:1/3:1/3) 25 mg/kg | 47 ± 10.72 *** | 163 ± 19.2 *** | 119 ± 8.07 *** | 69.8 ± 9.36 *** | 57.2 ± 7.36 *** |
FCS/FLU/FOE (2/3:1/6:1/6) 25 mg/kg | 59.8 ± 6.53 *** | 198 ± 15.3 *** | 113 ± 9.01 *** | 73 ± 7.71 *** | 61.8 ± 5.63 *** |
Nom | Coef. | Signif. % | Coef. | Signif. % | Coef. | Signif. % | Coef. | Signif. % |
---|---|---|---|---|---|---|---|---|
b1 | 177.7 | <0.01 (***) | −125.5 | <0.01 (***) | −15.2 | <0.01 (***) | −21.3 | <0.01 (***) |
b2 | 139.0 | <0.01 (***) | −106.4 | <0.01 (***) | −13.0 | <0.01 (***) | −14.0 | <0.01 (***) |
b3 | 199.0 | <0.01 (***) | −141.0 | <0.01 (***) | −39.6 | <0.01(***) | −9.0 | <0.01 (***) |
b12 | 8.0 | 84.1 | 154.2 | <0.01 (***) | −192.6 | <0.01 (***) | 41.5 | <0.01 (***) |
b13 | −178.7 | 0.0970 (***) | 273.0 | <0.01 (***) | −27.2 | 3.97 (*) | 10.9 | 10.0 |
b23 | 172.0 | 0.0554 (***) | 34.8 | 16.8 | −176.4 | <0.01 (***) | 27.3 | 0.211 (**) |
b123 | −1468.0 | 0.0161 (***) | 586.5 | 0.270 (**) | 475.6 | <0.01 (***) | −219.0 | 0.0210 (***) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechchate, H.; Ouedrhiri, W.; Es-safi, I.; Amaghnouje, A.; Jawhari, F.z.; Bousta, D. Optimization of a New Antihyperglycemic Formulation Using a Mixture of Linum usitatissimum L., Coriandrum sativum L., and Olea europaea var. sylvestris Flavonoids: A Mixture Design Approach. Biologics 2021, 1, 154-163. https://doi.org/10.3390/biologics1020009
Mechchate H, Ouedrhiri W, Es-safi I, Amaghnouje A, Jawhari Fz, Bousta D. Optimization of a New Antihyperglycemic Formulation Using a Mixture of Linum usitatissimum L., Coriandrum sativum L., and Olea europaea var. sylvestris Flavonoids: A Mixture Design Approach. Biologics. 2021; 1(2):154-163. https://doi.org/10.3390/biologics1020009
Chicago/Turabian StyleMechchate, Hamza, Wessal Ouedrhiri, Imane Es-safi, Amal Amaghnouje, Fatima zahra Jawhari, and Dalila Bousta. 2021. "Optimization of a New Antihyperglycemic Formulation Using a Mixture of Linum usitatissimum L., Coriandrum sativum L., and Olea europaea var. sylvestris Flavonoids: A Mixture Design Approach" Biologics 1, no. 2: 154-163. https://doi.org/10.3390/biologics1020009
APA StyleMechchate, H., Ouedrhiri, W., Es-safi, I., Amaghnouje, A., Jawhari, F. z., & Bousta, D. (2021). Optimization of a New Antihyperglycemic Formulation Using a Mixture of Linum usitatissimum L., Coriandrum sativum L., and Olea europaea var. sylvestris Flavonoids: A Mixture Design Approach. Biologics, 1(2), 154-163. https://doi.org/10.3390/biologics1020009