Soluble CD163 Levels Correlate with EDSS in Female Patients with Relapsing–Remitting Multiple Sclerosis Undergoing Teriflunomide Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. The Data Collection Procedures
2.3. ELISA Analyses
2.4. Transcranial Magnetic Stimulation (TMS) Procedure in the Assessment of Subclinical Motor Status
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | Multiple sclerosis |
ELISA | Enzyme-Linked Immunosorbent Assay |
RRMS | Relapsing–remitting MS |
EDSS | Expanded Disability Status Scale |
TMS | Transcranial magnetic stimulation |
References
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; et al. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Zwibel, H.L.; Smrtka, J. Improving quality of life in multiple sclerosis: An unmet need. Am. J. Manag. Care 2011, 17, 139–145. [Google Scholar]
- Confavreux, C.; Vukusic, S. Natural history of multiple sclerosis: A unifying concept. Brain J. Neurol. 2006, 129, 606–616. [Google Scholar] [CrossRef]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 2019, 92, 1029–1040. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Gourraud, P.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hartman, E.; Gelfand, J.M.; Goodin, D.S.; Graves, J.; Green, A.J.; Mowry, E.; et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann. Neurol. 2016, 80, 499–510. [Google Scholar] [CrossRef]
- Ribbons, K.A.; McElduff, P.; Boz, C.; Trojano, M.; Izquierdo, G.; Duquette, P.; Girard, M.; Grand’Maison, F.; Hupperts, R.; Grammond, P.; et al. Male sex is independently associated with faster disability accumulation in relapse–onset MS but not in primary progressive MS. PLoS ONE 2015, 10, e0122686. [Google Scholar] [CrossRef]
- O’connor, K.C.; Bar-Or, A.; Hafler, D.A. The neuroimmunology of multiple sclerosis: Possible roles of T and B lymphocytes in immunopathogenesis. J. Clin. Immunol. 2001, 21, 81–92. [Google Scholar] [CrossRef]
- Moser, T.; Akgün, K.; Proschmann, U.; Sellner, J.; Ziemssen, T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun. Rev. 2020, 19, 102647. [Google Scholar] [CrossRef]
- Houtchens, M.K. Pregnancy and multiple sclerosis. Semin. Neurol. 2007, 27, 434–441. [Google Scholar] [CrossRef]
- Harirchian, M.H.; Fatehi, F.; Sarraf, P.; Honarvar, N.M.; Bitarafan, S. Worldwide prevalence of familial multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2018, 20, 43–47. [Google Scholar] [CrossRef]
- Mumford, C.J.; Wood, N.W.; Kellar-Wood, H.; Thorpe, J.W.; Miller, D.H.; Compston, D.A.S. The British Isles survey of multiple sclerosis in twins. Neurology 1994, 44, 11–15. [Google Scholar] [CrossRef]
- Willer, C.J.; Dyment, D.A.; Risch, N.J.; Sadovnick, A.D.; Ebers, G.C.; Paty, D.W.; Hashimoto, S.A.; Devonshire, V.; Hooge, J.; Oger, J.; et al. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2003, 100, 12877–12882. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Blizzard, L.; Otahal, P.; Van Der Mei, I.; Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.A.; Chitnis, T.; Krupp, L.; Ness, J.; Chabas, D.; Kuntz, N.; Waubant, E. Pediatric multiple sclerosis. Nat. Rev. Neurol. 2009, 5, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Lazibat, I.; Rubinić Majdak, M.; Županić, S. Multiple sclerosis: New aspects of immunopathogenesis. Acta Clin. Croat. 2018, 57, 352–361. [Google Scholar] [CrossRef]
- Javalkar, V.; McGee, J.; Minagar, A. Clinical Manifestations of Multiple Sclerosis: An Overview; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A.C. Treatment of multiple sclerosis: A review. Am. J. Med. 2020, 133, 1380–1390. [Google Scholar] [CrossRef]
- Sepčić, J. “Multipla skleroza danas.” 2. Internacionalna škola iz psihijatrije i kognitivne neuroznanosti: Psihijatrijsko-psihološki aspekti multiple skleroze. Rab Psychiatric Hospital. Rab. 2011, pp. 98–111. Available online: https://urn.nsk.hr/urn:nbn:hr:184:64117617 (accessed on 28 October 2011).
- D’Ambrosio, A.; Pontecorvo, S.; Colasanti, T.; Zamboni, S.; Francia, A.; Margutti, P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev. 2015, 14, 1097–1110. [Google Scholar] [CrossRef]
- Doshi, A.; Chataway, J. Multiple sclerosis, a treatable disease. Clin. Med. 2016, 16, 53–59. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014, 74, 659–674. [Google Scholar] [CrossRef]
- Zwadlo, G.; Voegeíi, R.; Schulze Osthoff, K.; Sorg, C. A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process. Pathobiology 1987, 55, 295–304. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, C.; Maimela, N.R.; Yang, L.; Zhang, Z.; Ping, Y.; Huang, L.; Zhang, Y. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma. Oncoimmunology 2019, 8, 1601478. [Google Scholar] [CrossRef]
- Fabriek, B.O.; van Bruggen, R.; Deng, D.M.; Ligtenberg, A.J.M.; Nazmi, K.; Schornagel, K.; Vloet, R.P.M.; Dijkstra, C.D.; van den Berg, T.K. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 2009, 113, 887–892. [Google Scholar] [CrossRef]
- Anders, H.J.; Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011, 80, 915–925. [Google Scholar] [CrossRef]
- Van Gorp, H.; Delputte, P.L.; Nauwynck, H.J. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol. Immunol. 2010, 47, 1650–1660. [Google Scholar] [CrossRef]
- Kristiansen, M.; Graversen, J.H.; Jacobsen, C.; Sonne, O.; Hoffman, H.J.; Law, S.K.A.; Moestrup, S.K. Identification of the haemoglobin scavenger receptor. Nature 2001, 409, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.J.; Nielsen, M.J.; Maniecki, M.B.; Madsen, M.; Moestrup, S.K. Soluble macrophage-derived CD163: A homogenous ectodomain protein with a dissociable haptoglobin–hemoglobin binding. Immunobiology 2010, 215, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Galea, J.; Cruickshank, G.; Teeling, J.L.; Boche, D.; Garland, P.; Perry, V.H.; Galea, I. The intrathecal CD163---haptoglobin–hemoglobin scavenging system in subarachnoid hemorrhage. J. Neurochem. 2012, 121, 785–792. [Google Scholar] [CrossRef]
- Brück, W.; Porada, P.; Poser, S.; Rieckmann, P.; Hanefeld, F.; Kretzschmarch, H.A.; Lassmann, H. Monocyte/macrophage differentiation in early multiple sclerosis lesions: Macrophages in MS. Ann. Neurol. 1995, 38, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H.; van Horssen, J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011, 585, 3715–3723. [Google Scholar] [CrossRef]
- Stilund, M.; Reuschlein, A.K.; Christensen, T.; Møller, H.J.; Rasmussen, P.V.; Petersen, T. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS ONE 2014, 9, 98588. [Google Scholar] [CrossRef]
- Rogić Vidaković, M.; Ćurković Katić, A.; Pavelin, S.; Bralić, A.; Mikac, U.; Šoda, J.; Jerković, A.; Mastelić, A.; Dolić, K.; Markotić, A.; et al. Transcranial Magnetic Stimulation Measures, Pyramidal Score on Expanded Disability Status Scale and Magnetic Resonance Imaging of Corticospinal Tract in Multiple Sclerosis. Bioengineering 2023, 10, 1118. [Google Scholar] [CrossRef] [PubMed]
- Sipe, J.; Romine, J.S.; Koziol, J.A.; McMillan, R.; Beutler, E.; Sipe, J.C.; Romine, J.S.; Zyroff, J. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 1994, 344, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Elkjaer, M.L.; Röttger, L.; Baumbach, J.; Illes, Z. A Systematic Review of Tissue and Single Cell Transcriptome/Proteome Studies of the Brain in Multiple Sclerosis. Front. Immunol. 2022, 13, 761225. [Google Scholar] [CrossRef]
- Hofmann, A.; Krajnc, N.; Dal-Bianco, A.; Riedl, C.J.; Zrzavy, T.; Lerma-Martin, C.; Kasprian, G.; Weber, C.E.; Pezzini, F.; Leutmezer, F.; et al. Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis. Acta Neuropathol. 2023, 146, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, R.; Hametner, S.; Mastantuono, M.; Mensi, A.; Karimian, M.; Griffiths, L.; Watkins, L.M.; Poli, A.; Berti, G.M.; Barusolo, E.; et al. Neuropathological and cerebrospinal fluid correlates of choroid plexus inflammation in progressive multiple sclerosis. Brain Pathol. 2024, 35, e13322. [Google Scholar] [CrossRef]
- Magliozzi, R.; Pezzini, F.; Pucci, M.; Rossi, S.; Facchiano, F.; Marastoni, D.; Montagnana, M.; Lippi, G.; Reynolds, R.; Calabrese, M. Changes in Cerebrospinal Fluid Balance of TNF and TNF Receptors in Naive Multiple Sclerosis Patients: Early Involvement in Compartmentalised Intrathecal Inflammation. Cells 2021, 10, 1712. [Google Scholar] [CrossRef]
- Chen, J.Q.A.; Wever, D.D.; McNamara, N.B.; Bourik, M.; Smolders, J.; Hamann, J.; Huitinga, I. Inflammatory microglia correlate with impaired oligodendrocyte maturation in multiple sclerosis. Front. Immunol. 2024, 15, 1522381. [Google Scholar] [CrossRef]
- Gray, A.; Berlin, J.A.; McKinlay, J.B.; Longcope, C. An examination of research design effects on the association of testosterone and male aging: Results of a meta-analysis. J. Clin. Epidemiol. 1991, 44, 671–684. [Google Scholar] [CrossRef]
- De Fino, C.; Lucchini, M.; Lucchetti, D.; Nociti, V.; Losavio, F.A.; Bianco, A.; Colella, F.; Ricciardi-Tenore, C.; Sgambato, A.; Mirabella, M. The predictive value of CSF multiple assay in multiple sclerosis: A single center experience. Mult. Scler. Relat. Disord. 2019, 35, 176–181. [Google Scholar] [CrossRef]
- Farrokhi, M.; Saadatpour, Z.; Fadaee, E.; Saadatpour, L.; Rezaei, A.; Moeini, P.; Amani Beni, A. A novel approach to discriminate subgroups in multiple sclerosis. Iran. J. Allergy Asthma Immunol. 2016, 15, 536–546. [Google Scholar]
- Mona, M.; Rafik, M.R.E.N.; Eman, A.M.; Hassan, M.D.A.S.; Abou Steit, A.M. Serum soluble CD163 as a marker of activity in MS patients. Med. J. Cairo Univ. 2022, 90, 1039–1045. [Google Scholar] [CrossRef]
- Gjelstrup, M.C.; Stilund, M.; Petersen, T.; Møller, H.J.; Petersen, E.L.; Christensen, T. Subsets of activated monocytes and markers of inflammation in incipient and progressed multiple sclerosis. Immunol. Cell Biol. 2018, 96, 160–174. [Google Scholar] [CrossRef]
- Magyari, M.; Koch-Henriksen, N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 716–722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koch-Henriksen, N.; Laursen, B.; Stenager, E.; Magyari, M. Excess mortality among patients with multiple sclerosis in Denmark has dropped significantly over the past six decades: A population based study. J. Neurol. Neurosurg. Psychiatry 2017, 88, 626–631. [Google Scholar] [CrossRef]
- Pozzilli, C.; Tomassini, V.; Marinelli, F.; Paolillo, A.; Gasperini, C.; Bastianello, S. ‘Gender gap’ in multiple sclerosis: Magnetic resonance imaging evidence. Eur. J. Neurol. 2003, 10, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef]
Variable | Group | M | SD | Median | Min | Max | IQR | Range | F | df | p |
---|---|---|---|---|---|---|---|---|---|---|---|
EDSS | ASNF | 2.57 | 1.47 | 3.50 | 0 | 4.00 | 1.50 | 4.00 | |||
non-ASNF | 1.06 | 1.02 | 1.00 | 0 | 2.50 | 2.00 | 2.50 | ||||
sCD163 | ASNF | 834.57 | 335.29 | 789.00 | 298 | 1322 | 510.00 | 1024 | |||
(ng/mL) | non-ASNF | 720.31 | 156.98 | 699.75 | 486 | 978 | 137.50 | 492 | 2.08 | 2/28 | 0.143 |
HC | 591.75 | 225.10 | 526.50 | 297 | 902.5 | 392.13 | 605.5 |
Variable | sCD163 (ng/mL) | SD | t | df | p |
---|---|---|---|---|---|
Mm | 947 | 227 | 2.22 | 21 | 0.038 |
Mf | 697 | 285 | |||
Variable | EDSS | correlation | |||
Median | (Q1–Q3) | r | p | ||
Mm | 2.5 | (0.5–3.5) | 0.33 | 0.382 | |
Mf | 2.25 | (0–3.5) | 0.94 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerčić, M.; Vidaković, M.R.; Markotić, A.; Mužinić, N.R. Soluble CD163 Levels Correlate with EDSS in Female Patients with Relapsing–Remitting Multiple Sclerosis Undergoing Teriflunomide Treatment. BioMed 2025, 5, 20. https://doi.org/10.3390/biomed5030020
Jerčić M, Vidaković MR, Markotić A, Mužinić NR. Soluble CD163 Levels Correlate with EDSS in Female Patients with Relapsing–Remitting Multiple Sclerosis Undergoing Teriflunomide Treatment. BioMed. 2025; 5(3):20. https://doi.org/10.3390/biomed5030020
Chicago/Turabian StyleJerčić, Mario, Maja Rogić Vidaković, Anita Markotić, and Nikolina Režić Mužinić. 2025. "Soluble CD163 Levels Correlate with EDSS in Female Patients with Relapsing–Remitting Multiple Sclerosis Undergoing Teriflunomide Treatment" BioMed 5, no. 3: 20. https://doi.org/10.3390/biomed5030020
APA StyleJerčić, M., Vidaković, M. R., Markotić, A., & Mužinić, N. R. (2025). Soluble CD163 Levels Correlate with EDSS in Female Patients with Relapsing–Remitting Multiple Sclerosis Undergoing Teriflunomide Treatment. BioMed, 5(3), 20. https://doi.org/10.3390/biomed5030020