Untreated Early Childhood Caries and Possible Links with Brain Development
Abstract
:1. Introduction
1.1. Mastication and Brain Development
1.2. Inflammation and Brain Development
1.3. Sleep Disturbances and Brain Development
1.4. Gut Microbiome and Brain Development
1.5. Nutritional Implications
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, F.; Enax, J. Early Childhood Caries: Epidemiology, Aetiology, and Prevention. Int. J. Dent. 2018, 2018, 1415873. [Google Scholar] [CrossRef] [PubMed]
- Kazeminia, M.; Abdi, A.; Shohaimi, S.; Jalali, R.; Vaisi-Raygani, A.; Salari, N.; Mohammadi, M. Dental caries in primary and permanent teeth in children worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med. 2020, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Colak, H.; Dülgergil, C.T.; Dalli, M.; Hamidi, M.M. Early childhood caries update: A review of causes, diagnoses, and treatments. J. Nat. Sci. Biol. Med. 2013, 4, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.; Anand, P.S. Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Front. Pediatr. 2017, 5, 157. [Google Scholar] [CrossRef] [PubMed]
- Sheiham, A. Dental caries affects body weight, growth and quality of life in pre-school children. Br. Dent. J. 2006, 201, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.G.; Shieh, T.Y.; Teng, A.Y. Is caries an independent risk factor for the child’s psychomotor development?—A new insight to potentially shed the underlying mechanisms. J. Dent. Sci. 2018, 13, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Y.; Liu, Y.C.; Shieh, T.Y.; Lin, J.R.; Tseng, Y.C.; Teng, A.Y. Experience of Early Childhood Caries May Positively Correlate with Psychomotor Development. Oral Health Prev. Dent. 2015, 13, 365–375. [Google Scholar] [PubMed]
- Liang, C.Y.; Liu, Y.G.; Shieh, T.Y.; Tseng, Y.C.; Teng, A.Y. Higher Levels of Early Childhood Caries (ECC) Is Associated with Developing Psychomotor Deficiency: The Cross-Sectional Bi-Township Analysis for The New Hypothesis. Int. J. Environ. Res. Public Health 2019, 16, 3082. [Google Scholar] [CrossRef]
- Teng, A.Y.; Liang, C.Y.; Liu, Y.C.G. Socio-Economic Status May Associate Different Risk(s) with Early Childhood Caries (ECC) That Can Cause the Development of Psychomotor Deficiency in Preschool Children Aged 3-6 Years Old: The Results of Preliminary Analysis from a Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 9011. [Google Scholar] [CrossRef]
- Liang, C.-Y.; Teng, A.Y.-T.; Liu, Y.C. Early Childhood Caries Is Causally Attributed to Developing Psychomotor Deficiency in Pre-School Children: The Resultant Covariate and Confounder Analyses in a Longitudinal Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 6831. [Google Scholar] [CrossRef]
- Ono, Y.; Yamamoto, T.; Kubo, K.Y.; Onozuka, M. Occlusion and brain function: Mastication as a prevention of cognitive dysfunction. J. Oral Rehabil. 2010, 37, 624–640. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.B.; Fernandes, L.M.; Noronha, P.A.; dos Santos, M.A.R.; Gomes-Leal, W.; Maia, C.D.S.F.; Lima, R.R. Masticatory deficiency as a risk factor for cognitive dysfunction. Int. J. Med. Sci. 2014, 11, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Lexomboon, D.; Trulsson, M.; Wårdh, I.; Parker, M.G. Chewing ability and tooth loss: Association with cognitive impairment in an elderly population study. J. Am. Geriatr. Soc. 2012, 60, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Henke, K. A model for memory systems based on processing modes rather than consciousness. Nat. Rev. Neurosci. 2010, 11, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Kawahata, M.; Ono, Y.; Ohno, A.; Kawamoto, S.; Kimoto, K.; Onozuka, M. Loss of molars early in life develops behavioral lateralization and impairs hippocampus-dependent recognition memory. BMC Neurosci. 2014, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Obata, T.; Takahashi, H.; Tachibana, A.; Kuroiwa, D.; Takahashi, T.; Ikehira, H.; Onozuka, M. Effects of chewing on cognitive processing speed. Brain Cogn. 2013, 81, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, P. The interrelationship between diet and oral health. Proc. Nutr. Soc. 2005, 64, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Velundandi, S.; Chitre, S. The Effects of Tooth Loss on the Brain. J. Oral Med. 2017, 1, 5. [Google Scholar]
- Takagi, M.; Takahashi, M.; Narita, E.; Shimooka, S. Comparison between children with missing anterior deciduous teeth and posterior deciduous teeth by analysis of speech sounds. Shoni Shikagaku Zasshi 1989, 27, 144–152. [Google Scholar]
- Rai, A.K.; Rozario, J.E.; Ganeshkar, S.V. Comparison of speech performance in labial and lingual orthodontic patients: A prospective study. Dent. Res. J. 2014, 11, 663–675. [Google Scholar]
- Dan, M. English Phonetics and Phonological Theory-20th Century Approaches. Bucureşti: [Monograph Online] Universitatea din Bucureşti. 2003. [Last cited on 20 November 2010]. Available online: http://www.ebooks.unibuc.ro/filologie/mateescu/cuprins.htm (accessed on 26 September 2023).
- Speech. 1995. [Last Updated on 1995; Last cited on 20 October 2010]. Available online: http://www.uv.es/EBRIT/macro/macro_5005_97_1.html (accessed on 26 September 2023).
- Indefrey, P.; Levelt, W.J.M. The spatial and temporal signatures of word production components. Cognition 2004, 92, 101–144. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, M.; Ardila, A.; Matute, E.; Vélez-Uribe, I. Language Development across the Life Span: A Neuropsychological/Neuroimaging Perspective. Neurosci. J. 2014, 2014, 585237. [Google Scholar] [CrossRef] [PubMed]
- Larson, C. Neurophysiology of Speech and Swallowing. Semin. Speech Lang. 1985, 6, 275–291. [Google Scholar] [CrossRef]
- Hyde, A.C.; Moriarty, L.; Morgan, A.G.; Elsharkasi, L.M.; Deery, C. Speech and the dental interface. Dent. Update 2018, 45, 795–803. [Google Scholar] [CrossRef]
- Ludlow, C.L.; Hoit, J.; Kent, R.; Ramig, L.O.; Shrivastav, R.; Strand, E.; Yorkston, K.; Sapienza, C.M. Translating principles of neural plasticity into research on speech motor control recovery and rehabilitation. J. Speech Lang. Hear. Res. 2008, 51, S240–S258. [Google Scholar] [CrossRef] [PubMed]
- Stampanoni Bassi, M.; Iezzi, E.; Gilio, L.; Centonze, D.; Buttari, F. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. Int. J. Mol. Sci. 2019, 20, 6193. [Google Scholar] [CrossRef] [PubMed]
- Monfils, M.H.; Plautz, E.J.; Kleim, J.A. In search of the motor engram: Motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 2005, 11, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Leviton, A.; Gilles, F.; Neff, R.; Yaney, P. Multivariate analysis of risk of perinatal telencephalic leucoencephalopathy. Am. J. Epidemiol. 1976, 104, 621–626. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Hinson, R.M.; Williams, J.A.; Shacter, E. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: Possible role of cyclooxygenase-2. Proc. Natl. Acad. Sci. USA 1996, 93, 4885–4890. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, X.; Kim, D.; Guan, T.; Nicolls, M.R.; Rockson, S.G. Leukotrienes in Tumor-Associated Inflammation. Front. Pharmacol. 2020, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.C.C.; Pachêco, C.D.J.B.; Costa, E.L.; Ladeira, L.L.C.; Costa, J.F.; da Silva, R.A.; Carmo, C.D.S. Proinflammatory cytokines in early childhood caries: Salivary analysis in the mother/children pair. Cytokine 2018, 107, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Dammann, O.; Leviton, A. Infection remote from the brain, neonatal white matter damage, and cerebral palsy in the preterm infant. Semin. Pediatr. Neurol. 1998, 5, 190–201. [Google Scholar] [CrossRef]
- Nagy, Z.; Westerberg, H.; Klingberg, T. Maturation of White Matter is Associated with the Development of Cognitive Functions during Childhood. J. Cogn. Neurosci. 2004, 16, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, F.S.; Barks, J.D.E.; Hagan, P.; Liu, X.H.; Ivacko, J.; Szaflarski, J. Cytokines and perinatal brain injury. Neurochem. Int. 1997, 30, 375–383. [Google Scholar] [CrossRef]
- Hagberg, H.; Mallard, C. Effect of inflammation on central nervous system development and vulnerability. Curr. Opin. Neurol. 2005, 18, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Colford, J.M. Chorioamnionitis as a risk factor for cerebral palsy—A meta-analysis. J. Am. Med. Assoc. 2000, 284, 1417–1424. [Google Scholar] [CrossRef]
- Wu, Y.W.; Escobar, G.J.; Grether, J.K.; Croen, L.A.; Greene, J.D.; Newman, T.B. Chorioamnionitis and cerebral palsy in term and near-term infants. J. Am. Med. Assoc. 2003, 290, 2677–2684. [Google Scholar] [CrossRef]
- Badawi, N.; Kurinczuk, J.J.; Keogh, J.M.; Alessandri, L.M.; O’Sullivan, F.; Burton, P.R.; Pemberton, P.J.; Stanley, F.J. Intrapartum risk factors for newborn encephalopathy: The Western Australian case-control study. Br. Med. J. 1998, 317, 1554–1558. [Google Scholar] [CrossRef]
- Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 2011, 26, 89–98. [Google Scholar] [CrossRef]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The impact of stress on body function: A review. EXCLI J. 2017, 16, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- De Souza-Talarico, J.N.; Marin, M.F.; Sindi, S.; Lupien, S.J. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement. Neuropsychol. 2011, 5, 8–16. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Effects of stress on the developing brain. In Cerebrum: The Dana Forum on Brain Science; Dana Foundation: New York, NY, USA, 2011; Volume 2011, p. 14. [Google Scholar]
- Het, S.; Ramlow, G.; Wolf, O.T. A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology 2005, 30, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S. The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Res. Rev. 1997, 24, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Oei, N.Y.; Everaerd, W.T.; Elzinga, B.M.; van Well, S.; Bermond, B. Psychosocial stress impairs working memory at high loads: An association with cortisol levels and memory retrieval. Stress 2006, 9, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.M.; Xie, W.; Piazzoli, L.; Jensen, S.K.G.; Afreen, S.; Haque, R.; Petri, W.A.; Nelson, C.A. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev. Cogn. Neurosci. 2022, 53, 101041. [Google Scholar] [CrossRef] [PubMed]
- Stiles, J.; Jernigan, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- Finan, P.H.; Goodin, B.R.; Smith, M.T. The association of sleep and pain: An update and a path forward. J. Pain 2013, 14, 1539–1552. [Google Scholar] [CrossRef]
- Alhola, P.; Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr. Dis. Treat. 2007, 3, 553–567. [Google Scholar]
- Csipo, T.; Lipecz, A.; Owens, C.; Mukli, P.; Perry, J.W.; Tarantini, S.; Balasubramanian, P.; Nyúl-Tóth, Á.; Yabluchanska, V.; Sorond, F.A.; et al. Sleep deprivation impairs cognitive performance, alters task-associated cerebral blood flow and decreases cortical neurovascular coupling-related hemodynamic responses. Sci. Rep. 2021, 11, 20994. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, K.; Reid, G.J.; Morton, J.B. Behavioral Sleep Problems and their Potential Impact on Developing Executive Function in Children. Sleep 2013, 36, 1077–1084. [Google Scholar] [CrossRef]
- Hirotsu, C.; Tufik, S.; Andersen, M.L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015, 8, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sardana, D.; Galland, B.; Wheeler, B.J.; Yiu, C.K.Y.; Ekambaram, M. Effect of sleep on development of early childhood caries: A systematic review. Eur. Arch. Paediatr. Dent. 2023, 24, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.L.; Miller, S.E.; LeBourgeois, M.K.; Sturza, J.; Rosenblum, K.L.; Lumeng, J.C. Sleep duration and quality are associated with eating behavior in low-income toddlers. Appetite 2019, 135, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Arun, R.; Pina, P.; Rubin, D.; Erichsen, D. Association between sleep stages and hunger scores in 36 children. Pediatr. Obes. 2016, 11, e9–e11. [Google Scholar] [CrossRef] [PubMed]
- Burt, J.; Dube, L.; Thibault, L.; Gruber, R. Sleep and eating in childhood: A potential behavioral mechanism underlying the relationship between poor sleep and obesity. Sleep Med. 2014, 15, 71–75. [Google Scholar] [CrossRef]
- Hermes, F.N.; Nunes, E.E.M.; Melo, C.M. Sleep, nutritional status and eating behavior in children: A review study. Rev. Paul. Pediatr. 2022, 40, e2020479. [Google Scholar] [CrossRef]
- Mohamed, R.N.; Basha, S.; Al-Thomali, Y.; AlZahrani, F.S.; Ashour, A.A.; Almutair, N.E. Association Between Early Childhood Caries and Obesity among Preschool Children. Oral Health Prev. Dent. 2022, 20, 113–118. [Google Scholar] [CrossRef]
- Greer, S.M.; Goldstein, A.N.; Walker, M.P. The impact of sleep deprivation on food desire in the human brain. Nat. Commun. 2013, 4, 2259. [Google Scholar] [CrossRef]
- Tikhonova, S.; Booij, L.; D’Souza, V.; Crosara, K.T.B.; Siqueira, W.L.; Emami, E. Investigating the association between stress, saliva and dental caries: A scoping review. BMC Oral Health 2018, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Du Teil Espina, M.; Gabarrini, G.; Harmsen, H.J.M.; Westra, J.; van Winkelhoff, A.J.; van Dijl, J.M. Talk to your gut: The oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol. Rev. 2019, 43, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tooley, K.L. Effects of the Human Gut Microbiota on Cognitive Performance, Brain Structure and Function: A Narrative Review. Nutrients 2020, 12, 3009. [Google Scholar] [CrossRef] [PubMed]
- Appleton, J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med. A Clin. J. 2018, 17, 28. [Google Scholar]
- Osadchiy, V.; Labus, J.S.; Gupta, A.; Jacobs, J.; Ashe-McNalley, C.; Hsiao, E.Y.; Mayer, E.A. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS ONE 2018, 13, e0201772. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Mackos, A.R.; Maltz, R.; Bailey, M.T. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation. Horm. Behav. 2017, 88, 70–78. [Google Scholar] [CrossRef]
- Karl, J.P.; Margolis, L.M.; Madslien, E.H.; Murphy, N.E.; Castellani, J.W.; Gundersen, Y.; Hoke, A.V.; Levangie, M.W.; Kumar, R.; Chakraborty, N.; et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G559–G571. [Google Scholar] [CrossRef]
- Galley, J.D.; Bailey, M.T. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 2014, 5, 390–396. [Google Scholar] [CrossRef]
- Sarkar, A.; Harty, S.; Dunbar, R.I.M.; Lehto, S.M.; Moeller, A.H.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. The Microbiome in Psychology and Cognitive Neuroscience. Trends Cogn. Sci. 2018, 22, 611–636. [Google Scholar] [CrossRef]
- Schmidt, K.; Cowen, P.; Harmer, C.; Tzortzis, G.; Errington, S.; Burnet, P. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 2015, 232, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M.; Delaleu, N.; Du, Y.; Bickel, M. Cytokine gene expression--part of host defence in pulpitis. Cytokine 2003, 22, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Zoico, E.; Roubenoff, R. The role of cytokines in regulating protein metabolism and muscle function. Nutr. Rev. 2002, 60, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, A.; Bahrololoomi, Z.; Salarian, S. Relationship between early childhood caries and anemia: A systematic review. Iran. J. Pediatr. Hematol. Oncol. 2018, 8, 126–138. [Google Scholar]
- Sheetal, A.; Hiremath, V.K.; Patil, A.G.; Sajjansetty, S.; Kumar, S.R. Malnutrition and its oral outcome—A review. J. Clin. Diagn. Res. 2013, 7, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Schroth, R.; Jeal, N.; Kliewer, E.; Sellers, A.C. The relationship between vitamin D and severe early childhood caries: A pilot study. Int. J. Vitam. Nutr. Res. 2012, 82, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Schroth, R.J.; Levi, J.A.; Sellers, E.A.; Friel, J.; Kliewer, E.; Moffatt, M.E. Vitamin D status of children with severe early childhood caries: A case-control study. BMC Pediatr. 2013, 13, 174. [Google Scholar] [CrossRef]
- Georgieff, M.K. The role of iron in neurodevelopment: Fetal iron deficiency and the developing hippocampus. Biochem. Soc. Trans. 2008, 36 Pt 6, 1267–1271. [Google Scholar] [CrossRef]
- Tafti, M.; Ghyselinck, N.B. Functional implication of the vitamin A signaling pathway in the brain. Arch. Neurol. 2007, 64, 1706–1711. [Google Scholar] [CrossRef]
- Anjum, I.; Jaffery, S.S.; Fayyaz, M.; Samoo, Z.; Anjum, S. The Role of Vitamin D in Brain Health: A Mini Literature Review. Cureus 2018, 10, e2960. [Google Scholar] [CrossRef]
- Llewellyn, D.J.; Langa, K.M.; Friedland, R.P.; Lang, I.A. Serum albumin concentration and cognitive impairment. Curr. Alzheimer Res. 2010, 7, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, L.M. Immune proteins in brain development and synaptic plasticity. Neuron 2009, 64, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Reisine, S.T.; Psoter, W. Socioecnomic status and selected behavioural determinants as risk factors for dental caries. J. Dent. Educ. 2001, 65, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, D.; Whittle, S.; Sheridan, M.A.; McLaughlin, K.A. Childhood socioeconomic status and the pace of structural neurodevelopment: Accelerated, delayed, or simply different? Trends Cogn. Sci. 2023, 27, 833–851. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. 175 Million Children Are Not Enrolled in Pre-Primary Education. Available online: https://www.unicef.org/press-releases/175-million-children-are-not-enrolled-pre-primary-education-unicef (accessed on 30 July 2023).
- Santos-Beneit, G.; Fernández-Jiménez, R.; de Cos-Gandoy, A.; Rodríguez, C.; Carral, V.; Bodega, P.; de Miguel, M.; Orrit, X.; Haro, D.; Peñalvo, J.L.; et al. Lessons Learned From 10 Years of Preschool Intervention for Health Promotion: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.; Kilpatrick, N.; Slack-Smith, L.; Chadwick, B.; Yelland, J.; Muthu, M.S.; Gomersall, J.C. Interventions with pregnant women, new mothers and other primary caregivers for preventing early childhood caries. Cochrane Database Syst. Rev. 2019, 2019, CD012155. [Google Scholar] [CrossRef] [PubMed]
- Weber-Gasparoni, K.; Warren, J.J.; Reeve, J.; Drake, D.R.; Kramer, K.W.; Marshall, T.A.; Dawson, D.V. An effective psychoeducational intervention for early childhood caries prevention: Part II. Pediatr. Dent. 2013, 35, 247–251. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foláyan, M.O.; Femi-Akinlosotu, O.M.; Adeoti, B.; Olorunmoteni, O.E. Untreated Early Childhood Caries and Possible Links with Brain Development. BioMed 2023, 3, 431-439. https://doi.org/10.3390/biomed3040035
Foláyan MO, Femi-Akinlosotu OM, Adeoti B, Olorunmoteni OE. Untreated Early Childhood Caries and Possible Links with Brain Development. BioMed. 2023; 3(4):431-439. https://doi.org/10.3390/biomed3040035
Chicago/Turabian StyleFoláyan, Morẹ́nikẹ́ Oluwátóyìn, Omowumi Moromoke Femi-Akinlosotu, Bolu Adeoti, and Oluwatosin Eunice Olorunmoteni. 2023. "Untreated Early Childhood Caries and Possible Links with Brain Development" BioMed 3, no. 4: 431-439. https://doi.org/10.3390/biomed3040035
APA StyleFoláyan, M. O., Femi-Akinlosotu, O. M., Adeoti, B., & Olorunmoteni, O. E. (2023). Untreated Early Childhood Caries and Possible Links with Brain Development. BioMed, 3(4), 431-439. https://doi.org/10.3390/biomed3040035