The Impact of Food Insecurity on Glycemic Control among Individuals with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Risk of Bias and Publication Bias
3.4. Findings
3.4.1. Association between FI and Glycemic Control
3.4.2. Social Factors Influencing Glycemic Control
3.4.3. Medical Factors Influencing Glycemic Control
3.4.4. A Social Medical Approach to FI and Diabetes
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; McArdle, P.; Taplin, J.; Unwin, D.; Unwin, J.; Deakin, T.; Wheatley, S.; Murdoch, C.; Malhotra, A.; Mellor, D. Dietary strategies for remission of type 2 diabetes: A narrative review. J. Hum. Nutr. Diet. 2022, 35, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Wacton, P.G.; Mendoza, J.T.; Smith, K.A.; et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- Nowlin, S.Y.; Hammer, M.J.; Melkus, G.D. Diet, inflammation, and glycemic control in type 2 diabetes: An integrative review of the literature. J. Nutr. Metab. 2012, 2012, 542698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malkani, S.; Mordes, J.P. Implications of using hemoglobin A1C for diagnosing diabetes mellitus. Am. J. Med. 2011, 124, 395–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S1–S2. [Google Scholar] [CrossRef]
- Blitstein, J.L.; Lazar, D.; Gregory, K.; McLoughlin, C.; Rosul, L.; Rains, C.; Hellman, T.; Leruth, C.; Mejia, J. Foods for Health: An integrated social medical approach to food insecurity among patients with diabetes. Am. J. Health Promot. 2021, 35, 369–376. [Google Scholar] [CrossRef]
- Duarte, F.G.; da Silva Moreira, S.; Conceição, C.A.; de Souza Teles, C.A.; Andrade, C.S.; Reingold, A.L.; Moreira, E.D., Jr. Sex differences and correlates of poor glycaemic control in type 2 diabetes: A cross-sectional study in Brazil and Venezuela. BMJ Open 2019, 9, e023401. [Google Scholar] [CrossRef] [Green Version]
- Khattab, M.; Khader, Y.S.; Al-Khawaldeh, A.; Ajlouni, K. Factors associated with poor glycemic control among patients with type 2 diabetes. J. Diabetes Complicat. 2010, 24, 84–89. [Google Scholar] [CrossRef]
- Taylor, R.; Ramachandran, A.; Yancy, W.S., Jr.; Forouhi, N.G. Nutritional basis of type 2 diabetes remission. BMJ 2021, 7, n1449. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. BJN 2015, 114, 999–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Boero, V.; Cafiero, C.; Gheri, F.; Kepple, A.W.; Rosero Moncayo, J.; Viviani, S. Access to Food in 2020. Results of Twenty National Surveys Using the Food Insecurity Experience Scale (FIES); Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Kim, E.J.; Abrahams, S.; Marrast, L.; Martinez, J.; Hanchate, A.D.; Conigliaro, J. Significance of multiple adverse social determinants of health on the diagnosis, control, and management of diabetes. J. Gen. Intern. Med. 2021, 36, 2152–2154. [Google Scholar] [CrossRef] [PubMed]
- Seligman, H.K.; Bindman, A.B.; Vittinghoff, E.; Kanaya, A.M.; Kushel, M.B. Food insecurity is associated with diabetes mellitus: Results from the National Health Examination and Nutrition Examination Survey (NHANES) 1999–2002. J. Gen. Intern. Med. 2007, 22, 1018–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gucciardi, E.; Vahabi, M.; Norris, N.; Del Monte, J.P.; Farnum, C. The intersection between food insecurity and diabetes: A review. Curr. Nutr. Rep. 2014, 3, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Tucker, K.L.; Mattei, J.; Noel, S.E.; Collado, B.M.; Mendez, J.; Nelson, J.; Griffith, J.; Ordovas, J.M.; Falcon, L. The Boston Puerto Rican Health Study, a longitudinal cohort study on health disparities in Puerto Rican adults: Challenges and opportunities. BMC Public Health 2010, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H. National Health and Nutrition Examination Survey, 2015−2018: Sample design and estimation procedures. National Center for Health Statistics. In Vital and Health Statistics; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020; Volume 2, pp. 1–27. [Google Scholar]
- Nelson, K.; Drain, N.; Robinson, J.; Kapp, J.; Hebert, P.; Taylor, L.; Silverman, J.; Kiefer, M.; Lessler, D.; Krieger, J. Peer support for achieving independence in diabetes (Peer-AID): Design, methods and baseline characteristics of a randomized controlled trial of community health worker assisted diabetes self-management support. Contemp. Clin. Trials 2014, 38, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Moin, T.; Duru, O.K.; Turk, N.; Chon, J.S.; Frosch, D.L.; Martin, J.; Jeffers, K.S.; Castellon-Lopez, Y.; Tseng, C.-H.; Norris, K.; et al. Effectiveness of shared decision-making for diabetes prevention: 12-month results from the Prediabetes Informed Decision and Education (PRIDE) trial. J. Gen. Intern. Med. 2019, 34, 2652–2659. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, S.A.; Gao, X.; Tucker, K.L. Food-insecure dietary patterns are associated with poor longitudinal glycemic control in diabetes: Results from the Boston Puerto Rican Health Study. Diabetes Care 2014, 37, 2587–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heerman, W.J.; Wallston, K.A.; Osborn, C.Y.; Bian, A.; Schlundt, D.G.; Barto, S.D.; Rothman, R.L. Food insecurity is associated with diabetes self-care behaviours and glycaemic control. Diabet. Med. 2016, 33, 844–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ippolito, M.M.; Lyles, C.R.; Prendergast, K.; Marshall, M.B.; Waxman, E.; Seligman, H.K. Food insecurity and diabetes self-management among food pantry clients. Public Health Nutr. 2017, 20, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, M.; Kibe, L.W.; Schrode, K.M. Dietary quality, food security and glycemic control among adults with diabetes. Clin. Nutr. ESPEN 2021, 46, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Shalowitz, M.U.; Eng, J.S.; O McKinney, C.; Krohn, J.; Lapin, B.; Wang, C.-H.; Nodine, E. Food security is related to adult type 2 diabetes control over time in a United States safety net primary care clinic population. Nutr. Diabetes 2017, 7, e277. [Google Scholar] [CrossRef] [Green Version]
- Silverman, J.; Krieger, J.; Kiefer, M.; Hebert, P.; Robinson, J.; Nelson, K. The relationship between food insecurity and depression, diabetes distress and medication adherence among low-income patients with poorly-controlled diabetes. J. Gen. Intern. Med. 2015, 30, 1476–1480. [Google Scholar] [CrossRef]
- Walker, R.J.; Campbell, J.A.; Egede, L.E. Differential impact of food insecurity, distress, and stress on self-care behaviors and glycemic control using path analysis. J. Gen. Intern. Med. 2019, 34, 2779–2785. [Google Scholar] [CrossRef]
- Nsimbo, K.B.A.; Erumeda, N.; Pretorius, D. Food insecurity and its impact on glycaemic control in diabetic patients attending Jabulani Dumani community health centre, Gauteng province, South Africa. Afr. J. Prim. Health Care Fam. Med. 2021, 13, e1–e6. [Google Scholar] [CrossRef]
- Bryce, R.; Guajardo, C.; Ilarraza, D.; Milgrom, N.; Pike, D.; Savoie, K.; Valbuena, F.; Miller-Matero, L. Participation in a farmers’ market fruit and vegetable prescription program at a federally qualified health center improves hemoglobin A1C in low income uncontrolled diabetics. Prev. Med. Rep. 2017, 7, 176–179. [Google Scholar] [CrossRef]
- Xie, J.; Price, A.; Curran, N.; Østbye, T. The impact of a produce prescription programme on healthy food purchasing and diabetes-related health outcomes. Public Health Nutr. 2021, 24, 3945–3955. [Google Scholar] [CrossRef] [PubMed]
- Safren, S.A.; Gonzalez, J.S.; Wexler, D.J.; Psaros, C.; Delahanty, L.M.; Blashill, A.J.; Margolina, A.I.; Cagliero, E. A randomized controlled trial of cognitive behavioral therapy for adherence and depression (CBT-AD) in patients with uncontrolled type 2 diabetes. Diabetes Care 2014, 37, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PICO | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Adults (>18 years) with T2DM | Children with diabetes and adults with type 1 diabetes |
Intervention | Observational and interventional studies evaluating food insecurity and diabetes control | Abstracts, presentations, commentaries, protocols, and review articles |
Comparison | Food secure adults (>18 years) with T2DM or no control | No discrete findings for food insecure adults (>18 years) with T2DM |
Outcome | Glycemic control (HbA1c) | Did not report HbA1c as a measure of glycemic control |
Author, Year | Specific Aims | Study Design | Setting and Population | Assessment Tools | Findings |
---|---|---|---|---|---|
Berkowitz, 2014 | Evaluate if dietarypatterns related to FI are associated with poor longitudinal glycemic control | Observational | USA | USDA (10-item) | HbA1c higher among FI, but not significant (p = 0.14) |
Prospective | Puerto Rican Health Study | HbA1c | |||
Longitudinal | 584, 45–75 years | HEI 2005 | |||
Random sample | 70% female | FI with better diet quality lower HbA1c (p = 0.004) | |||
No control | 100% Hispanic | ||||
24 months | 26% FI | ||||
Blitstein, 2021 | Evaluate clinic-based program for individuals with diabetes aimed at improving food security and HbA1c | Observational | USA | USDA (6-item) | FS greater improvements HbA1c than FI (p = 0.04) |
Longitudinal | FQHCs | HbA1c | |||
Convenience sample | 933, mean 51 ± 13.2 years | ARMS | |||
No control | 64% female | No significant differences between HbA1c and FS status (p = 0.21) | |||
6–9 months | 73% Hispanic | ||||
43.4% FI | |||||
Heerman, 2015 | Investigate the association between FI, diabetes self-care and glycemic control | Observational | USA | USDA (3-item) | FI associated with lower glycemic control (p = 0.03) |
Cross-sectional | PRIDE Study | HbA1c | |||
Random sample | 401, median 52 years | SDSCA | |||
No control | 61% female | PDQ-11 | No significant association self-care non-adherence and HBA1c | ||
30 months | 57% non-Hispanic White | ARMS | |||
73% FI | |||||
Ippolito, 2017 | Assess relationship between FI level and diabetes self-management | Observational | USA | USDA (3-item) | FI not significantly associated diabetes control (p = 0.65) |
Cross-sectional | Food pantries | HbA1c | |||
Convenience sample | 1237, mean 56.4 ± 12.5 years | Diabetes self-management evaluation | |||
No control | 70% female | Diabetes self-efficacy scores for FI (very low). 51 units less than those for FS | |||
24 months | 55% Hispanic | ||||
84% FI | |||||
Kim, 2021 | Investigate relationship social determinants of health (including FI) and diabetes control | Observational | USA | USDA (18-item) | FI associated uncontrolled T2DM (p < 0.05) |
Cross-sectional | NHANES 2011–2014 | HbA1c | |||
Random sample | 9609, 20–65+ years | Diabetic foot exam | |||
No control | 49% female | Pupil dilation | |||
36 months | 67% non-Hispanic white | ||||
22% FI | |||||
Nsimbo, 2021 | Evaluate the prevalence of FI and its association with glycemic control | Descriptive | South Africa | HFIAS | High HbA1c readings were 5.38 times more likely among FI (p ≤ 0.001) |
Cross-sectional | Primary care center | HbA1c | |||
Convenience sample | 250, mean 58.7 years | ||||
64% female | |||||
No control | 64% FI | ||||
Time not reported | |||||
Shaheen, 2021 | Investigated the association of dietary quality, FI, and glycemic control | Observational | USA | USDA (18-item) | Poor glycemic control was associated with FI and/or diet quality (p = 0.01) |
Cross-sectional | NHANES 2011–2016 | HbA1c | |||
Random sample | 1682, 49% 60–85 years | HEI-2015 | |||
49% female | |||||
No control | 62% non-Hispanic white | ||||
60 months | 68% FI | ||||
Shalowitz, 2015 | Investigate if FI is associated longitudinally with poor glycemic control | Observational | USA | USDA (18-item) | FI impairs glycemic control among adults with T2DM (p = 0.013) |
Longitudinal | Multi-site FQHC | HbA1c | |||
Convenience sample | 336, mean 51.8 ± 10.9 years | ||||
90% non-Hispanic black | FI individuals more likely to be on insulin for T2DM (p = 0.01) | ||||
No control | 56% female | ||||
24 months | 56% FI | ||||
Silverman, 2015 | Assess relationship between FS status and depression, diabetes distress, medication adherence and HbA1c | Observational | USA | USDA (6-item) | Average unadjusted A1c level for FI was 0.64% higher than FS |
Cross-sectional | Peer-AID | HbA1c | |||
Random Sample | 287 | SDSCA | |||
49% female | |||||
Control group | 25% non-Hispanic black | ||||
24 months | 47% FI | ||||
Walker, 2019 | Assess pathways through which FI impacts glycemic control and diabetes self-care | Observational | USA | USDA (6-item) | FI indirectly associated high HbA1c (p = 0.001) through diabetes distress |
Cross-sectional | Primary care clinics | HbA1c | |||
Convenience sample | 615, mean 61 years | ||||
38% female | |||||
No control | 65% non-Hispanic black | ||||
Psychosocial factors impact diabetes self-care, thereby, glycemic control | |||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, B. The Impact of Food Insecurity on Glycemic Control among Individuals with Type 2 Diabetes. BioMed 2022, 2, 170-180. https://doi.org/10.3390/biomed2020016
Gordon B. The Impact of Food Insecurity on Glycemic Control among Individuals with Type 2 Diabetes. BioMed. 2022; 2(2):170-180. https://doi.org/10.3390/biomed2020016
Chicago/Turabian StyleGordon, Barbara. 2022. "The Impact of Food Insecurity on Glycemic Control among Individuals with Type 2 Diabetes" BioMed 2, no. 2: 170-180. https://doi.org/10.3390/biomed2020016
APA StyleGordon, B. (2022). The Impact of Food Insecurity on Glycemic Control among Individuals with Type 2 Diabetes. BioMed, 2(2), 170-180. https://doi.org/10.3390/biomed2020016